Beyond Boltzmann–Gibbs–Shannon in Physics and Elsewhere
Abstract
:1. Introduction
2. Non-Boltzmannian Entropy Measures and Distributions
2.1. Rényi Entropy
2.2. q-Entropy and q-Exponential Distribution
2.3. Kaniadakis Entropy and -Exponential Distribution
2.4. Beck–Cohen Superstatistics
2.5. More Entropies and Applications
3. Further Connections
3.1. Thermodynamical Background
3.2. q-Triplets
4. Conclusions and Perspectives
Funding
Acknowledgments
Conflicts of Interest
References and Notes
- Boltzmann, L. Weitere Studien uber das Wȧrmegleichgewicht unter Gas Molekulen [Further Studies on Thermal Equilibrium Between Gas Molecules]; Ber.: Wien, Austria, 1872; Volume 66, p. 275. (In German) [Google Scholar]
- Boltzmann, L. Uber die Beziehung eines Allgemeine Mechanischen Satzes zum Zweiten Haupsatze der Warmetheorie; Sitzungsberichte, K., Ed.; Akademie der Wissenschaften in Wien: Wien, Austria, 1877; Volume 75, pp. 67–73. (In German) [Google Scholar]
- Gibbs, J.W. Elementary Principles in Statistical Mechanics—Developed with Especial Reference to the Rational Foundation of Thermodynamics; C. Scribner’s Sons: New York, NY, USA, 1902. [Google Scholar]
- Von Neumann, J. Thermodynamik Quantenmechanischer Gesamtheiten; Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen S.: Göttingen, Germany, 1927; pp. 273–291. [Google Scholar]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Penrose, O. Foundations of Statistical Mechanics: A Deductive Treatment; Pergamon: Oxford, UK, 1970; p. 167. [Google Scholar]
- Renyi, A. On measures of information and entropy. In Proceedings of the Fourth Berkeley Symposium; University of California Press: Berkeley, LA, USA, 1961; Volume 1, p. 547. [Google Scholar]
- Havrda, J.; Charvat, F. Concept of Structural α-Entropy. Kybernetika 1967, 3, 30–35. [Google Scholar]
- Sharma, B.D.; Mittal, D.P. New non-additive measures of entropy for discrete probability distributions. J. Math. Sci. 1975, 10, 28. [Google Scholar]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479. [Google Scholar] [CrossRef]
- In [3]: In treating of the canonical distribution, we shall always suppose the multiple integral in Equation (92) [the partition function, as we call it nowadays] to have a finite value, as otherwise the coefficient of probability vanishes, and the law of distribution becomes illusory. This will exclude certain cases, but not such apparently, as will affect the value of our results with respect to their bearing on thermodynamics. It will exclude, for instance, cases in which the system or parts of it can be distributed in unlimited space […]. It also excludes many cases in which the energy can decrease without limit, as when the system contains material points which attract one another inversely as the squares of their distances. […]. For the purposes of a general discussion, it is sufficient to call attention to the assumption implicitly involved in the Formula (92).
- Fermi, E., Thermodynamics, (Dover, New York, 1936), page 53: The entropy of a system composed of several parts is very often equal to the sum of the entropies of all the parts. This is true if the energy of the system is the sum of the energies of all the parts and if the work performed by the system during a transformation is equal to the sum of the amounts of work performed by all the parts. Notice that these conditions are not quite obvious and that in some cases they may not be fulfilled. Thus, for example, in the case of a system composed of two homogeneous substances, it will be possible to express the energy as the sum of the energies of the two substances only if we can neglect the surface energy of the two substances where they are in contact. The surface energy can generally be neglected only if the two substances are not very finely subdivided; otherwise, it can play a considerable role.
- Majorana, E., The value of statistical laws in physics and social sciences. The original manuscript in Italian was published by G. Gentile Jr. in Scientia 36, 58 (1942), and was translated into English by R. Mantegna in 2005: This is mainly because entropy is an addditive quantity as the other ones. In other words, the entropy of a system composed of several independent parts is equal to the sum of entropy of each single part. […] Therefore one considers all possible internal determinations as equally probable. This is indeed a new hypothesis because the universe, which is far from being in the same state indefinitively, is subjected to continuous transformations. We will therefore admit as an extremely plausible working hypothesis, whose far consequences could sometime not be verified, that all the internal states of a system are a priori equally probable in specific physical conditions. Under this hypothesis, the statistical ensemble associated to each macroscopic state A turns out to be completely defined, 1938.
- Cartwright, J. Roll over, Boltzmann. Phys. World 2014, 27, 31–35. [Google Scholar] [CrossRef]
- A Regularly Updated Bibliography. Available online: http://tsallis.cat.cbpf.br/biblio.htm (accessed on 14 July 2019).
