Ordinal Patterns in Heartbeat Time Series: An Approach Using Multiscale Analysis
Abstract
:1. Introduction
2. Terminology and Notation: Ordinal Patterns
3. The Data
4. Numerical Analysis
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
c1rr | c2rr | c3rr | c4rr | c5rr | ||||||
s | Mean | Mean | Mean | Mean | Mean | |||||
1 | ||||||||||
25 | ||||||||||
50 | ||||||||||
75 | ||||||||||
100 | ||||||||||
n1rr | n2rr | n3rr | n4rr | n5rr | ||||||
s | Mean | Mean | Mean | Mean | Mean | |||||
1 | ||||||||||
25 | ||||||||||
50 | ||||||||||
75 | ||||||||||
100 | ||||||||||
a1rr | a2rr | a3rr | a4rr | a5rr | ||||||
s | Mean | Mean | Mean | Mean | Mean | |||||
1 | ||||||||||
25 | ||||||||||
50 | ||||||||||
75 | ||||||||||
100 |
Rényi Entropy, | ||||||||||
Mean | Mean | Mean | Mean | Mean | ||||||
c1 | 0.99375 | 0.0016742 | 0.995901 | 0.00108809 | 0.997573 | 0.000639407 | 0.998799 | 0.000314675 | 0.999881 | 0.0000310164 |
c2 | 0.992373 | 0.00440852 | 0.994975 | 0.00288105 | 0.997013 | 0.00170015 | 0.998518 | 0.00083924 | 0.999853 | 0.0000829394 |
c3 | 0.995505 | 0.00135784 | 0.997034 | 0.000876451 | 0.998235 | 0.000512168 | 0.999123 | 0.000250985 | 0.999913 | 0.0000246431 |
c4 | 0.997599 | 0.00231847 | 0.998417 | 0.00151459 | 0.999059 | 0.000893696 | 0.999533 | 0.000441177 | 0.999954 | 0.0000436064 |
c5 | 0.996863 | 0.00300583 | 0.997932 | 0.00197033 | 0.998771 | 0.00116577 | 0.99939 | 0.000576648 | 0.999939 | 0.0000570993 |
n1 | 0.998866 | 0.00217053 | 0.999249 | 0.00143686 | 0.999552 | 0.000856727 | 0.999777 | 0.000426199 | 0.999978 | 0.0000424152 |
n2 | 0.998122 | 0.00255504 | 0.99876 | 0.00168197 | 0.999262 | 0.000998495 | 0.999633 | 0.000495129 | 0.999963 | 0.0000491351 |
n3 | 0.99842 | 0.00220677 | 0.998955 | 0.00145612 | 0.999377 | 0.000865973 | 0.99969 | 0.000429973 | 0.999969 | 0.0000427177 |
n4 | 0.99882 | 0.00108625 | 0.999219 | 0.000717013 | 0.999535 | 0.000426684 | 0.999768 | 0.000211997 | 0.999977 | 0.000021077 |
n5 | 0.998207 | 0.00337506 | 0.998817 | 0.00221474 | 0.999296 | 0.00131093 | 0.99965 | 0.000648507 | 0.999965 | 0.0000642098 |
a1 | 0.999883 | 0.0000746988 | 0.999922 | 0.0000496687 | 0.999953 | 0.0000297382 | 0.999977 | 0.0000148454 | 0.999998 | |
a2 | 0.99982 | 0.0000692071 | 0.99988 | 0.0000460782 | 0.999928 | 0.0000276183 | 0.999964 | 0.0000137984 | 0.999996 | |
a3 | 0.999918 | 0.0000260503 | 0.999945 | 0.0000173427 | 0.999967 | 0.0000103941 | 0.999984 | 0.999998 | ||
a4 | 0.999821 | 0.0000319789 | 0.999881 | 0.0000213546 | 0.999929 | 0.0000128298 | 0.999964 | 0.999996 | ||
a5 | 0.999809 | 0.0000419525 | 0.999873 | 0.0000279582 | 0.999924 | 0.0000167702 | 0.999962 | 0.999996 | ||
Mean | Mean | Mean | Mean | Mean | ||||||
c1 | 0.971488 | 0.00810825 | 0.954373 | 0.0131568 | 0.919262 | 0.022572 | 0.857684 | 0.0325554 | 0.782297 | 0.0321941 |
c2 | 0.96679 | 0.0200377 | 0.948698 | 0.0309635 | 0.915286 | 0.049456 | 0.864263 | 0.072046 | 0.800394 | 0.0849372 |
c3 | 0.980388 | 0.00696758 | 0.969188 | 0.0117617 | 0.945976 | 0.0220604 | 0.90024 | 0.0384958 | 0.82708 | 0.0428283 |
c4 | 0.989489 | 0.0106662 | 0.983489 | 0.0166264 | 0.970898 | 0.0267743 | 0.941862 | 0.0390777 | 0.871617 | 0.0415113 |
c5 | 0.986294 | 0.0134194 | 0.978577 | 0.0205494 | 0.962802 | 0.0320426 | 0.928468 | 0.0437329 | 0.85563 | 0.0435773 |
n1 | 0.995255 | 0.00885824 | 0.992754 | 0.0129209 | 0.987708 | 0.0191147 | 0.975157 | 0.0261347 | 0.918917 | 0.0280182 |
n2 | 0.991919 | 0.0109831 | 0.987451 | 0.0164899 | 0.978208 | 0.0251411 | 0.955622 | 0.0341087 | 0.887612 | 0.0347691 |
