Development of Novel Lightweight Dual-Phase Al-Ti-Cr-Mn-V Medium-Entropy Alloys with High Strength and Ductility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Microstructure Characterization
2.3. Mechanical Testing
3. Results
3.1. Density of the As-Cast Alloys
3.2. Microstructure and Mechanical Properties of Quarternary Al-Ti-Cr-Mn MEAs
3.3. Microstructure and Mechanical Properties of Quinary Al-Ti-Cr-Mn-V MEAs
4. Conclusions
- All the designed alloys in this study achieved the density goal, which was <5.0 g/cm3.
- The findings of the investigation of the quaternary Al-Ti-Cr-Mn alloy system confirmed that the Cr and Mn elements are considered BCC stabilizers, whereas Ti is considered the FCC stabilizer in these dual-phase alloys.
- The mechanical properties of the quaternary Al-Ti-Cr-Mn alloy can be further improved by fine tuning its composition by adding V. The Al50(TiCrMn)45V5 alloy exhibits the highest compression strength (1995 ± 60 MPa) and ductility (33 ± 3%) among the designed quinary alloys.
- With a low density (4.5 g/cm3), the Al50(TiCrMn)45V5 alloy exhibits a high specific compressive strength of 0.443 GPa·g/cm3 and excellent ductility. However, the Al50(TiCrMn)45V5 alloy maintains the original mechanical properties after homogenization for 24 h at 800 °C. These results are helpful for further designing the dual-phase HEAs/MEAs by using the nonequiatomic concept in the future.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cantor, B.; Chang, I.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Yeh, J.; Chen, S.; Lin, S.; Gan, J.; Chin, T.; Shun, T.; Tsau, C.; Chang, S. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Youssef, K.M.; Zaddach, A.J.; Niu, C.; Irving, D.L.; Koch, C.C. A Novel Low-Density, High-Hardness, High-entropy Alloy with Close-packed Single-phase Nanocrystalline Structures. Mater. Res. Lett. 2015, 3, 95–99. [Google Scholar] [CrossRef] [Green Version]
- Stepanov, N.; Yurchenko, N.; Shaysultanov, D.; Salishchev, G.; Tikhonovsky, M. Effect of Al on structure and mechanical properties of AlxNbTiVZr (x = 0, 0.5, 1, 1.5) high entropy alloys. Mater. Sci. Technol. 2015, 31, 1184–1193. [Google Scholar] [CrossRef]
- Stepanov, N.; Yurchenko, N.; Skibin, D.; Tikhonovsky, M.; Salishchev, G. Structure and mechanical properties of the AlCrxNbTiV (x = 0, 0.5, 1, 1.5) high entropy alloys. J. Alloys Compd. 2015, 652, 266–280. [Google Scholar] [CrossRef]
- Du, X.; Wang, R.; Chen, C.; Wu, B.; Huang, J. Preparation of a Light-Weight MgCaAlLiCu High-Entropy Alloy. Key Eng. Mater. 2017, 727, 132–135. [Google Scholar] [CrossRef]
- Li, R.; Gao, J.; Fan, K. Study to Microstructure and Mechanical Properties of Mg Containing High Entropy Alloys. Mater. Sci. Forum 2010, 650, 265–271. [Google Scholar] [CrossRef]
- Ma, D.; Yao, M.; Pradeep, K.; Tasan, C.; Springer, H.; Raabe, D. Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys. Acta Mater. 2015, 98, 288–296. [Google Scholar] [CrossRef]