- Brito, S.G.A.; da Silva, L.R.; Tsallis, C. Role of dimensionality in complex networks. Sci. Rep. 2016, 6, 27992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nunes, T.C.; Brito, S.; da Silva, L.R.; Tsallis, C. Role of dimensionality in preferential attachment growth in the Bianconi-Barabasi model. J. Stat. Mech. 2017, 2017, 093402. [Google Scholar] [CrossRef]
- Brito, S.; Nunes, T.C.; da Silva, L.R.; Tsallis, C. Scaling properties of d-dimensional complex networks. Phys. Rev. E 2019, 99, 012305. [Google Scholar] [CrossRef]
- Barabási, A.L.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509. [Google Scholar] [PubMed]
- Albert, R.; Barabási, A.L. Statistical mechanics of complex networks. Rev. Mod. Phys. 2002, 74, 47. [Google Scholar] [CrossRef]
- Thurner, S.; Tsallis, C. Nonextensive aspects of self-organized scale-free gas-like networks. Europhys. Lett. 2005, 72, 197. [Google Scholar] [CrossRef]
- Emmerich, T.; Bunde, A.; Havlin, S. Structural and functional properties of spatially embedded scale-free networks. Phys. Rev. E 2014, 89, 062806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borges, E.P.; Roditi, I. A family of non-extensive entropies. Phys. Lett. A 1998, 246, 399. [Google Scholar] [CrossRef]
- Kaniadakis, G. Non linear kinetics underlying generalized statistics. Phys. A 2001, 296, 405. [Google Scholar] [CrossRef]
- Kaniadakis, G. Statistical mechanics in the context of special relativity. Phys. Rev. E 2002, 66, 056125. [Google Scholar] [CrossRef] [Green Version]
- Kaniadakis, G.; Lissia, M.; Scarfone, A.M. Deformed logarithms and entropies. Phys. A 2004, 340, 41. [Google Scholar] [CrossRef]
- Kaniadakis, G. Statistical mechanics in the context of special relativity. II. Phys. Rev. E 2005, 72, 036108. [Google Scholar] [CrossRef]
- Abe, S. A note on the q-deformation theoretic aspect of the generalized entropies in nonextensive physics. Phys. Lett. A 1997, 224, 326. [Google Scholar] [CrossRef]
- Landsberg, P.T.; Vedral, V. Distributions and channel capacities in generalized statistical mechanics. Phys. Lett. A 1998, 247, 211. [Google Scholar] [CrossRef]
- Curado, E.M.F. General aspects of the thermodynamical formalism. Braz. J. Phys. 1999, 29, 36. [Google Scholar] [CrossRef]
- Curado, E.M.F.; Nobre, F.D. On the stability of analytic entropic forms. Phys. A 2004, 335, 94. [Google Scholar] [CrossRef]
- Anteneodo, C.; Plastino, A.R. Maximum entropy approach to stretched exponential probability distributions. J. Phys. A 1999, 32, 1089. [Google Scholar] [CrossRef]
- Tsekouras, G.A.; Tsallis, C. Generalized entropy arising from a distribution of q-indices. Phys. Rev. E 2005, 71, 046144. [Google Scholar] [CrossRef] [PubMed]
- Tsallis, C.; Souza, A.M.C. Constructing a statistical mechanics for Beck-Cohen superstatistics. Phys. Rev. E 2003, 67, 026106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck, C.; Cohen, E.G.D. Superstatistics. Phys. A 2003, 322, 267. [Google Scholar] [CrossRef]
- Schwammle, V.; Tsallis, C. Two-parameter generalization of the logarithm and exponential functions and Boltzmann-Gibbs-Shannon entropy. J. Math. Phys. 2007, 48, 113301. [Google Scholar] [CrossRef] [Green Version]
- Tsallis, C. Introduction to Nonextensive Statistical Mechanics-Approaching a Complex World; Springer: New York, NY, USA, 2009. [Google Scholar]
- Shafee, F. Lambert function and a new non-extensive form of entropy. IMA J. Appl. Math. 2007, 72, 785. [Google Scholar] [CrossRef]
- Ubriaco, M.R. Entropies based on fractional calculus. Phys. Lett. A 2009, 373, 2516. [Google Scholar] [CrossRef]
- Tsallis, C.; Cirto, L.J.L. Black hole thermodynamical entropy. Eur. Phys. J. C 2013, 73, 2487. [Google Scholar] [CrossRef]
- Hanel, R.; Thurner, S. A comprehensive classification of complex statistical systems and an axiomatic derivation of their entropy and distribution functions. Europhys. Lett. 2011, 93, 20006. [Google Scholar] [CrossRef]
- Tempesta, P. Group entropies, correlation laws, and zeta functions. Phys. Rev. E 2011, 84, 021121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, H.J.; Tempesta, P. Group entropies: From phase space geometry to entropy functionals via group theory. Entropy 2018, 20, 804. [Google Scholar] [CrossRef]
- Curado, E.M.F.; Tempesta, P.; Tsallis, C. A new entropy based on a group-theoretical structure. Ann. Phys. 2016, 366, 22. [Google Scholar] [CrossRef]
- Tempesta, P. Beyond the Shannon-Khinchin formulation: The composability axiom and the universal-group entropy. Ann. Phys. 2016, 365, 180. [Google Scholar] [CrossRef]
- Jensen, H.J.; Pazuki, R.H.; Pruessner, G.; Tempesta, P. Statistical mechanics of exploding phase spaces: Ontic open systems. J. Phys. A: Math. 2018, 51, 375002. [Google Scholar] [CrossRef]
- Beck, C.; Schlogl, F. Thermodynamics of Chaotic Systems; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Zander, C.; Plastino, A.R.; Casas, M.; Plastino, A. Entropic entanglement criteria for Fermion systems. Eur. Phys. J. D 2012, 66, 14. [Google Scholar] [CrossRef] [Green Version]
- Tsallis, C.; Lloyd, S.; Baranger, M. Peres criterion for separability through nonextensive entropy. Phys. Rev. A 2001, 63, 042104. [Google Scholar] [CrossRef]
- Tsallis, C. Approach of complexity in nature: Entropic nonuniqueness. Axioms 2016, 5, 20. [Google Scholar] [CrossRef]
- Curado, E.M.F.; Tsallis, C. Generalized statistical mechanics: Connection with thermodynamics. J. Phys. A 1992, 24, L69–L72, Corrigenda in 1991, 24, 3187 and 1992, 25, 1019. [Google Scholar] [CrossRef]
- Tsallis, C.; Mendes, R.S.; Plastino, A.R. The role of constraints within generalized nonextensive statistics. Phys. A 1998, 261, 534. [Google Scholar] [CrossRef]
