Delimitating the Natural City with Points of Interests Based on Service Area and Maximum Entropy Method
Abstract
:1. Introduction
2. Methods and Materials
2.1. Service Area Generation Based on Reilly’s Law of Retail Gravitation
2.2. Natural City Aggregated by Maximum Entropy Method
2.3. Data
3. Results and Discussion
3.1. Generation of the Service Area
3.2. Seeking the Threshold Value with the MaxEnt Method
3.3. Comparison of Natural City Boundaries by Different Threshold Values
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fragkias, M.; Seto, K.C. Evolving rank-size distributions of intra-metropolitan urban clusters in South China. Comput. Environ. Urban Syst. 2009, 33, 189–199. [Google Scholar] [CrossRef]
- Kaufmann, R.K.; Seto, K.C.; Schneider, A.; Liu, Z.; Zhou, L.; Wang, W. Climate Response to Rapid Urban Growth: Evidence of a Human-Induced Precipitation Deficit. J. Clim. 2007, 20, 2299–2306. [Google Scholar] [CrossRef]
- Jażdżewska, I. Spatial and dynamic aspects of the rank-size rule method. Case of an urban settlement in Poland. Comput. Environ. Urban Syst. 2017, 62, 199–209. [Google Scholar] [CrossRef]
- Jiang, B.; Miao, Y. The Evolution of Natural Cities from the Perspective of Location-Based Social Media. Prof. Geogr. 2014, 67, 295–306. [Google Scholar] [CrossRef] [Green Version]
- Long, Y. Redefining Chinese city system with emerging new data. Appl. Geogr. 2016, 75, 36–48. [Google Scholar] [CrossRef]
- Masucci, A.P.; Arcaute, E.; Hatna, E.; Stanilov, K.; Batty, M. On the problem of boundaries and scaling for urban street networks. J. Royal Soc. Interface 2015, 12, 20150763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander, C. The City is not a Tree. Archit. Forum. 1965, 122, 58–62. [Google Scholar]
- Batty, M.; Longley, P. Fractal Cities: A Geometry of Form and Function; Academic Press: London, UK, 1994. [Google Scholar]
- Batty, M. Cities and Complexity: Understanding Cities with Cellular Automata, Agent-Based Models, and Fractals; The MIT Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Jiang, B. A complex-network perspective on Alexander’s wholeness. Physica A 2016, 463, 475–484. [Google Scholar] [CrossRef] [Green Version]
- Jiang, B. Wholeness as a hierarchical graph to capture the nature of space. Int. J. Geogr. Inf. Sci. 2015, 29, 1632–1648. [Google Scholar] [CrossRef] [Green Version]
- Jiang, B. Christopher Alexander and His Life’s Work: The Nature of Order. Urban Sci. 2019, 3, 30. [Google Scholar] [CrossRef]
- Jin, X.; Ying, L.; Wei, S.; Lu, Y.; Yang, X.; Tang, J. Evaluating cities’ vitality and identifying ghost cities in China with emerging geographical data. Cities 2017, 63, 98–109. [Google Scholar] [CrossRef]
- Shepard, W. Ghost Cities of China: The Story of Cities without People in the World’s Most Populated Country; Zed Books: London, UK, 2015. [Google Scholar]
- Bakillah, M.; Liang, S.; Mobasheri, A.; Arsanjani, J.J.; Zipf, A. Fine-resolution population mapping using OpenStreetMap points-of-interest. Int. J. Geogr. Inf. Sci. 2014, 28, 1940–1963. [Google Scholar] [CrossRef]
- Bordogna, G.; Carrara, P.; Criscuolo, L.; Pepe, M.; Rampini, A. A linguistic decision making approach to assess the quality of volunteer geographic information for citizen science. Inf. Sci. 2014, 258, 312–327. [Google Scholar] [CrossRef]