- Choi, M.; Ondicho, I.; Park, N.; Tsuji, N. Strength–ductility balance in an ultrafine-grained non-equiatomic Fe50(CoCrMnNi)50 medium-entropy alloy with a fully recrystallized microstructure. J. Alloys Compd. 2019, 780, 959–966. [Google Scholar] [CrossRef]
- Stepanov, N.; Shaysultanov, D.; Chernichenko, R.; Tikhonovsky, M.; Zherebtsov, S. Effect of Al on structure and mechanical properties of Fe-Mn-Cr-Ni-Al non-equiatomic high entropy alloys with high Fe content. J. Alloys Compd. 2019, 770, 194–203. [Google Scholar] [CrossRef] [Green Version]
- Yao, M.; Pradeep, K.; Tasan, C.; Raabe, D. A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility. Scr. Mater. 2014, 72–73, 5–8. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, D.; Jin, X.; Zhang, L.; Du, X.; Li, B. Design of non-equiatomic medium-entropy alloys. Sci. Rep. 2018, 8, 1236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laplanche, G.; Kostka, A.; Reinhart, C.; Hunfeld, J.; Eggeler, G.; George, E. Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi. Scr. Mater. 2017, 128, 292–303. [Google Scholar] [CrossRef]
- Wang, B.; He, H.; Naeem, M.; Lan, S.; Harjo, S.; Kawasaki, T.; Nie, Y.; Kui, H.W.; Ungár, T.; Ma, D.; et al. Deformation of CoCrFeNi high entropy alloy at large strain. Scr. Mater. 2018, 155, 54–57. [Google Scholar] [CrossRef]
- Gludovatz, B.; Hohenwarter, A.; Thurston, K.; Bei, H.; Wu, Z.; George, E.; Ritchie, R. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 2016, 7, 10602. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Sheng, H.; Wang, Z.; Gludovatz, B.; Zhang, Z.; George, E.; Yu, Q.; Mao, S.; Ritchie, R. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy. Nat. Commun. 2017, 8, 14390. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Yang, Y.; Zhong, Y.; Chen, Y.; Hsu, T.; Yeh, J. Physical metallurgy of concentrated solid solutions from low-entropy to high-entropy alloys. Curr. Opin. Solid State Mater. Sci. 2017, 21, 299–311. [Google Scholar] [CrossRef]
- Senkov, O.; Wilks, G.; Miracle, D.; Chuang, C.; Liaw, P. Refractory high-entropy alloys. Intermetallics 2010, 18, 1758–1765. [Google Scholar] [CrossRef]
- Mohamed, A.; Samuel, A.; Samuel, F.; Doty, H. Influence of additives on the microstructure and tensile properties of near-eutectic Al–10.8%Si cast alloy. Mater. Des. 2009, 30, 3943–3957. [Google Scholar] [CrossRef]
- Gencalp Irizalp, S.; Saklakoglu, N. Effect of Fe-rich intermetallics on the microstructure and mechanical properties of thixoformed A380 aluminum alloy. Eng. Sci. Technol. Int. J. 2014, 17, 58–62. [Google Scholar] [CrossRef] [Green Version]
Theoretical Density (g/cm3) | Measured Density (g/cm3) | |
---|---|---|
Al50Ti20Cr20Mn10 | 4.20 | 4.37 |
Al50Ti20Cr15Mn15 | 4.21 | 4.38 |
Al50Ti20Cr10Mn20 | 4.22 | 4.37 |
Al50Ti25Cr15Mn10 | 4.10 | 4.23 |
Al50Ti15Cr15Mn20 | 4.32 | 4.56 |
Al50(TiCrMn)45V5 | 4.27 | 4.50 |
Al50(TiCrMn)37.5V12.5 | 4.27 | 4.47 |