- Bediaga, I.; Curado, E.M.F.; Miranda, J. A nonextensive thermodynamical equilibrium approach in e+e− → hadrons. Phys. A 2000, 286, 156. [Google Scholar] [CrossRef]
- Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N.N.; Akiba, Y.; Al-Bataineh, H.; Alexander, J.; Aoki, K.; Aphecetche, L.; Armendariz, R.; et al. (PHENIX Collaboration). Measurement of neutral mesons in p + p collisions at and scaling properties of hadron production. Phys. Rev. D 2011, 83, 052004. [Google Scholar] [CrossRef]
- ALICE Collaboration. Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions. Nat. Phys. 2017, 13, 535. [Google Scholar] [CrossRef]
- Wong, C.Y.; Wilk, G.; Cirto, L.J.L.; Tsallis, C. From QCD-based hard-scattering to nonextensive statistical mechanical descriptions of transverse momentum spectra in high-energy pp and collisions. Phys. Rev. D 2015, 91, 114027. [Google Scholar] [CrossRef]
- Marques, L.; Cleymans, J.; Deppman, A. Description of high-energy pp collisions using Tsallis thermodynamics: Transverse momentum and rapidity distributions. Phys. Rev. D 2015, 91, 054025. [Google Scholar] [CrossRef]
- ALICE Collaboration. Production of π0 and η mesons up to high transverse momentum in pp collisions at 2.76 TeV. Eur. Phys. J. C 2017, 77, 339. [Google Scholar] [CrossRef] [PubMed]
- ALICE Collaboration. Production of Σ(1385)± and Ξ(1530)0 in p-Pb collisions at . Eur. Phys. J. C 2017, 77, 389. [Google Scholar]
- ALICE Collaboration. K*(892)0 and Φ(1020) meson production at high transverse momentum in pp and Pb-Pb collisions at . Phys. Rev. C 2017, 95, 064606. [Google Scholar] [CrossRef]
- Rybczynski, M.; Wilk, G.; Wlodarczyk, Z. System size dependence of the log-periodic oscillations of transverse momentum spectra. Eur. Phys. J. Web Conf. 2015, 90, 01002. [Google Scholar] [CrossRef]
- Wilk, G.; Wlodarczyk, Z. Tsallis distribution decorated with log-periodic oscillation. Entropy 2015, 17, 384–400. [Google Scholar] [CrossRef]
- Yalcin, G.C.; Beck, C. Generalized statistical mechanics of cosmic rays: Application to positron-electron spectral indices. Sci. Rep. 2018, 8, 1764. [Google Scholar] [CrossRef] [PubMed]
- Tsallis, C.; Gell-Mann, M.; Sato, Y. Asymptotically scale-invariant occupancy of phase space makes the entropy Sq extensive. Proc. Natl. Acad. Sci. USA 2005, 102, 15377. [Google Scholar] [CrossRef]
- Plastino, A.R.; Plastino, A. Non-extensive statistical mechanics and generalized Fokker-Planck equation. Phys. A 1995, 222, 347. [Google Scholar] [CrossRef]
- Schwammle, V.; Nobre, F.D.; Curado, E.M.F. Consequences of the H-theorem from nonlinear Fokker-Planck equations. Phys. Rev. E 2007, 76, 041123. [Google Scholar] [CrossRef] [PubMed]
- Tsallis, C.; Bukman, D.J. Anomalous diffusion in the presence of external forces: Exact time-dependent solutions and their thermostatistical basis. Phys. Rev. E 1996, 54, R2197. [Google Scholar] [CrossRef]
- Upadhyaya, A.; Rieu, J.-P.; Glazier, J.A.; Sawada, Y. Anomalous diffusion and non-Gaussian velocity distribution of Hydra cells in cellular aggregates. Phys. A 2001, 293, 549. [Google Scholar] [CrossRef]
- Rapisarda, A.; Pluchino, A. Nonextensive thermodynamics and glassy behavior. Europhys. News 2005, 36, 202. [Google Scholar] [CrossRef]
- Combe, G.; Richefeu, V.; Stasiak, M.; Atman, A.P.F. Experimental validation of nonextensive scaling law in confined granular media. Phys. Rev. Lett. 2015, 115, 238301. [Google Scholar] [CrossRef]
- Viallon-Galiner, L.; Combe, G.; Richefeu, V.; Atman, A.P.F. Emergence of shear bands in confined granular systems: Singularity of the q-statistics. Entropy 2018, 20, 862. [Google Scholar] [CrossRef]
- Lutz, E. Anomalous diffusion and Tsallis statistics in an optical lattice. Phys. Rev. A 2003, 67, 051402R. [Google Scholar] [CrossRef]
- Douglas, P.; Bergamini, S.; Renzoni, F. Tunable Tsallis distributions in dissipative optical lattices. Phys. Rev. Lett. 2006, 96, 110601. [Google Scholar] [CrossRef] [PubMed]
- Lutz, E.; Renzoni, F. Beyond Boltzmann-Gibbs statistical mechanics in optical lattices. Nat. Phys. 2013, 9, 615. [Google Scholar] [CrossRef]
- Tirnakli, U.; Tsallis, C.; Beck, C. A closer look at time averages of the logistic map at the edge of chaos. Phys. Rev. E 2009, 79, 056209. [Google Scholar] [CrossRef] [PubMed]
- Tsallis, C.; Plastino, A.R.; Zheng, W.-M. Power-law sensitivity to initial conditions—New entropic representation. Chaos Solitons Fractals 1997, 8, 885–891. [Google Scholar] [CrossRef]
- Lyra, M.L.; Tsallis, C. Nonextensivity and multifractality in low-dimensional dissipative systems. Phys. Rev. Lett. 1998, 80, 53. [Google Scholar] [CrossRef]
- Baldovin, F.; Robledo, A. Nonextensive Pesin identity. Exact renormalization group analytical results for the dynamics at the edge of chaos of the logistic map. Phys. Rev. E 2004, 69, 045202R. [Google Scholar] [CrossRef] [PubMed]
- Mayoral, E.; Robledo, A. Tsallis’ q index and Mori’s q phase transitions at edge of chaos. Phys. Rev. E 2005, 72, 026209. [Google Scholar] [CrossRef] [PubMed]
- Tirnakli, U.; Borges, E.P. The standard map: From Boltzmann-Gibbs statistics to Tsallis statistics. Sci. Rep. 2016, 6, 23644. [Google Scholar] [CrossRef] [Green Version]
- Hristopulos, D.T.; Petrakis, M.P.; Kaniadakis, G. Finite-size effects on return interval distributions for weakest-link-scaling systems. Phys. Rev. E 2014, 89, 052142. [Google Scholar] [CrossRef] [Green Version]
- Vasyliunas, V.M. A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. J. Geophys. Res. 1968, 73, 2839. [Google Scholar] [CrossRef]
- Wilk, G.; Wlodarczyk, Z. Interpretation of the nonextensivity parameter q in some applications of Tsallis statistics and Levy distributions. Phys. Rev. Lett. 2000, 84, 2770. [Google Scholar] [CrossRef] [PubMed]
