Entropy Balance in the Expanding Universe: A Novel Perspective
Abstract
:1. Introduction
2. The Role of Entropies
2.1. Information
2.2. Thermodynamic Entropy
3. Cosmic Expansion Comes into Play
4. Linking Cosmic Expansion, Information and Thermodynamic Entropy
5. Entangled Spacetime and Comoving Horizons: An Unexpected Link
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rovelli, C. Relational Quantum Mechanics. Int. J. Theor. Phys. 1996, 35, 1637–1678. [Google Scholar] [CrossRef]
- Smerlak, M.; Rovelli, C. Relational EPR. Found. Phys. 2007, 37, 427–445. [Google Scholar] [CrossRef] [Green Version]
- The BIG Bell Test Collaboration. Challenging local realism with human choices. Nature 2018, 557, 212–216. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.M. A Relational Formulation of Quantum Mechanics. Sci. Rep. 2018, 8, 13305. [Google Scholar] [CrossRef]
- Zizzi, P. Entangled spacetime. Mod. Phys. Lett. A 2018, 33, 1850168. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Black holes and information theory. arXiv, 2003; arXiv:quant-ph/0311049. [Google Scholar]
- Kantor, F.W. Information Mechanics; Wiley-Interscience: Hoboken, NJ, USA, 1977; ISBN 10: 0471029688/13: 9780471029687. [Google Scholar]
- Schmidhuber, J. Algorithmic Theories of Everything. arXiv, 2000; arXiv:quant-ph/0011122. [Google Scholar]
- Zenil, H. A Computable Universe: Understanding and Exploring Nature as Computation with a Foreword by Sir Roger Penrose; World Scientific Publishing Company: Singapore, 2012. [Google Scholar]
- Jaynes, E.T. Information Theory and Statistical Mechanics. Phys. Rev. 1957, 106, 620. [Google Scholar] [CrossRef]
- Lloyd, S. Ultimate physical limits to computation. Nature 2000, 406, 1047–1054. [Google Scholar] [CrossRef] [Green Version]
- Marzuoli, A.; Rasetti, M. Computing Spin Networks. Ann. Phys. 2005, 318, 345–407. [Google Scholar] [CrossRef]
- Fuentes-Guridi, I.; Girelli, F.; Livine, E. Holonomic Quantum Computation in the Presence of Decoherence. Phys. Rev. Lett. 2005, 94, 020503. [Google Scholar] [CrossRef]
- Zizzi, P.A. Quantum computationtoward quantum gravity. Gen. Relat. Gravit. 2001, 33, 1305–1318. [Google Scholar] [CrossRef]
- Görnitz, T. Abstract Quantum Theory and Space-Time Structure, I. Ur Theory and Bekenstein-Hawking Entropy. Int. J. Theoret. Phys. 1988, 27, 527–542. [Google Scholar] [CrossRef]
- Von Weizsäcker, C.F. The Structure of Physics; Görnitz, T., Lyre, H., Eds.; Springer: Dordrecht, The Netherlands, 2006; ISBN 978-1-4020-5235-4. [Google Scholar]
- Wheeler, J.A. Information, physics, quantum: The search for links. In Zurek, Wojciech Hubert. Complexity, Entropy, and the Physics of Information; Addison-Wesley: Redwood City, CA, USA, 1990; ISBN 9780201515091. [Google Scholar]
- Zeidler, E. Quantum Field Theory III: Gauge Theory; Springer: Berlin/Heideberg, Germany, 2011. [Google Scholar]
- Hooft, G. Dimensional Reduction in Quantum Gravity. arXiv, 1993; arXiv:gr-qc/9310026. [Google Scholar]
- Susskind, L. The World as a Hologram. arXiv, 1994; arXiv:hep-th/9409089. [Google Scholar]
- Hawking, S. Particle Creation by Black Holes. Commun. Math. Phys. 1975, 43, 199–220. [Google Scholar] [CrossRef]
- Hawking, S. Information loss in black holes. Phys. Rev. D 2005, 72, 084013. [Google Scholar] [CrossRef]
- Gyongyosi, L. A statistical model of information evaporation of perfectly reflecting black holes. Int. J. Quantum Inf. 2014, 12, 1560025. [Google Scholar] [CrossRef] [Green Version]
- Davis, T.M.; Lineweaver, C.H. Expanding Confusion: Common Misconceptions of Cosmological Horizons and the Superluminal Expansion of the Universe. Publ. Astron. Soc. Aust. 2013, 21, 97–109. [Google Scholar] [CrossRef]
- Davis, T.M.; Davies, P.C.W.; Lineweaver, C.H. Black hole versus cosmological horizon entropy. arXiv, 2003; arXiv:astro-ph/0305121. [Google Scholar]
- Bryngelson, J.D.; Wolynes, P.G. Spin glasses and the statistical mechanics of protein folding. Proc. Natl. Acad. Sci. USA 1987, 84, 7524–7528. [Google Scholar] [CrossRef]
- Ferreiro, D.U.; Hegler, J.A.; Komives, E.A.; Wolynes, P.G. On the role of frustration in the energy landscapes of allosteric proteins. Proc. Natl. Acad. Sci. USA 2011, 108, 3499–3503. [Google Scholar] [CrossRef] [Green Version]
- Tozzi, A.; Fla, T.; Peters, J.F. Building a minimum frustration framework for brain functions in long timescales. J. Neurosci. Res. 2016, 94, 702–716. [Google Scholar] [CrossRef]
- Beck, C. Generalized information and entropy measures in physics. Contemp. Phys. 2009, 50, 495–510. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of information. Bell Syst. Tech. J. 1948, 27, 379–423, 623–656. [Google Scholar] [CrossRef]