n3 | 0.993263 | 0.00924895 | 0.989563 | 0.0136436 | 0.981805 | 0.0203264 | 0.961995 | 0.0276005 | 0.896366 | 0.0297364 |
n4 | 0.994969 | 0.00465057 | 0.992169 | 0.00711745 | 0.98615 | 0.011609 | 0.970086 | 0.0179958 | 0.907732 | 0.0205302 |
n5 | 0.992308 | 0.0144336 | 0.988136 | 0.0209432 | 0.979637 | 0.0296429 | 0.958767 | 0.0378302 | 0.892409 | 0.0385716 |
a1 | 0.999529 | 0.00030556 | 0.99929 | 0.000464605 | 0.998802 | 0.000792727 | 0.997539 | 0.00164017 | 0.980157 | 0.00615212 |
a2 | 0.999274 | 0.000280116 | 0.998906 | 0.000423513 | 0.998161 | 0.000716948 | 0.996254 | 0.00148206 | 0.974081 | 0.00573953 |
a3 | 0.999669 | 0.000105529 | 0.9995 | 0.000159653 | 0.999158 | 0.00027073 | 0.998272 | 0.00056533 | 0.984414 | 0.00439242 |
a4 | 0.999277 | 0.000126117 | 0.998908 | 0.000187545 | 0.998155 | 0.000307843 | 0.996192 | 0.000600026 | 0.972335 | 0.00283459 |
a5 | 0.999225 | 0.000168423 | 0.998827 | 0.000253341 | 0.998015 | 0.000424909 | 0.995882 | 0.000865272 | 0.970802 | 0.00409266 |
References
- Bandt, C.; Pompe, B. Permutation entropy, a natural complexity measure for time series. Phys. Rev. Lett. 2002, 88, 174102. [Google Scholar] [CrossRef] [PubMed]
- Zanin, M.; Zunino, L.; Rosso, O.A.; Papo, D. Permutation Entropy and its Main Biomedical and Econophysics Applications: A Review. Entropy 2012, 14, 1553–1577. [Google Scholar] [CrossRef]
- Amigó, J.M.; Keller, K.; Unakafova, V.A. Ordinal symbolic analysis and its applications to biomedical recordings. Phil. Trans. R. Soc. A 2015, 373, 20170091. [Google Scholar] [CrossRef] [PubMed]
- Keller, K.; Mangold, T.; Stolz, I.; Werner, J. Permutation entropy: New ideas and challenges. Entropy 2017, 19, 134. [Google Scholar] [CrossRef]
- Pincus, S.M.; Gladstone, I.M.; Ehrenkranz, R.A. A regularity statistic for medical data analysis. J. Clin. Monit. 1991, 7, 335–345. [Google Scholar] [CrossRef]
- Pincus, S.M.; Goldberger, A.L. Physiological time-series analysis: What does regularity quantify? Am. J. Physiol. 1994, 266, 1643–1656. [Google Scholar] [CrossRef]
- Kurths, J.; Voss, A.; Saparin, P.; Witt, A.; Kleiner, H.J.; Wessel, N. Quantitative analysis of heart rate variability. Chaos 1995, 5, 88–94. [Google Scholar] [CrossRef]
- Lake, D.E.; Richman, J.S.; Griffin, M.P.; Moorman, J.R. Sample entropy analysis of neonatal heart rate variability. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 283, R789–R797. [Google Scholar] [CrossRef] [Green Version]
- Zeng, W.; Glass, L. Statistical properties of heartbeat intervals during atrial fibrillation. Phys. Rev. E 1996, 52, 1779–1784. [Google Scholar] [CrossRef]
- Cammarota, C.; Rogora, E. Independence and symbolic independence of nonstationary heartbeat series during atrial fibrillation. Phys. A 2005, 353, 323–335. [Google Scholar] [CrossRef]
- Porta, A.; Guzzetti, S.; Montano, N.; Furlan, R.; Pagani, R.; Malliani, A.; Cerutti, S. Entropy, Entropy Rate, and Pattern Classification as tools to typify complexity in short heart period variability series. IEEE Trans. Biomed. Eng. 2001, 48, 1282–1291. [Google Scholar] [CrossRef] [PubMed]
- Graff, B. Entropy measures of heart rate variability for short ECG datasets in patients with congestive heart failure. Acta Phys. Pol. B Proc. Suppl. 2012, 5, 153–158. [Google Scholar] [CrossRef]
- Zunino, L.; Olivares, F.; Rosso, O.A. Permutation min-entropy: An improved quantifier for unveiling subtle temporal correlations. EPL 2015, 109, 10005. [Google Scholar] [CrossRef]