- Beck, C. Dynamical foundations of nonextensive statistical mechanics. Phys. Rev. Lett. 2001, 87, 180601. [Google Scholar] [CrossRef]
- Hanel, R.; Thurner, S.; Gell-Mann, M. Generalized entropies and the transformation group of superstatistics. Proc. Natl. Acad. Sci. USA 2011, 110, 3539108. [Google Scholar] [CrossRef]
- la Mantia, M.; Duda, D.; Rotter, M.; Skrbek, L. Lagrangian accelerations of particles in superfluid turbulence. J. Fluid Mech. 2013, 717, R9. [Google Scholar] [CrossRef]
- Miah, S.; Beck, C. Lagrangian quantum turbulence model based on alternating superfluid/normal fluid stochastic dynamics. Europhys. Lett. 2014, 108, 40004. [Google Scholar] [CrossRef] [Green Version]
- Korbel, J.; Hanel, R.; Thurner, S. Classification of complex systems by their sample-space scaling exponents. New J. Phys. 2018, 20, 093007. [Google Scholar] [CrossRef]
- Komatsu, N.; Kimura, S. Entropic cosmology for a generalized black-hole entropy. Phys. Rev. D 2013, 88, 083534. [Google Scholar] [CrossRef]
- Anteneodo, C.; Tsallis, C. Breakdown of the exponential sensitivity to the initial conditions: Role of the range of the interaction. Phys. Rev. Lett. 1998, 80, 5313. [Google Scholar] [CrossRef]
- Campa, A.; Giansanti, A.; Moroni, D.; Tsallis, C. Classical spin systems with long-range interactions: Universal reduction of mixing. Phys. Lett. A 2001, 286, 251. [Google Scholar] [CrossRef]
- Antoni, M.; Ruffo, S. Clustering and relaxation in Hamiltonian long-range dynamics. Phys. Rev. E 1995, 52, 2361. [Google Scholar] [CrossRef]
- Pluchino, A.; Rapisarda, A.; Tsallis, C. Nonergodicity and central limit behavior in long-range Hamiltonians. Europhys. Lett. 2007, 80, 26002. [Google Scholar] [CrossRef]
- Pluchino, A.; Rapisarda, A. Nonergodicity and central limit behavior for systems with long-range interactions. SPIE 2007, 2, 6802–6832. [Google Scholar]
- Chavanis, P.H.; Campa, A. Inhomogeneous Tsallis distributions in the HMF model. Eur. Phys. J. B 2010, 76, 581. [Google Scholar] [CrossRef]
- Cirto, L.J.L.; Assis, V.R.V.; Tsallis, C. Influence of the interaction range on the thermostatistics of a classical many-body system. Phys. A 2014, 393, 286. [Google Scholar] [CrossRef]
- Cirto, L.J.L.; Rodriguez, A.; Nobre, F.D.; Tsallis, C. Validity and failure of the Boltzmann weight. Europhys. Lett. 2018, 123, 30003. [Google Scholar] [CrossRef]
- Nobre, F.D.; Tsallis, C. Classical infinite-range-interaction Heisenberg ferromagnetic model: Metastability and sensitivity to initial conditions. Phys. Rev. E 2003, 68, 036115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cirto, L.J.L.; Lima, L.S.; Nobre, F.D. Controlling the range of interactions in the classical inertial ferromagnetic Heisenberg model: Analysis of metastable states. JSTAT 2015, 2015, P04012. [Google Scholar] [CrossRef]
- Rodriguez, A.; Nobre, F.D.; Tsallis, C. d-Dimensional classical Heisenberg model with arbitrarily-ranged interactions: Lyapunov exponents and distributions of momenta and energies. Entropy 2019, 21, 31. [Google Scholar] [CrossRef]
- Christodoulidi, H.; Tsallis, C.; Bountis, T. Fermi-Pasta-Ulam model with long-range interactions: Dynamics and thermostatistics. EPL 2014, 108, 40006. [Google Scholar] [CrossRef] [Green Version]
- Christodoulidi, H.; Bountis, T.; Tsallis, C.; Drossos, L. Dynamics and statistics of the Fermi–Pasta–Ulam β–model with different ranges of particle interactions. J. Stat. Mech. 2016, 2016, 123206. [Google Scholar] [CrossRef]
- Bagchi, D.; Tsallis, C. Sensitivity to initial conditions of d-dimensional long-range-interacting quartic Fermi-Pasta-Ulam model: Universal scaling. Phys. Rev. E 2016, 93, 062213. [Google Scholar] [CrossRef] [PubMed]
- Bagchi, D.; Tsallis, C. Fermi-Pasta-Ulam-Tsingou problems: Passage from Boltzmann to q-statistics. Phys. A 2018, 491, 869. [Google Scholar] [CrossRef]
- Leo, M.; Leo, R.A.; Tempesta, P. Thermostatistics in the neighborhood of the π-mode solution for the Fermi-Pasta-Ulam β system: From weak to strong chaos. J. Stat. Mech. 2010, 2010, P04021. [Google Scholar] [CrossRef]
- Antonopoulos, C.G.; Bountis, T.C.; Basios, V. Quasi-stationary chaotic states in multi-dimensional Hamiltonian systems. Phys. A 2011, 390, 3290. [Google Scholar] [CrossRef]
- Leo, M.; Leo, R.A.; Tempesta, P.; Tsallis, C. Non Maxwellian behaviour and quasi-stationary regimes near the modal solutions of the Fermi-Pasta-Ulam β-system. Phys. Rev. E 2012, 85, 031149. [Google Scholar] [CrossRef] [PubMed]
- Caruso, F.; Tsallis, C. Nonadditive entropy reconciles the area law in quantum systems with classical thermodynamics. Phys. Rev. E 2008, 78, 021102. [Google Scholar] [CrossRef] [PubMed]
- Saguia, A.; Sarandy, M.S. Nonadditive entropy for random quantum spin-S chains. Phys. Lett. A 2010, 374, 3384. [Google Scholar] [CrossRef]
- Carrasco, J.A.; Finkel, F.; Gonzalez-Lopez, A.; Rodriguez, M.A.; Tempesta, P. Generalized isotropic Lipkin-Meshkov-Glick models: Ground state entanglement and quantum entropies. J. Stat. Mech. 2016, 2016, 033114. [Google Scholar] [CrossRef]
- Lourek, I.; Tribeche, M. On the role of the κ-deformed Kaniadakis distribution in nonlinear plasma waves. Phys. A 2016, 441, 215. [Google Scholar] [CrossRef]
- Bacha, M.; Gougam, L.A.; Tribeche, M. Ion-acoustic rogue waves in magnetized solar wind plasma with nonextensive electrons. Phys. A 2017, 466, 199. [Google Scholar] [CrossRef]
- Merriche, A.; Tribeche, M. Electron-acoustic rogue waves in a plasma with Tribeche-Tsallis-Cairns distributed electrons. Ann. Phys. 2017, 376, 436. [Google Scholar] [CrossRef]