- Porta, S.; Strano, E.; Iacoviello, V.; Messora, R.; Latora, V.; Cardillo, A.; Wang, F.; Scellato, S. Street Centrality and Densities of Retail and Services in Bologna, Italy. Environ. Plan. 2009, 36, 450–465. [Google Scholar] [CrossRef]
- Agryzkov, T.; Oliver, I.L.; Tortosa, L.; Vicent, J.F. Analyzing the commercial activities of a street network by ranking their nodes: A case study in Murcia, Spain. Int. J. Geogr. Inf. Sci. 2014, 28, 479–495. [Google Scholar] [CrossRef]
- Wang, F. Quantitative Methods and Applications in GIS; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Jiang, B. Head/Tail Breaks: A New Classification Scheme for Data with a Heavy-Tailed Distribution. Prof. Geogr. 2012, 65, 482–494. [Google Scholar] [CrossRef]
- Jiang, B. Head/tail breaks for visualization of city structure and dynamics. Cities 2015, 43, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, A.; Laio, A. Machine learning. Clustering by fast search and find of density peaks. Science 2014, 344, 1492. [Google Scholar] [CrossRef]
- Wang, S.; Wang, D.; Li, C.; Yan, L.; Ding, G. Clustering by Fast Search and Find of Density Peaks with Data Field. Chinese J. Electron. 2016, 25, 397–402. [Google Scholar] [CrossRef]
- Joseph, L.; Kuby, M. Gravity Modeling and its Impacts on Location Analysis. In International Series in Operations Research and Management Science; Springer: New York, NY, USA, 2011; Volume 155, pp. 423–443. [Google Scholar]
- Wang, J.; Kwan, M.P. Hexagon-Based Adaptive Crystal Growth Voronoi Diagrams Based on Weighted Planes for Service Area Delimitation. ISPRS Int. J. Geo-Inf. 2018, 7, 257. [Google Scholar] [CrossRef]
- Kesavan, H.K. Jaynes’ Maximum Entropy Principle. In Encyclopedia of Optimization; Floudas, C., Pardalos, P., Eds.; Springer: Boston, MA, USA, 2001; pp. 1181–1184. [Google Scholar]
- Jiang, B. A City Is a Complex Network. arXiv 2015, arXiv:1509.08452. [Google Scholar]
- Liu, L.; Peng, Z.; Wu, H.; Jiao, H.; Yu, Y.; Zhao, J. Fast Identification of Urban Sprawl Based on K-Means Clustering with Population Density and Local Spatial Entropy. Sustainability 2018, 10, 2683. [Google Scholar] [CrossRef]
- Cabral, P.; Augusto, G.; Tewolde, M.; Araya, Y. Entropy in Urban Systems. Entropy 2013, 15, 5223–5236. [Google Scholar] [CrossRef] [Green Version]
- Leopold, L.B. The Concept of Entropy in Landscape Evolution; Professional Paper; U.S. Government Printing Office: Washington, DC, USA, 1962.
- Wilson, A.G. Entropy in Urban and Regional Modeling. Econ. Geogr. 2011, 48, 446–447. [Google Scholar]
- Sahoo, M.M.; Patra, K.C.; Swain, J.B.; Khatua, K.K. Evaluation of water quality with application of Bayes’’ rule and entropy weight method. Eur. J. Environ. Civ. Eng. 2016, 21, 730–752. [Google Scholar] [CrossRef]
- Delgado, A.; Romero, I. Environmental conflict analysis using an integrated grey clustering and entropy-weight method. Environ. Model. Softw. 2016, 77, 108–121. [Google Scholar] [CrossRef]
- Li, X.; Wang, K.; Liu, L.; Jing, X.; Yang, H.; Gao, C. Application of the Entropy Weight and TOPSIS Method in Safety Evaluation of Coal Mines. Procedia Eng. 2011, 26, 2085–2091. [Google Scholar] [CrossRef] [Green Version]
