Offshore Platform Extraction Using RadarSat-2 SAR Imagery: A Two-Parameter CFAR Method Based on Maximum Entropy
Abstract
:1. Introduction
2. Study Areas and Datasets
2.1. Study Areas
2.2. Datasets
3. Methodology
- (1)
- Image preprocessing. The preprocessing of the two-phase SAR images used in this experiment included geometric correction and radiometric correction, landmasking of the image research area and image-filtering.
- (2)
- Offshore platform detection. The pre-processed two-phase images were processed using the two-parameter CFAR detection program based on maximum entropy, including target detection and detection threshold calculation. The program outputs a possible offshore platform target set, including both offshore platforms and ships.
- (3)
- Neighborhood analysis. The offshore platform targets are determined by comparing the position-invariant characteristic of offshore platforms with the moving characteristics of ships.
3.1. Image Preprocessing
3.1.1. Image Correction
3.1.2. Mask Processing
3.1.3. Filtering
3.2. A Two-Parameter CFAR Target Detection Method Based on Maximum Entropy
3.2.1. Two-Parameter CFAR Target Detection Algorithm
3.2.2. Estimation of the Optimal False Alarm Rate Control Coefficient t Based on Maximum Entropy
3.3. Elimination of Ship Targets
4. Results
4.1. Parameters Used in the Two-Parameter CFAR Target Detection Method Based on the Maximum Entropy of Offshore Platforms
4.2. Offshore Platform Extraction Results
4.3. Accuracy Evaluation of the Automatic Extraction Method for Offshore Platforms
4.4. High-Resolution Image Comparison Analysis
5. Discussion
5.1. Advantages and Limitations of the Two-Parameter CFAR Target Detection Method Based on Maximum Entropy
5.2. The Influence of Ship Targets on the Extraction Result
5.3. The Interference of Offshore Artificial Targets on Offshore Platform Extraction
5.4. The Interference of SAR Data and Platform Size on Offshore Platform Extraction
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sovacool, B.K.; Brown, M.A. Competing Dimensions of Energy Security: An International Perspective. Annu. Resour. 2010, 35, 77–108. [Google Scholar] [CrossRef] [Green Version]
- Xing, Q.; Meng, R.; Lou, M.; Bing, L.; Liu, X. Remote Sensing of Ships and Offshore Oil Platforms and Mapping the Marine Oil Spill Risk Source in the Bohai Sea. Aquat. Procedia 2015, 3, 127–132. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, C.; Yang, Y.; Zhou, M.; Zhan, W.; Cheng, W. Automatic extraction of offshore platforms using time-series Landsat-8 Operational Land Imager data. Remote. Sens. Env. 2016, 175, 73–91. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Erwin, E.H.; Baugh, K.E.; Tuttle, B.T.; Howard, A.T.; Pack, D.W.; Milesi, C. Satellite data estimate worldwide flared gas volumes. Oil Gas J. 2007, 105, 50. [Google Scholar]
- Wu, G.; De Leeuw, J.; Skidmore, A.K.; Liu, Y.; Prins, H.H. Performance of Landsat TM in ship detection in turbid waters. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 54–61. [Google Scholar] [CrossRef]