- Livadiotis, G. Thermodynamic origin of kappa distributions. EPL 2018, 122, 50001. [Google Scholar] [CrossRef]
- Oliveira, D.S.; Galvao, R.M.O. Non-extensive transport equations in magnetized plasmas for non-Maxwellian distribution functions. Phys. Plasmas 2018, 25, 102308. [Google Scholar] [CrossRef]
- Daniels, K.E.; Beck, C.; Bodenschatz, E. Defect turbulence and generalized statistical mechanics. Phys. D 2004, 193, 208. [Google Scholar] [CrossRef]
- Komatsu, N.; Kimura, S. Evolution of the universe in entropic cosmologies via different formulations. Phys. Rev. D 2014, 89, 123501. [Google Scholar] [CrossRef]
- Komatsu, N. Cosmological model from the holographic equipartition law with a modified Renyi entropy. Eur. Phys. J. C 2017, 77, 229. [Google Scholar] [CrossRef]
- Beck, C. Cosmological flux noise and measured noise power spectra in SQUIDs. Sci. Rep. 2016, 6, 28275. [Google Scholar] [CrossRef] [Green Version]
- Hou, S.Q.; He, J.J.; Parikh, A.; Kahl, D.; Bertulani, C.A.; Kajino, T.; Mathews, G.J.; Zhao, G. Non-extensive statistics solution to the cosmological Lithium problem. Astrophys. J. 2017, 834, 165. [Google Scholar] [CrossRef]
- Kohler, S. Fixing the Big Bang theory’s Lithium problem. NOVA—Res. Highlights J. Am. Astron. Soc. 2017. [Google Scholar] [CrossRef]
- Bertulani, C.A.; Shubhchintak; Mukhamedzhanov, A.M. Cosmological Lithium problems. EPJ Web Conf. 2018, 184, 01002. [Google Scholar] [CrossRef]
- Ruiz, G.; Tsallis, C. Roundoff-induced attractors and reversibility in conservative two-dimensional maps. Phys. A 2007, 386, 720–728. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, G.; Tsallis, C. Nonextensivity at the edge of chaos of a new universality class of one-dimensional unimodal dissipative maps. Eur. Phys. J. B 2009, 67, 577–584. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, G.; Bountis, T.; Tsallis, C. Time-evolving statistics of chaotic orbits of conservative maps in the context of the Central Limit Theorem. Int. J. Bifurc. Chaos 2012, 22, 1250208. [Google Scholar] [CrossRef]
- Bountis, T.; Skokos, H. Complex Hamiltonian Dynamics; Springer Series in Synergetics; Springer: Berlin, Germany, 2012. [Google Scholar]
- Ruiz, G.; Tirnakli, U.; Borges, E.P.; Tsallis, C. Statistical characterization of the standard map. J. Stat. Mech. 2017, 2017, 063403. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, G.; Tirnakli, U.; Borges, E.P.; Tsallis, C. Statistical characterization of discrete conservative systems: The web map. Phys. Rev. E 2017, 96, 042158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nobre, F.D.; Rego-Monteiro, M.A.; Tsallis, C. Nonlinear generalizations of relativistic and quantum equations with a common type of solution. Phys. Rev. Lett. 2011, 106, 140601. [Google Scholar] [CrossRef] [PubMed]
- Filho, R.N.C.; Alencar, G.; Skagerstam, B.-S.; Andrade, J.S., Jr. Morse potential derived from first principles. Europhys. Lett. 2013, 101, 10009. [Google Scholar] [CrossRef]
- Nobre, F.D.; Plastino, A.R. A family of nonlinear Schrodinger equations admitting q-plane wave. Phys. Lett. A 2017, 381, 2457. [Google Scholar] [CrossRef]
- Plastino, A.R.; Wedemann, R.S. Nonlinear wave equations related to nonextensive thermostatistics. Entropy 2017, 19, 60. [Google Scholar] [CrossRef]
- Andrade, J.S., Jr.; da Silva, G.F.T.; Moreira, A.A.; Nobre, F.D.; Curado, E.M.F. Thermostatistics of overdamped motion of interacting particles. Phys. Rev. Lett. 2010, 105, 260601. [Google Scholar] [CrossRef]
- Vieira, C.M.; Carmona, H.A.; Andrade, J.S., Jr.; Moreira, A.A. General continuum approach for dissipative systems of repulsive particles. Phys. Rev. E 2016, 93, 060103R. [Google Scholar] [CrossRef]
- Zand, J.; Tirnakli, U.; Jensen, H.J. On the relevance of q-distribution functions: The return time distribution of restricted random walker. J. Phys. A: Math. 2015, 48, 425004. [Google Scholar] [CrossRef]
- Curado, E.M.F.; Souza, A.M.C.; Nobre, F.D.; Andrade, R.F.S. Carnot cycle for interacting particles in the absence of thermal noise. Phys. Rev. E 2014, 89, 022117. [Google Scholar] [CrossRef] [Green Version]
- Nobre, F.D.; Curado, E.M.F.; Souza, A.M.C.; Andrade, R.F.S. Consistent thermodynamic framework for interacting particles by neglecting thermal noise. Phys. Rev. E 2015, 91, 022135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puertas-Centeno, D.; Temme, N.M.; Toranzo, I.V.; Dehesa, J.S. Entropic uncertainty measures for large dimensional hydrogenic systems. J. Math. Phys. 2017, 58, 103302. [Google Scholar] [CrossRef]
- Vignat, C.; Plastino, A.; Plastino, A.R.; Dehesa, J.S. Quantum potentials with q-Gaussian ground states. Phys. A 2012, 391, 1068. [Google Scholar] [CrossRef]
- Grosfils, P.; Boon, J.P. Nonextensive statistics in viscous fingering. Phys. A 2006, 362, 168. [Google Scholar] [CrossRef]
- Pickup, R.M.; Cywinski, R.; Pappas, C.; Farago, B.; Fouquet, P. Generalized spin glass relaxation. Phys. Rev. Lett. 2009, 102, 097202. [Google Scholar] [CrossRef] [PubMed]
- Betzler, A.S.; Borges, E.P. Nonextensive distributions of asteroid rotation periods and diameters. Astron. Astrophys. 2012, 539, A158. [Google Scholar] [CrossRef]
- Betzler, A.S.; Borges, E.P. Nonextensive statistical analysis of meteor showers and lunar flashes. Mon. Not. R. Astron. Soc. 2015, 447, 765–771. [Google Scholar] [CrossRef]
- Burlaga, L.F.; -Vinas, A.F. Triangle for the entropic index q of non-extensive statistical mechanics observed by Voyager 1 in the distant heliosphere. Phys. A 2005, 356, 375. [Google Scholar] [CrossRef]
- Naudts, J. Generalised Thermostatistics; Springer: London, UK, 2011. [Google Scholar]