- Dover, Y. A short account of a connection of power laws to the information entropy. Physica A 2004, 334, 591–599. [Google Scholar] [CrossRef] [Green Version]
- Pukelsheim, F. The Three Sigma Rule. Am. Stat. 1994, 48, 88–91. [Google Scholar]
- Wu, H.; Liu, L.; Yu, Y.; Peng, Z. Evaluation and Planning of Urban Green Space Distribution Based on Mobile Phone Data and Two-Step Floating Catchment Area Method. Sustainability 2018, 10, 214. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, J.; Feng, J. Understanding the Fractal Dimensions of Urban Forms through Spatial Entropy. Entropy 2017, 19, 600. [Google Scholar] [CrossRef]
- Liu, L.; Peng, Z.; Wu, H.; Jiao, H.; Yu, Y. Exploring Urban Spatial Feature with Dasymetric Mapping Based on Mobile Phone Data and LUR-2SFCAe Method. Sustainability 2018, 10, 2432. [Google Scholar] [CrossRef]
- Long, Y.; Shen, Y. Mapping parcel-level urban areas for a large geographical area. arXiv 2014, arXiv:1403.5864. [Google Scholar]
- Chen, Y.; Jiang, B. Hierarchical Scaling in Systems of Natural Cities. Entropy 2018, 20, 432. [Google Scholar] [CrossRef]
Restaurant | Stores | Bank | MP Base Station | |
---|---|---|---|---|
Amount | 13207 | 9678 | 4289 | 10212 |
Service Area | (km2) | |||
Min area | 0.000008 | 0.000180 | 0.000133 | 0.000012 |
Max area | 185.819 | 130.447822 | 180.126999 | 42.908001 |
Mean | 0. 650851 | 0.888088 | 2.002382 | 0.842049 |
Standard Error | 4.5672 | 14.107599 | 9.164582 | 2.361717 |
Perimeter | (km) | |||
Min Perimeter | 0.017092 | 0. 061354 | 0. 057230 | 0.016712 |
Max Perimeter | 57.826401 | 64.695572 | 59.245899 | 27.1527 |
Mean | 1.520791 | 2.074611 | 3.13577 | 2.358477 |
Standard Error | 3.530842 | 3.84682 | 5.797607 | 3.044902 |
Mean (M) | MaxEnt (H) | Ratio (H/M) | ||
---|---|---|---|---|
Restaurants | 1.520791 | 1.430 | 0.940300 | 3.0334876 |
Stores | 2.074611 | 2.355 | 1.135152 | 4.9957086 |
Banks | 3.13577 | 3.052 | 0.973285 | 6.4742686 |
MP Base Stations | 2.358477 | 1.977 | 0.838252 | 4.1938496 |
Mean(M) | MaxEnt(H) | TIN-Head/Tail Breaks | ||
---|---|---|---|---|
Restaurants | 204.62 km2 | 186.24 km2 | 427.18 km2 | 240.47 km2 |
Stores | 337.76 km2 | 388.77 km2 | 815.77km2 | 134.44 km2 |
Banks | 282.21 km2 | 271.33 km2 | 617.9 km2 | 199.10 km2 |
MP Base Stations | 536.48 km2 | 424.07 km2 | 1017.832 km2 | 846.17 km2 |
Road Junctions (BCL) | 807.34 km2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Xia, B.; Wu, H.; Zhao, J.; Peng, Z.; Yu, Y. Delimitating the Natural City with Points of Interests Based on Service Area and Maximum Entropy Method. Entropy 2019, 21, 458. https://doi.org/10.3390/e21050458
Liu L, Xia B, Wu H, Zhao J, Peng Z, Yu Y. Delimitating the Natural City with Points of Interests Based on Service Area and Maximum Entropy Method. Entropy. 2019; 21(5):458. https://doi.org/10.3390/e21050458
Chicago/Turabian StyleLiu, Lingbo, Binxin Xia, Hao Wu, Jie Zhao, Zhenghong Peng, and Yang Yu. 2019. "Delimitating the Natural City with Points of Interests Based on Service Area and Maximum Entropy Method" Entropy 21, no. 5: 458. https://doi.org/10.3390/e21050458
APA StyleLiu, L., Xia, B., Wu, H., Zhao, J., Peng, Z., & Yu, Y. (2019). Delimitating the Natural City with Points of Interests Based on Service Area and Maximum Entropy Method. Entropy, 21(5), 458. https://doi.org/10.3390/e21050458