- Long, D. Compact, low-cost synthetic aperture radar. Spie Newsroom 2006. [Google Scholar] [CrossRef] [Green Version]
- Marino, A.; Velotto, D.; Nunziata, F. Offshore Metallic Platforms Observation Using Dual-Polarimetric TS-X/TD-X Satellite Imagery: A Case Study in the Gulf of Mexico. IEEE J. Sel. Top. Appl. Earth Obs. Sens. 2017, 10, 1–11. [Google Scholar]
- Touzi, R.; Hurley, J.; Vachon, P.W. Optimization of the Degree of Polarization for Enhanced Ship Detection Using Polarimetric RADARSAT-2. IEEE Trans. Geosci. Sens. 2015, 53, 5403–5424. [Google Scholar] [CrossRef]
- AydoD du, M. A syntaxonomical analysis of the ash forest in the vicinities of AdapazarD1. Remote Sens. 2015, 7, 5416–5439. [Google Scholar]
- Zhang, J.; Wang, Q.; Su, F. Automatic Extraction of Offshore Platforms in Single SAR Images Based on a Dual-Step-Modified Model. Sensors 2019, 19, 231. [Google Scholar] [CrossRef]
- Xue, J.-H.; Zhang, Y.-J. Ridler and Calvardb. Pattern Recognit. Lett. 2012, 33, 793–797. [Google Scholar] [CrossRef]
- Zhang, H. Maximum weighted conditional entropy threshold algorithm based on gray-gradient coocurrence matrix model. Comput. Eng. Appl. 2010. [Google Scholar]
- Gierull, C. Statistical analysis of multilook SAR interferograms for CFAR detection of ground moving targets. IEEE Trans. Geosci. Sens. 2004, 42, 691–701. [Google Scholar] [CrossRef]
- Duan, Y.; Liu, D.; Yang, Z. Fluctuation Characteristics and Data Processing Method of Infrared Measurement Signal of Superheaters Inner Wall Temperature in Utility Boiler. Proc. Csee 2012, 32, 1–5. [Google Scholar]
- Xing, X.; Ji, K.; Zou, H.; Sun, J. A fast ship detection algorithm in SAR imagery for wide area ocean surveillance. In Proceedings of the IEEE Radar Conference, Atlanta, GA, USA, 7–11 May 2012. [Google Scholar]
- Xing, X.W.; Chen, Z.L.; Zou, H.X.; Zhou, S.L. A fast algorithm based on two-stage CFAR for detecting ships in SAR images. In Proceedings of the 2009 2nd Asian-Pacific Conference on Synthetic Aperture Radar, Xi’an, China, 26–30 October 2009. [Google Scholar]
- Finn, H.M.; Johnson, R.S. Adaptive Detection Mode with Threshold Control as a Function of Spatially Sampled Clutter-Level Estimates. RCA Rev. 1968, 29, 414–465. [Google Scholar]
- Viswanathan, R. 23 Order statistics application to CFAR radar target detection. Handb. Stat. 1998, 17, 643–671. [Google Scholar]
- Novak, L.; Burl, M. Optimal speckle reduction in polarimetric SAR imagery. IEEE Trans. Aerosp. Electron. Syst. 1990, 26, 293–305. [Google Scholar] [CrossRef]
- Ai, J.Q. Improved Two Parameter CFAR Ship Detection Algorithm in SAR Images. J. Electron. Inf. Technol. 2009, 31, 2881–2885. [Google Scholar]
- Cheng, L.; Yang, K.; Tong, L.; Liu, Y.; Li, M. Invariant triangle-based stationary oil platform detection from multitemporal synthetic aperture radar data. J. Appl. Remote Sens. 2013, 7, 73537. [Google Scholar] [CrossRef]
- Xu, J.; Ma, Y.; Li, J.; Peng, Y. Optimizing CFAR-based SAR Target Detection Algorithm for DSP Platform. In Proceedings of the 2016 Sixth International Conference on Instrumentation & Measurement, Computer, Communication and Control (IMCCC), Harbin, China, 21–23 July 2016. [Google Scholar]