- Biro, T.S.; Barnafoldi, G.G.; Van, P. Quark-gluon plasma connected to finite heat bath. Eur. Phys. J. A 2013, 49, 110. [Google Scholar] [CrossRef]
- Bagci, G.B.; Oikonomou, T. Validity of the third law of thermodynamics for the Tsallis entropy. Phys. Rev. E 2016, 93, 022112. [Google Scholar] [CrossRef] [Green Version]
- Gell-Mann, M.; Tsallis, C. (Eds.) Nonadditive Entropy—Interdisciplinary Applications; Oxford University Press: New York, NY, USA, 2004. [Google Scholar]
- Borland, L. Closed form option pricing formulas based on a non-Gaussian stock price model with statistical feedback. Phys. Rev. Lett. 2002, 89, 098701. [Google Scholar] [CrossRef]
- Borland, L. A theory of non-gaussian option pricing. Quant. Financ. 2002, 2, 415. [Google Scholar]
- Kwapien, J.; Drozdz, S. Physical approach to complex systems. Phys. Rep. 2012, 515, 115. [Google Scholar] [CrossRef]
- Ruiz, G.; de Marcos, A.F. Evidence for criticality in financial data. Eur. Phys. J. B 2018, 91, 1. [Google Scholar] [CrossRef] [Green Version]
- Borland, L. Financial market models. In Complexity and Synergetics; Springer: London, UK, 2017; p. 257. [Google Scholar]
- Xu, D.; Beck, C. Symbolic dynamics techniques for complex systems: Application to share price dynamics. Europhys. Lett. 2017, 118, 30001. [Google Scholar] [CrossRef] [Green Version]
- Tsallis, C. Economics and finance: q-statistical features galore. Entropy 2017, 19, 457. [Google Scholar] [CrossRef]
- Stosic, D.; Stosic, D.; Ludermir, T.B.; Stosic, T. Nonextensive triplets in cryptocurrency exchanges. Phys. A 2018, 505, 1069. [Google Scholar] [CrossRef]
- Yalcin, G.C.; Rabassa, P.; Beck, C. Extreme event statistics of daily rainfall: Dynamical systems approach. J. Phys. A 2016, 49, 154001. [Google Scholar] [CrossRef]
- Pavlos, G.P.; Karakatsanis, L.P.; Iliopoulos, A.C.; Pavlos, E.G.; Tsonis, A.A. Non-extensive statistical mechanics: Overview of theory and applications in seismogenesis, climate, and space plasma. In Advances in Nonlinear Geosciences; Springer: London, UK, 2017; pp. 465–495. [Google Scholar]
- Bakar, B.; Tirnakli, U. Analysis of self-organized criticality in Ehrenfest’s dog-flea model. Phys. Rev. E 2009, 79, 040103R. [Google Scholar] [CrossRef]
- Bakar, B.; Tirnakli, U. Return distributions in dog-flea model revisited. Phys. A 2010, 389, 3382. [Google Scholar] [CrossRef]
- Celikoglu, A.; Tirnakli, U.; Queiros, S.M.D. Analysis of return distributions in the coherent noise model. Phys. Rev. E 2010, 82, 021124. [Google Scholar] [CrossRef]
- Vallianatos, F. A Non-extensive statistical mechanics view on Easter island seamounts volume distribution. Geosciences 2018, 8, 52. [Google Scholar] [CrossRef]
- Carbone, F.; Bruno, A.G.; Naccarato, A.; de Simone, F.; Gencarelli, C.N.; Sprovieri, F.; Hedgecock, I.M.; Landis, M.S.; Skov, H.; Pfaffhuber, K.A.; et al. The superstatistical nature and interoccurrence time of atmospheric mercury concentration fluctuations. J. Geophys. Res. 2018, 123, 764–774. [Google Scholar] [CrossRef]
- Ferri, G.L.; Savio, M.F.R.; Plastino, A. Tsallis’ q-triplet and the ozone layer. Phys. A 2010, 389, 1829. [Google Scholar] [CrossRef]
- Ferri, G.L.; Figliola, A.; Rosso, O.A. Tsallis’ statistics in the variability of El Niño/Southern Oscillation during the Holocene epoch. Phys. A 2012, 391, 2154. [Google Scholar] [CrossRef]
- Pavlos, G.P.; Karakatsanis, L.P.; Xenakis, M.N.; Sarafopoulos, D.; Pavlos, E.G. Tsallis statistics and magnetospheric self-organization. Phys. A 2012, 391, 3069–3080. [Google Scholar] [CrossRef]
- Amador, C.H.S.; Zambrano, L.S. Evidence for energy regularity in the Mendeleev periodic table. Phys. A 2010, 389, 3866–3869. [Google Scholar] [CrossRef] [Green Version]
- Morais, S.F.D.A.; Mundim, K.C.; Ferreira, D.A.C. An alternative interpretation of the ultracold methylhydroxycarbene rearrangement mechanism: Cooperative effects. Phys. Chem. Chem. Phys. 2015, 17, 7443. [Google Scholar] [CrossRef]
- Sekania, M.; Appelt, W.H.; Benea, D.; Ebert, H.; Vollhardt, D.; Chioncel, L. Scaling behavior of the Compton profile of alkali metals. Phys. A 2018, 489, 18. [Google Scholar] [CrossRef]
- Aquilanti, V.; Coutinho, N.D.; Carvalho-Silva, V.H. Kinetics of low-temperature transitions and a reaction rate theory from non-equilibrium distributions. Philos. Trans. R. Soc. A 2017, 375, 20160201. [Google Scholar] [CrossRef]
- Aquilanti, V.; Borges, E.P.; Coutinho, N.D.; Mundim, K.C.; Carvalho-Silva, V.H. From statistical thermodynamics to molecular kinetics: The change, the chance and the choice. The Quantum World of Molecules. In Rendiconti Lincei; Scienze Fisiche e Naturali; Accademia Nazionale dei Lincei: Rome, Italy, 2018. [Google Scholar]
- Singh, V.P. Introduction to Tsallis Entropy Theory in Water Engineering; Taylor and Francis, CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Stavrakas, I.; Triantis, D.; Kourkoulis, S.K.; Pasiou, E.D.; Dakanali, I. Acoustic emission analysis of cement mortar specimens during three point bending tests. Lat. Am. Journ. Sol. Struct. 2016, 13, 2283. [Google Scholar] [CrossRef]
- Aifantis, E.C. Towards internal length gradient chemomechanics. Rev. Adv. Mater. Sci. 2017, 48, 112–130. [Google Scholar]
- Schafer, B.; Beck, C.; Aihara, K.; Witthaut, D.; Timme, M. Non-Gaussian power grid frequency fluctuations characterized by Levy-stable laws and superstatistics. Nat. Energy 2018, 3, 119. [Google Scholar] [CrossRef]
- Yalcin, G.C.; Beck, C. Environmental superstatistics. Phys. A 2013, 392, 5431. [Google Scholar] [CrossRef]
- Hagiwara, Y.; Sudarshan, V.K.; Leong, S.S.; Vijaynanthan, A.; Ng, K.H. Application of entropies for automated diagnosis of abnormalities in ultrasound images: A review. J. Mech. Med. Biol. 2017, 17, 1740012. [Google Scholar] [CrossRef]