- Xia, Y.; Yang, L.; Zunino, L.; Shi, H.; Zhuang, Y.; Liu, C. Application of Permutation Entropy and Permutation Min-Entropy in Multiple Emotional States Analysis of RRI Times Series. Entropy 2018, 20, 148. [Google Scholar] [CrossRef]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale Entropy Analysis of Complex Physiologic Time Series. Phys. Rev. Lett. 2002, 89, 068102. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Wang, Y.; Sun, X.; Li, D.; Voss, L.J.; Sleigh, J.W.; Hagihira, S.; Li, X. EEG entropy measures in anesthesia. Front. Comput. Neurosci. 2015, 9, 00016. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Shang, P.; Wu, Y. Weighted multiscale Rényi permutation entropy of nonlinear time series. Phys. A 2018, 496, 548–570. [Google Scholar] [CrossRef]
- Cánovas, J.S.; Guillamón, A.; Ruíz, M.C. Using permutations to detect dependence between time series. Phys. D Nonlinear Phenom. 2011, 240, 1199–1204. [Google Scholar] [CrossRef]
- Cánovas, J.S.; García-Clemente, G.; Muñoz-Guillermo, M. Comparing permutation entropy functions to detect structural changes in times series. Phys. A 2018, 507, 153–174. [Google Scholar] [CrossRef]
- Amigó, J.M.; Zambrano, S.; Sanjuán, M.A.F. Combinatorial detection of determinism in noisy time series. EPL 2008, 83, 60005. [Google Scholar] [CrossRef]
- Rényi, A. On measures of entropy and information. Proc. Fourth Berkeley Symp. Math. Stat. Probab. 1961, 1, 547–561. [Google Scholar]
- Zunino, L.; Pérez, D.G.; Kowalski, A.; Martín, M.T.; Caravaglia, M.; Plastino, A.; Rosso, O.A. Brownian motion, fractional Gaussian noise and Tsallis permutation entropy. Phys. A 2008, 387, 6057–6068. [Google Scholar] [CrossRef]
- Tsallis, C. Generalized entropy-based criterion for consistent testing. Phys. Rev. E 1998, 58, 1442–1445. [Google Scholar] [CrossRef]
- Versaci, M.; La Foresta, F.; Morabito, F.C.; Angiulli, G. A fuzzy divergence approach for solving electrostatic identification problems for NDT applications. Int. J. Appl. Electrom. 2018, 57, 133–146. [Google Scholar] [CrossRef]
s | |
---|---|
1 | 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100 |
2 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62 |
3 | 2, 3, 4, 5, 6, 19, 20, 23, 24, 25, 26, 27, 28, 29 |
4 | 2, 3, 4, 5, 19, 20, 21 |
5 | 2, 3, 4, 15, 16, 17, 79 |
6 | 1, 2, 3, 13 |
7 | 1, 2, 11 |
8 | 1, 2, 10 |
9 | 1, 2 |
10 | 1, 2 |
11 | 1 |
12 | 1 |
13 | 1 |
14 | 1 |
15 | 1 |
16 | 1 |
17 | 1 |
18 | 1 |
m | s | Difference | Relation | |
---|---|---|---|---|
3 | 1 | 3 | 0.000111612 | |
4 | 1 | 3 | 0.000111612 | |
5 | 1 | 3 | 0.000111612 | |
5 | 11 | 1 | 0.0018635 | |
5 | 6 | 2 | 0.00249138 |
m | s | Difference | Relation | |
---|---|---|---|---|
3 | 1 | 3 | 0.000435339 | |
4 | 11 | 1 | 0.00213423 | |
4 | 6 | 2 | 0.00461844 | |
4 | 1 | 3 | 0.000435339 | |
5 | 11 | 1 | 0.00213423 | |
5 | 6 | 2 | 0.00461844 | |
5 | 9 | 1 | 0.0105166 | |
5 | 10 | 1 | 0.00585264 | |
5 | 5 | 2 | 0.00935592 | |
5 | 1 | 3 | 0.000435339 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Guillermo, M. Ordinal Patterns in Heartbeat Time Series: An Approach Using Multiscale Analysis. Entropy 2019, 21, 583. https://doi.org/10.3390/e21060583
Muñoz-Guillermo M. Ordinal Patterns in Heartbeat Time Series: An Approach Using Multiscale Analysis. Entropy. 2019; 21(6):583. https://doi.org/10.3390/e21060583
Chicago/Turabian StyleMuñoz-Guillermo, María. 2019. "Ordinal Patterns in Heartbeat Time Series: An Approach Using Multiscale Analysis" Entropy 21, no. 6: 583. https://doi.org/10.3390/e21060583
APA StyleMuñoz-Guillermo, M. (2019). Ordinal Patterns in Heartbeat Time Series: An Approach Using Multiscale Analysis. Entropy, 21(6), 583. https://doi.org/10.3390/e21060583