- Greidanus, H.; Alvarez, M.; Santamaria, C.; Thoorens, F.-X.; Kourti, N.; Argentieri, P. The SUMO Ship Detector Algorithm for Satellite Radar Images. Remote. Sens. 2017, 9, 246. [Google Scholar] [CrossRef]
- Hasselmann, K.; Raney, R.K.; Plant, W.J.; Alpers, W.; Shuchman, R.A.; Lyzenga, D.R.; Rufenach, C.L.; Tucker, M.J. Theory of synthetic aperture radar ocean imaging: A MARSEN view. J. Geophys. Res. Biogeosci. 1985, 90, 4659. [Google Scholar] [CrossRef]
- Weinberg, G.V. General transformation approach for constant false alarm rate detector development. Digit. Signal Process. 2014, 30, 15–26. [Google Scholar] [CrossRef]
- Lee, J.-S.; Wen, J.-H.; Ainsworth, T.; Chen, K.-S.; Chen, A. Improved Sigma Filter for Speckle Filtering of SAR Imagery. Ieee Trans. Geosci. Remote Sens. 2009, 47, 202–213. [Google Scholar]
- Sadhu, S.; Mondal, S.; Srinivasan, M.; Ghoshal, T. Sigma point Kalman filter for bearing only tracking. Signal Process. 2006, 86, 3769–3777. [Google Scholar] [CrossRef]
- Dai, H.; Du, L.; Wang, Y.; Wang, Z. A Modified CFAR Algorithm Based on Object Proposals for Ship Target Detection in SAR Images. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1–5. [Google Scholar] [CrossRef]
- Abbadi, A.; Abbane, A.; Bencheikh, M.L.; Soltani, F. A new adaptive CFAR processor in multiple target situations. In Proceedings of the 2017 Seminar on Detection Systems Architectures and Technologies (DAT), Algiers, Algeria, 20–22 Feburary 2017. [Google Scholar]
- Ai, J.; Qi, X.; Yu, W.; Deng, Y.; Liu, F.; Shi, L. A New CFAR Ship Detection Algorithm Based on 2-D Joint Log-Normal Distribution in SAR Images. IEEE Geosci. Remote Sens. Lett. 2010, 7, 806–810. [Google Scholar] [CrossRef]
- Liao, M.; Wang, C.; Wang, Y.; Jiang, L. Using SAR Images to Detect Ships From Sea Clutter. IEEE Geosci. Remote Sens. Lett. 2008, 5, 194–198. [Google Scholar] [CrossRef]
- Achim, A.; Tsakalides, P.; Bezerianos, A. SAR image denoising via Bayesian wavelet shrinkage based on heavy-tailed modeling. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1773–1784. [Google Scholar] [CrossRef]
- Tao, D.; Anfinsen, S.N.; Brekke, C. Robust CFAR Detector Based on Truncated Statistics in Multiple-Target Situations. IEEE Trans. Geosci. Remote Sens. 2016, 54, 117–134. [Google Scholar] [CrossRef]
- Ai, J.; Yang, X.; Zhou, F.; Dong, Z.; Jia, L.; Yan, H.; Li, J. A Correlation-Based Joint CFAR Detector Using Adaptively-Truncated Statistics in SAR Imagery. Sensors 2017, 17, 686. [Google Scholar] [CrossRef]
- Weinberg, G. Radar Detection Theory of Sliding Window Processes; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Skilling, J. Maximum Entropy and Bayesian Methods. Acta Appl. Math. 1994, 20, 189–191. [Google Scholar]
- McCallum, A.; Freitag, D.; Pereira, F.C. Maximum Entropy Markov Models for Information Extraction and Segmentation. Presented at the 17th International Conference on Machine Learning, Stanford, CA, USA, 29 June–2 July 2000. [Google Scholar]