- Tsigelny, I.F.; Kouznetsova, V.L.; Sweeney, D.E.; Wu, W.; Bush, K.T.; Nigam, S.K. Analysis of metagene portraits reveal distinct transitions during kidney organogenesis. Sci. Signal. 2008, 1, ra16. [Google Scholar] [CrossRef]
- Sotolongo-Grau, O.; Rodriguez-Perez, D.; Antoranz, J.C.; Sotolongo-Costa, O. Tissue radiation response with maximum Tsallis entropy. Phys. Rev. Lett. 2010, 105, 158105. [Google Scholar] [CrossRef]
- Bogachev, M.I.; Kayumov, A.R.; Bunde, A. Universal internucleotide statistics in full genomes: A footprint of the DNA structure and packaging? PLoS ONE 2014, 9, e112534. [Google Scholar] [CrossRef]
- Bogachev, M.I.; Markelov, O.A.; Kayumov, A.R.; Bunde, A. Superstatistical model of bacterial DNA architecture. Sci. Rep. 2017, 7, 43034. [Google Scholar] [CrossRef]
- Mohanalin, J.; Beenamol; Kalra, P.K.; Kumar, N. A novel automatic microcalcification detection technique using Tsallis entropy and a type II fuzzy index. Comput. Math. Appl. 2010, 60, 2426. [Google Scholar] [CrossRef]
- Diniz, P.R.B.; Murta, L.O.; Brum, D.G.; de Araujo, D.B.; Santos, A.C. Brain tissue segmentation using q-entropy in multiple sclerosis magnetic resonance images. Braz. J. Med Biol. Res. 2010, 43, 77. [Google Scholar] [CrossRef]
- Acharya, U.R.; Hagiwara, Y.; Koh, J.E.W.; Oh, S.L.; Tan, J.H.; Adam, M.; Tan, R.S. Entropies for automated detection of coronary artery disease using ECG signals: A review. Biocybern. Biomed. Eng. 2018, 38, 373. [Google Scholar] [CrossRef]
- Capurro, A.; Diambra, L.; Lorenzo, D.; Macadar, O.; Martins, M.T.; Mostaccio, C.; Plastino, A.; Perez, J.; Rofman, E.; Torres, M.E.; et al. Human dynamics: The analysis of EEG signals with Tsallis information measure. Phys. A 1999, 265, 235. [Google Scholar] [CrossRef]
- Acharya, U.R.; Hagiwara, Y.; Deshpande, S.N.; Suren, S.; Koh, J.E.W.; Oh, S.L.; Arunkumar, N.; Ciaccio, E.J.; Lim, C.M. Characterization of focal EEG signals: A review. Future Gener. Comput. Syst. 2018, 91, 290. [Google Scholar]
- Briggs, K.; Beck, C. Modelling train delays with q-exponential functions. Phys. A 2007, 378, 498. [Google Scholar] [CrossRef]
- Picoli, S.; Mendes, R.S.; Malacarne, L.C.; Lenzi, E.K. Scaling behavior in the dynamics of citations to scientific journals. Europhys. Lett. 2006, 75, 673. [Google Scholar] [CrossRef]
- Anastasiadis, A.D.; de Albuquerque, M.P.; de Albuquerque, M.P.; Mussi, D.B. Tsallis q-exponential describes the distribution of scientific citations—A new characterization of the impact. Scientometrics 2010, 83, 205. [Google Scholar] [CrossRef]
- Tsallis, C.; Stariolo, D.A. Generalized simulated annealing. Phys. A 1996, 233, 395. [Google Scholar] [CrossRef]
- Boulle, A.; Debelle, A. Strain-profile determination in ion-implanted single crystals using generalized simulated annealing. J. Appl. Crystallogr. 2010, 43, 1046. [Google Scholar] [CrossRef]
- Shang, C.; Wales, D.J. Communication: Optimal parameters for basin-hopping global optimization based on Tsallis statistics. J. Chem. Phys. 2014, 141, 071101. [Google Scholar] [CrossRef] [Green Version]
- Evangelista, H.B.A.; Thomaz, S.M.; Mendes, R.S.; Evangelista, L.R. Generalized entropy indices to measure α- and β-diversities of macrophytes. Braz. J. Phys. 2009, 39, 396. [Google Scholar] [CrossRef]
- Harte, J.; Newman, E.A. Maximum information entropy: A foundation for ecological theory. Trends Ecol. Evol. 2014, 29, 384. [Google Scholar] [CrossRef]
- Puzachenko, Y.G. Rank Distribution in Ecology and Nonextensive Statistical Mechanics; Archives of Zoological Museum of Lomonosov Moscow State University: Moscow, Russia, 2016; Volume 54, p. 42. [Google Scholar]
- Hadzibeganovic, T.; Cannas, S.A. A Tsallis’ statistics based neural network model for novel word learning. Phys. A 2009, 388, 732. [Google Scholar] [CrossRef]
- Takahashi, T.; Hadzibeganovic, T.; Cannas, S.A.; Makino, T.; Fukui, H.; Kitayama, S. Cultural neuroeconomics of intertemporal choice. Neuroendocrinol. Lett. 2009, 30, 185. [Google Scholar]
- Siddiqui, M.; Wedemann, R.S.; Jensen, H. Avalanches and generalized memory associativity in a network model for conscious and unconscious mental functioning. Phys. A 2018, 490, 127. [Google Scholar] [CrossRef]
- Borges, E.P. On a q-generalization of circular and hyperbolic functions. J. Phys. A 1998, 31, 5281. [Google Scholar] [CrossRef]
- Santos, R.J.V.d. Generalization of Shannon’s theorem for Tsallis entropy. J. Math. Phys. 1997, 38, 4104. [Google Scholar] [CrossRef]
- Abe, S. Axioms and uniqueness theorem for Tsallis entropy. Phys. Lett. A 2000, 271, 74. [Google Scholar] [CrossRef]
- Boghosian, B.M.; Love, P.J.; Coveney, P.V.; Karlin, I.V.; Succi, S.; Yepez, J. Galilean-invariant lattice-Boltzmann models with H-theorem. Phys. Rev. E 2003, 68, 025103R. [Google Scholar] [CrossRef]
- Tsallis, C. Conceptual inadequacy of the Shore and Johnson axioms for wide classes of complex systems. Entropy 2015, 17, 2853. [Google Scholar] [CrossRef]
- Enciso, A.; Tempesta, P. Uniqueness and characterization theorems for generalized entropies. arXiv 2017, arXiv:1702.01336. [Google Scholar] [CrossRef]
- Jizba, P.; Korbel, J. Maximum entropy principle in statistical inference: Case for non-Shannonian entropies. Phys. Rev. Lett. 2019, 122, 120601. [Google Scholar] [CrossRef]
- Umarov, S.; Tsallis, C.; Steinberg, S. On a q-central limit theorem consistent with nonextensive statistical mechanics. Milan J. Math. 2008, 76, 307–328. [Google Scholar] [CrossRef]
- Umarov, S.; Tsallis, C.; Gell-Mann, M.; Steinberg, S. Generalization of symmetric α-stable Lévy distributions for q > 1. J. Math. Phys. 2010, 51, 033502. [Google Scholar] [CrossRef]