- Veneziano, G. A Simple/Short Introduction to Pre-Big-Bang Physics/Cosmology. arXiv, 1998; arXiv:hep-th/9802057v2. [Google Scholar]
- Penrose, R. Cycles of Time. In An Extraordinary New View of the Universe; Alfred, A., Ed.; Knopf: New York, NY, USA, 2011. [Google Scholar]
- Mandelstam, L.; Tamm, I. The uncertainty relation between energy and time in nonrelativistic quantum mechanics. J. Phys. (USSR) 1945, 9, 249–254. [Google Scholar]
- Vaidman, L. Minimum time for the evolution to an orthogonal quantum state. Am. J. Phys. 1992, 60, 182–183. [Google Scholar] [CrossRef]
- Uffink, J. The rate of evolution of a quantum state. Am. J. Phys. 1993, 61, 935. [Google Scholar] [CrossRef]
- Ellwanger, U. From the Universe to the Elementary Particles. In A First Introduction to Cosmology and the Fundamental Interactions; Springer: Berlin/Heidelberg, Germany, 2012; ISBN 978-3-642-24374-5. [Google Scholar] [Green Version]
- Bars, I.; Terning, J. Extra Dimensions in Space and Time; Springer: Berlin, Germany, 2009; ISBN 978-0-387-77637-8. [Google Scholar]
- Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.j.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; et al. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 2016, 594, A13. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Black Holes and Entropy. Phys. Rev. D 1973, 7, 2333–2346. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Generalized second law of thermodynamics in black-hole physics. Phys. Rev. D 1974, 9, 3292–3300. [Google Scholar] [CrossRef]
- Street, S. Neurobiology as Information Physics. Front. Syst. Neurosci. 2016, 10, 90. [Google Scholar] [CrossRef] [PubMed]
- Landauer, R. Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 1961, 5, 183–191. [Google Scholar] [CrossRef]
- Bérut, A.; Arakelyan, A.; Petrosyan, A.; Ciliberto, S.; Dillenschneider, R.; Lutz, E. Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 2012, 483, 187–190. [Google Scholar] [CrossRef]
- Lineweaver, C.H.; Egan, C. Life, gravity and the second law of thermodynamics. Phys. Life Rev. 2008, 5, 225–242. [Google Scholar] [CrossRef]
- Ozawa, M. Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurement. Phys. Rev. A 2003, 67, 042105. [Google Scholar] [CrossRef]
- Chiarelli, P. Can fluctuating quantum states acquire the classical behavior on large scale? J. Adv. Phys. 2013, 2, 139–163. [Google Scholar]
- Chiarelli, P. The Gravity of the Classical Klein-Gordon field. Symmetry 2019, 11, 322. [Google Scholar] [CrossRef]
- Peters, J.F.; Tozzi, A. Quantum Entanglement on a Hypersphere. Int. J. Theor. Phys. 2016, 55, 3689–3696. [Google Scholar] [CrossRef]
- Zhou, J.; Fan, H.-Y.; Song, J. A new two-mode thermo- and squeezing-mixed optical field. Chin. Phys. B 2017, 26, 070301. [Google Scholar] [CrossRef]
- Borsuk, K. Dreisatze uber die n-dimensionaleeuklidischesphare. Fundam. Math. 1933, XX, 177–190. [Google Scholar] [CrossRef]
- Tozzi, A.J.F.; Peters, A.A.; Fingelkurts, A.A.; Fingelkurts, P.C.; Marijuán, P.C. Topodynamics of metastable brains. Phys. Life Rev. 2017, 21, 1–20. [Google Scholar] [CrossRef]
- Clifton, T.; Clarkson, C.; Bull, P. Isotropic blackbody cosmic microwave background radiation as evidence for a homogeneous universe. Phys. Rev. Lett. 2012, 109, 051303. [Google Scholar] [CrossRef]
- Moreva, E.V.G.; Brida, M.; Gramegna, V.; Giovannetti, L.; Maccone, M. Genovese. Time from quantum entanglement: An experimental illustration. Phys. Rev. A 2013, 89, 052122. [Google Scholar] [CrossRef]
- Moreva, E.V.; Brida, G.; Gramegna, M.; Giovannetti, V. Entanglement discloses Time as an emergent phenomenon. In Proceedings of the CLEO: QELS_Fundamental Science, San Jose, CA, USA, 8–13 June 2014. [Google Scholar] [CrossRef]
- Klatt, M.A.; Lovrić, J.; Chen, D.; Kapfer, S.C.; Schaller, F.M.; Schönhöfer, P.W.A.; Gardiner, B.S.; Smith, A.-S.; Schröder-Turk, G.E.; Torquato, S. Universal hidden order in amorphous cellular geometries. Nat. Commun. 2019, 10, 811. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tozzi, A.; Peters, J.F. Entropy Balance in the Expanding Universe: A Novel Perspective. Entropy 2019, 21, 406. https://doi.org/10.3390/e21040406
Tozzi A, Peters JF. Entropy Balance in the Expanding Universe: A Novel Perspective. Entropy. 2019; 21(4):406. https://doi.org/10.3390/e21040406
Chicago/Turabian StyleTozzi, Arturo, and James F. Peters. 2019. "Entropy Balance in the Expanding Universe: A Novel Perspective" Entropy 21, no. 4: 406. https://doi.org/10.3390/e21040406
APA StyleTozzi, A., & Peters, J. F. (2019). Entropy Balance in the Expanding Universe: A Novel Perspective. Entropy, 21(4), 406. https://doi.org/10.3390/e21040406