- Jebara, T. Multitask sparsity via maximum entropy discrimination. J. Mach. Learn. Res. 2011, 12, 75–110. [Google Scholar]
- Batista, F.; Ribeiro, R. Sentiment analysis and topic classification based on binary maximum entropy classifiers. Proces. Del Leng. Nat. 2013, 50, 77–84. [Google Scholar]
- Zheng, L.; Li, G.; Yun, B. Improvement of grayscale image 2D maximum entropy threshold segmentation method. In Proceedings of the 2010 International Conference on Logistics Systems and Intelligent Management (ICLSIM), Harbin, China, 9–10 January 2010. [Google Scholar]
- Luo, B.; Wang, W.; Jia, Y.; Gao, W. A segmentation method for spotted-partten damaged Thangka image combining grayscale morphology with maximum entropy threshold. In Proceedings of the 2013 6th International Congress on Image and Signal Processing (CISP), Hangzhou, China, 16–18 December 2013. [Google Scholar]
- Daneshpazhouh, A.; Sami, A. Entropy-based outlier detection using semi-supervised approach with few positive examples. Pattern Recognit. Lett. 2014, 49, 77–84. [Google Scholar] [CrossRef]
- Karasulu, B.; Korukoğlu, S. A simulated annealing-based optimal threshold determining method in edge-based segmentation of grayscale images. Appl. Soft Comput. 2011, 11, 2246–2259. [Google Scholar] [CrossRef]
- Lan, J.; Zeng, Y. Multi-threshold image segmentation using maximum fuzzy entropy based on a new 2D histogram. Opt. - Int. J. Light Electron Opt. 2013, 124, 3756–3760. [Google Scholar] [CrossRef]
- Getis, A.; Franklin, J. Second-order neighborhood analysis of mapped point patterns. In Perspectives on Spatial Data Analysis; Springer: Berlin/Heidelberg, Germany, 2010; pp. 93–100. [Google Scholar]
- Wang, L.; Tong, X.-j. Analysis on Relief Amplitude Based on Change Point Method. Geogr. Geo-Inf. Sci. 2007, 6, 015. [Google Scholar]
- Das, A.; Battles, J.J.; Stephenson, N.L.; Van Mantgem, P.J. The contribution of competition to tree mortality in old-growth coniferous forests. Ecol. Manag. 2011, 261, 1203–1213. [Google Scholar] [CrossRef]
- Ai, J.; Yang, X.; Dong, Z.; Zhou, F.; Jia, L.; Hou, L. A new two parameter CFAR ship detector in Log-Normal clutter. In Proceedings of the 2017 IEEE Radar Conference (RadarConf), Seattle, WA, USA, 8–12 May 2017. [Google Scholar]
- Wang, J.; Liu, Y.; Li, M.; Yang, K.; Cheng, L. A Remote Sensing Detection Method for Offshore Drilling Platform Based on ENVISAT ASAR--A Case Study of Southeastern Seas of Vietnam. Geogr. Res. 2013, 32, 2143–2152. [Google Scholar]
- Tings, B.; Bentes, C.; Velotto, D.; Voinov, S. Modelling ship detectability depending on TerraSAR-X-derived metocean parameters. CEAS Space J. 2018, 11, 81–94. [Google Scholar] [CrossRef] [Green Version]
No. | Satellite | Sensor | Image Mode | Polarization Mode | Spatial Resolution(/m) | Pixel Spacing (/m) | Date |
---|---|---|---|---|---|---|---|
1 | RadarSat-2 | SAR | ScanSAR Wide | VH | 100 m | 100 m | 2014-03-09 |
2 | RadarSat-2 | SAR | ScanSAR Wide | VH | 100 m | 100 m | 2014-10-12 |
No | Satellite | Sensor | Spatial Resolution(/m) | Time | Cloud Cover (%) |
---|---|---|---|---|---|
1 | GF-1 | PMS | 2 | 2014-09-12 | 5 |