- Hilhorst, H.J. Note on a q-modified central limit theorem. J. Stat. Mech. 2010, 2010, P10023. [Google Scholar] [CrossRef]
- Jauregui, M.; Tsallis, C. q-generalization of the inverse Fourier transform. Phys. Lett. A 2011, 375, 2085. [Google Scholar] [CrossRef]
- Jauregui, M.; Tsallis, C.; Curado, E.M.F. q-moments remove the degeneracy associated with the inversion of the q-Fourier transform. J. Stat. Mech. 2011, 2011, P10016. [Google Scholar] [CrossRef]
- Plastino, A.; Rocca, M.C. Inversion of Umarov-Tsallis-Steinberg’s q-Fourier Transform and the complex-plane generalization. Phys. A 2012, 391, 4740. [Google Scholar] [CrossRef]
- Plastino, A.; Rocca, M.C. q-Fourier Transform and its inversion-problem. Milan J. Math. 2012, 80, 243. [Google Scholar] [CrossRef]
- Umarov, S.; Tsallis, C. The limit distribution in the q-CLT for q ≥ 1 is unique and can not have a compact support. J. Phys. A 2016, 49, 415204. [Google Scholar] [CrossRef]
- Sicuro, G.; Tsallis, C. q-Generalized representation of the d-dimensional Dirac delta and q-Fourier transform. Phys. Lett. A 2017, 381, 2583. [Google Scholar] [CrossRef]
- Rodriguez, A.; Schwammle, V.; Tsallis, C. Strictly and asymptotically scale-invariant probabilistic models of N correlated binary random variables having q-Gaussians as N → ∞ limiting distributions. J. Stat. Mech. 2008, 2008, P09006. [Google Scholar] [CrossRef]
- Ruiz, G.; Tsallis, C. Emergence of q-statistical functions in a generalized binomial distribution with strong correlations. J. Math. Phys. 2015, 56, 053301. [Google Scholar] [CrossRef]
- Bergeron, H.; Curado, E.M.F.; Gazeau, J.P.; Rodrigues, L.M.C.S. Symmetric deformed binomial distributions: An analytical example where the Boltzmann-Gibbs entropy is not extensive. J. Math. Phys. 2016, 57, 023301. [Google Scholar] [CrossRef]
- Amari, S.; Ohara, A. Geometry of q-exponential family of probability distributions. Entropy 2011, 13, 1170–1185. [Google Scholar] [CrossRef]
- Amari, S.; Ohara, A.; Matsuzoe, H. Geometry of deformed exponential families: Invariant, dually-flat and conformal geometries. Phys. A 2012, 391, 4308. [Google Scholar] [CrossRef]
- Ruiz, G.; Tsallis, C. Towards a large deviation theory for strongly correlated systems. Phys. Lett. A 2012, 376, 2451. [Google Scholar] [CrossRef]
- Touchette, H. Comment on “Towards a large deviation theory for strongly correlated systems”. Phys. Lett. A 2013, 377, 436. [Google Scholar] [CrossRef]
- Ruiz, G.; Tsallis, C. Reply to Comment on “Towards a large deviation theory for strongly correlated systems”. Phys. Lett. A 2013, 377, 491. [Google Scholar] [CrossRef]
- Tsallis, C.; Cirto, L.J.L. Thermodynamics is more powerful than the role to it reserved by Boltzmann-Gibbs statistical mechanics. Eur. Phys. J. Spec. Top. 2014, 223, 2161. [Google Scholar] [CrossRef]
- Tsallis, C. Generalization of the possible algebraic basis of q-triplets. Eur. Phys. J. Spec. Top. 2017, 226, 455. [Google Scholar] [CrossRef]
- Alcaraz, F.C. The critical behaviour of self-dual Z(N) spin systems: Finite-size scaling and conformal invariance. J. Phys. A 1987, 20, 2511. [Google Scholar] [CrossRef]
- Alcaraz, F.C.; Martins, M.J. The operator content of the exactly integrable SU(N) magnets. J. Phys. A 1990, 23, L1079. [Google Scholar] [CrossRef]
- Tsallis, C.; Haubold, H.J. Boltzmann-Gibbs entropy is sufficient but not necessary for the likelihood factorization required by Einstein. Europhys. Lett. 2015, 110, 30005. [Google Scholar] [CrossRef]
- Einstein, A., Ann. Phys. (Leipzig), 33 (1910) 1275: Dass die zwischen S und W in Gleichung (1) [S = R lg W + N konst.] gegebene Beziehung die einzig mogliche ist, kann bekanntlich aus dem Satze abgeleitet werden, dass die Entropie eines aus Teilsystemen bestehenden Gesamtsystems gleich ist der Summe der Entropien der Teilsysteme. [The relation between S and W given in Equation (1) is the only reasonable given the proposition that the entropy of a system consisting of subsystems is equal to the sum of entropies of the subsystems. (free translation by Tobias Micklitz.)]
- Einstein, A., in P.A. Schilpp, Ed. Autobiographical Notes. A Centennial Edition. Open Court Publishing Company. 1979. p. 31: A theory is the more impressive the greater the simplicity of its premises is, the more different kinds of things it relates, and the more extended is its area of applicability. Therefore the deep impression that classical thermodynamics made upon me. It is the only physical theory of universal content concerning which I am convinced that, within the framework of applicability of its basic concepts, it will never be overthrown. 1949.
- Frigg, R.; Werndl, C. Can somebody please say what Gibbsian statistical mechanics says? Br. J. Philos. Sci. 2019, in press. [Google Scholar] [CrossRef]
Systems | Entropy | Entropy | Entropy |
---|---|---|---|
(Equiprobable) | (Additive) | (Nonadditive) | (Nonadditive) |
e.g., | EXTENSIVE | NONEXTENSIVE | NONEXTENSIVE |
e.g., | NONEXTENSIVE | EXTENSIVE | NONEXTENSIVE |
e.g., | NONEXTENSIVE | NONEXTENSIVE | EXTENSIVE |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsallis, C. Beyond Boltzmann–Gibbs–Shannon in Physics and Elsewhere. Entropy 2019, 21, 696. https://doi.org/10.3390/e21070696
Tsallis C. Beyond Boltzmann–Gibbs–Shannon in Physics and Elsewhere. Entropy. 2019; 21(7):696. https://doi.org/10.3390/e21070696
Chicago/Turabian StyleTsallis, Constantino. 2019. "Beyond Boltzmann–Gibbs–Shannon in Physics and Elsewhere" Entropy 21, no. 7: 696. https://doi.org/10.3390/e21070696
APA StyleTsallis, C. (2019). Beyond Boltzmann–Gibbs–Shannon in Physics and Elsewhere. Entropy, 21(7), 696. https://doi.org/10.3390/e21070696