Al50(TiCrMn)30V20 | 4.27 | 4.40 |
Al | Ti | Cr | Mn | |
---|---|---|---|---|
Nominal composition (at.%) | 50.00 | 20.00 | 10.00 | 20.00 |
Bright phase (BCC) | 36.27 | 9.78 | 26.86 | 27.09 |
Dark phase (FCC) | 57.96 | 24.07 | 4.42 | 13.54 |
Constituent | BCC Fraction (%) | Hardness (Hv) | Yield Strength (MPa) | Ultimate Strength (MPa) | Ductility (%) |
---|---|---|---|---|---|
Al50Ti15Cr15Mn20 | 49.4 | 395 ± 4 | 944 ± 28 | 1749 ± 52 | 17 ± 2 |
Al50Ti20Cr20Mn10 | 34.8 | 347 ± 6 | 855 ± 26 | 2043 ± 61 | 27 ± 3 |
Al50Ti20Cr15Mn15 | 32.1 | 346 ± 5 | 780 ± 23 | 1772 ± 53 | 25 ± 2 |
Al50Ti20Cr10Mn20 | 29.4 | 335 ± 8 | 648 ± 19 | 1763 ± 53 | 32 ± 2 |
Al50Ti25Cr15Mn10 | 24.8 | 406 ± 6 | 1128 ± 34 | 1740 ± 52 | 17 ± 2 |
Al50(TiCrMn)45V5 | 40.0 | 355 ± 8 | 934 ± 28 | 1995 ± 60 | 33 ± 3 |
Al50(TiCrMn)37.5V12.5 | 54.8 | 385 ± 1 | 1059 ± 32 | 1602 ± 48 | 18 ± 2 |
Al50(TiCrMn)30V20 | 61.1 | 489 ± 13 | 1362 ± 41 | 1823 ± 55 | 12 ± 1 |
Constituent | BCC Fraction (%) | Yield Strength (MPa) | Ultimate Strength (MPa) | Ductility (%) |
---|---|---|---|---|
Al50Ti20Cr10Mn20 | 29.5 | 648 ± 19 | 1763 ± 53 | 32 ± 2 |
Al50Ti20Cr10Mn20 (600 °C) | 31.1 | 822 ± 24 | 1598 ± 48 | 17 ± 2 |
Al50Ti20Cr10Mn20 (800 °C) | 34.3 | 1161 ± 35 | 1583 ± 47 | 6 ± 1 |
Al50Ti20Cr10Mn20 (1000 °C) | 27.7 | 650 ± 19 | 941 ± 28 | 8 ± 1 |
Al50(TiCrMn)45V5 | 40.5 | 934 ± 28 | 1995 ± 60 | 33 ± 3 |
Al50(TiCrMn)45V5 (600 °C) | 37.5 | 950 ± 28 | 1514 ± 45 | 10 ± 1 |
Al50(TiCrMn)45V5 (800 °C) | 37.7 | 900 ± 27 | 1946 ± 58 | 30 ± 2 |
Al50(TiCrMn)45V5 (1000 °C) | 37.1 | 846 ± 25 | 1588 ± 47 | 19 ± 2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, Y.-C.; Chen, P.-S.; Li, C.-H.; Tsai, P.-H.; Jang, J.S.C.; Hsieh, K.-C.; Chen, C.-Y.; Lin, P.-H.; Huang, J.C.; Wu, H.-J.; et al. Development of Novel Lightweight Dual-Phase Al-Ti-Cr-Mn-V Medium-Entropy Alloys with High Strength and Ductility. Entropy 2020, 22, 74. https://doi.org/10.3390/e22010074
Liao Y-C, Chen P-S, Li C-H, Tsai P-H, Jang JSC, Hsieh K-C, Chen C-Y, Lin P-H, Huang JC, Wu H-J, et al. Development of Novel Lightweight Dual-Phase Al-Ti-Cr-Mn-V Medium-Entropy Alloys with High Strength and Ductility. Entropy. 2020; 22(1):74. https://doi.org/10.3390/e22010074
Chicago/Turabian StyleLiao, Yu-Chin, Po-Sung Chen, Chao-Hsiu Li, Pei-Hua Tsai, Jason S. C. Jang, Ker-Chang Hsieh, Chih-Yen Chen, Ping-Hung Lin, Jacob C. Huang, Hsin-Jay Wu, and et al. 2020. "Development of Novel Lightweight Dual-Phase Al-Ti-Cr-Mn-V Medium-Entropy Alloys with High Strength and Ductility" Entropy 22, no. 1: 74. https://doi.org/10.3390/e22010074
APA StyleLiao, Y. -C., Chen, P. -S., Li, C. -H., Tsai, P. -H., Jang, J. S. C., Hsieh, K. -C., Chen, C. -Y., Lin, P. -H., Huang, J. C., Wu, H. -J., Lo, Y. -C., Huang, C. -W., & Tsao, I. -Y. (2020). Development of Novel Lightweight Dual-Phase Al-Ti-Cr-Mn-V Medium-Entropy Alloys with High Strength and Ductility. Entropy, 22(1), 74. https://doi.org/10.3390/e22010074