2 | GF-1 | PMS | 2 | 2014-09-12 | 7 |
3 | GF-1 | PMS | 2 | 2014-09-12 | 6 |
4 | GF-1 | PMS | 2 | 2014-10-09 | 3 |
5 | GF-1 | PMS | 2 | 2014-10-09 | 3 |
6 | GF-1 | PMS | 2 | 2014-11-02 | 0 |
7 | GF-1 | PMS | 2 | 2014-11-15 | 0 |
8 | GF-1 | PMS | 2 | 2014-11-23 | 9 |
9 | GF-1 | PMS | 2 | 2014-11-23 | 8 |
10 | GF-1 | PMS | 2 | 2014-11-25 | 11 |
11 | GF-1 | PMS | 2 | 2014-11-25 | 11 |
12 | GF-1 | PMS | 2 | 2014-12-11 | 13 |
13 | GF-1 | PMS | 2 | 2014-12-11 | 0 |
14 | GF-1 | PMS | 2 | 2014-12-19 | 0 |
15 | GF-1 | PMS | 2 | 2014-12-19 | 9 |
16 | GF-1 | PMS | 2 | 2014-12-26 | 15 |
17 | GF-1 | PMS | 2 | 2014-12-26 | 12 |
18 | GF-1 | PMS | 2 | 2014-12-27 | 3 |
19 | GF-1 | PMS | 2 | 2014-12-27 | 1 |
20 | GF-1 | PMS | 2 | 2014-12-27 | 0 |
21 | GF-1 | PMS | 2 | 2014-12-27 | 7 |
22 | GF-1 | PMS | 2 | 2014-12-28 | 9 |
23 | GF-1 | PMS | 2 | 2014-12-28 | 13 |
24 | GF-1 | PMS | 2 | 2014-12-28 | 8 |
25 | GF-1 | PMS | 2 | 2014-12-28 | 5 |
26 | GF-1 | PMS | 2 | 2014-12-28 | 11 |
27 | GF-1 | PMS | 2 | 2014-12-28 | 0 |
28 | GF-1 | PMS | 2 | 2014-12-29 | 0 |
29 | GF-1 | PMS | 2 | 2014-12-29 | 5 |
30 | GF-1 | PMS | 2 | 2014-12-29 | 1 |
31 | GF-1 | PMS | 2 | 2014-12-29 | 1 |
Categories | Parameters |
---|---|
Image preprocessing | Calibration: backscattering coefficient and sensor calibration data are acquired from the metadata file |
Land mask: data of the extent of petroliferous basins provided by the “Atlas of China’s Petroliferous Basins” | |
Sigma filtering: filter size: 3 × 3 (σ = 8) | |
Target detection | Detection thresholds of the maximum entropy based two-parameter CFAR: detection window sizes: 225 m (3 × 3), 525 m (7 × 7), 975 m (13 × 13); false alarm rate control coefficient: t = = 0.7. (Figure 15) Neighborhood analysis: distance threshold = 150 m. |
Two-Parameter CFAR Based on Maximum Entropy | Two-Parameter CFAR | ||
---|---|---|---|
Optimal Control Coefficient t = 0.7 | Empirical Control Coefficient t = 0.5 | Empirical Control Coefficient t = 1 | |
Actual number(S) | 40 | 40 | 40 |
Total extraction(N) | 42 | 41 | 40 |
NTP | 39 | 38 | 37 |
NFP | 1 | 3 | 1 |
NFN | 2 | 0 | 2 |
TP | 97.5% | 95% | 92.5% |
FP | 2.5% | 7.5% | 2.5% |
FN | 5% | 0 | 5% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Zhang, J.; Su, F. Offshore Platform Extraction Using RadarSat-2 SAR Imagery: A Two-Parameter CFAR Method Based on Maximum Entropy. Entropy 2019, 21, 556. https://doi.org/10.3390/e21060556
Wang Q, Zhang J, Su F. Offshore Platform Extraction Using RadarSat-2 SAR Imagery: A Two-Parameter CFAR Method Based on Maximum Entropy. Entropy. 2019; 21(6):556. https://doi.org/10.3390/e21060556
Chicago/Turabian StyleWang, Qi, Jing Zhang, and Fenzhen Su. 2019. "Offshore Platform Extraction Using RadarSat-2 SAR Imagery: A Two-Parameter CFAR Method Based on Maximum Entropy" Entropy 21, no. 6: 556. https://doi.org/10.3390/e21060556
APA StyleWang, Q., Zhang, J., & Su, F. (2019). Offshore Platform Extraction Using RadarSat-2 SAR Imagery: A Two-Parameter CFAR Method Based on Maximum Entropy. Entropy, 21(6), 556. https://doi.org/10.3390/e21060556