Skew Convolutional Codes
Abstract
:1. Introduction
2. Skew Convolutional Codes
2.1. Skew Polynomials and Fractions
, | , |
2.2. Definition of Skew Convolutional Codes
2.3. Relations to Fixed Convolutional Codes
3. Encoding Skew Convolutional Codes
3.1. Polynomial Form of Encoding
3.2. Scalar Form of Encoding
3.3. Relations between Skew and Classical Convolutional Codes
4. Properties of Skew Convolutional Codes
4.1. Extension of Fixed Convolutional Codes
4.2. Canonical Encoders and Generator Matrices
4.3. Code Trellises
4.4. Code Distances
4.5. Blocking of Skew Convolutional Codes
5. Dual Skew Convolutional Codes
5.1. Definitions of Duality
5.2. Parity Check Matrices
5.3. Trellises of Dual Codes
6. Trellis Decoding of Skew Convolutional Codes
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Elias, P. Coding for noisy channels. IRE Conv. Rec. 1955, 4, 37–46. [Google Scholar]
- Fano, R. A heuristic discussion of probabilistic decoding. IEEE Trans. Inf. Theory 1963, 9, 64–74. [Google Scholar] [CrossRef]
- Massey, J.L. Threshold Decoding; MIT Press: Cambridge, MA, USA, 1963. [Google Scholar]
- Viterbi, A. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. Inf. Theory 1967, 13, 260–269. [Google Scholar] [CrossRef] [Green Version]
- Berrou, C.; Glavieux, A.; Thitimajshima, P. Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1. In Proceedings of the ICC ’93—IEEE International Conference on Communications, Geneva, Switzerland, 23–26 May 1993; Volume 2, pp. 1064–1070. [Google Scholar] [CrossRef]
- IEEE Standard for Telecommunications and Information Exchange between Systems-LAN/MAN Specific Requirements —Part 11: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High Speed Physical Layer in the 5 GHz Band. Available online: https://ieeexplore.ieee.org/document/815305 (accessed on 1 December 2020).
- Filler, T.; Judas, J.; Fridrich, J. Minimizing Additive Distortion in Steganography Using Syndrome-Trellis Codes. IEEE Trans. Inf. Forensics Secur. 2011, 6, 920–935. [Google Scholar] [CrossRef] [Green Version]
- Ouahada, K. Nonbinary convolutional codes and modified M-FSK detectors for power-line communications channel. J. Commun. Netw. 2014, 16, 270–279. [Google Scholar] [CrossRef]
- Holzbaur, L.; Freij-Hollanti, R.; Wachter-Zeh, A.; Hollanti, C. Private Streaming With Convolutional Codes. IEEE Trans. Inf. Theory 2020, 66, 2417–2429. [Google Scholar] [CrossRef]
- Mooser, M. Some periodic convolutional codes better than any fixed code (Corresp.). IEEE Trans. Inf. Theory 1983, 29, 750–751. [Google Scholar] [CrossRef]
- Lee, P.J. There are many good periodically time-varying convolutional codes. IEEE Trans. Inf. Theory 1989, 35, 460–463. [Google Scholar] [CrossRef]
- Gabidulin, E.M. Theory of Codes with Maximum Rank Distance. Probl. Inform. Trans. 1985, 21, 1–12. [Google Scholar]
- Boucher, D.; Ulmer, F. Coding with skew polynomial rings. J. Symb. Comput. 2009, 44, 1644–1656. [Google Scholar] [CrossRef]
- Boucher, D.; Ulmer, F. Codes as Modules over Skew Polynomial Rings; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Peñas, U. Sum-Rank BCH Codes and Cyclic-Skew-Cyclic Codes. arXiv 2020, arXiv:2009.04949. [Google Scholar]
- Gluesing-Luerssen, H. Skew-Polynomial Rings and Skew-Cyclic Codes. arXiv 2019, arXiv:1902.03516. [Google Scholar]
- Abualrub, T.; Ghrayeb, A.; Aydin, N.; Siap, I. On the Construction of Skew Quasi-Cyclic Codes. IEEE Trans. Inf. Theory 2010, 56, 2081–2090. [Google Scholar] [CrossRef] [Green Version]
- Ore, O. Theory of Non-Commutative Polynomials. Ann. Math. 1933, 34, 480–508. [Google Scholar] [CrossRef]
- Clark, P. Non-Commutative Algebra; University of Georgia: Athens, GA, USA, 2012. [Google Scholar]
- Johannesson, R.; Zigangirov, K.S. Fundamentals of Convolutional Coding; John Wiley and Sons, Ltd.: Hoboken, NJ, USA, 2015. [Google Scholar]
- McEliece, R.J. The Algebraic Theory of Convolutional Codes. In Handbook of Coding Theory; Chapter 12; Pless, V.S., Huffman, W.C., Eds.; Elsevier Science: Amsterdam, The Netherlands, 1998; Volume I, pp. 1065–1138. [Google Scholar]
- Pollara, F.; McEliece, R.J.; Abdel-Ghaffar, K. Finite-state codes. IEEE Trans. Inf. Theory 1988, 34, 1083–1089. [Google Scholar] [CrossRef]
- Rosenthal, J.; Smarandache, R. Maximum Distance Separable Convolutional Codes. Appl. Algebra Eng. Commun. Comput. 1998, 10, 15–32. [Google Scholar] [CrossRef]
- Gluesing-Luerssen, H.; Schmale, W. Distance bounds for convolutional codes and some optimal codes. arXiv 2003, arXiv:math/0305135. [Google Scholar]
- Jordan, R.; Pavlushkov, V.; Zyablov, V.V. An upper bound on the slope of convolutional codes. In Proceedings of the 2002 IEEE International Symposium on Information Theory, Lausanne, Switzerland, 30 June–5 July 2002; p. 424. [Google Scholar] [CrossRef]
- Wachter-Zeh, A.; Stinner, M.; Sidorenko, V. Convolutional Codes in Rank Metric with Application to Random Network Coding. IEEE Trans. Inf. Theory 2015, 61, 3199–3213. [Google Scholar] [CrossRef] [Green Version]
- Sidorenko, V.; Zyablov, V. Decoding of convolutional codes using a syndrome trellis. IEEE Trans. Inf. Theory 1994, 40, 1663–1666. [Google Scholar] [CrossRef]
- Bahl, L.; Cocke, J.; Jelinek, F.; Raviv, J. Optimal decoding of linear codes for minimizing symbol error rate (Corresp.). IEEE Trans. Inf. Theory 1974, 20, 284–287. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Sidorenko, V.; Jerkovits, T.; Kramer, G. On Maximum-Likelihood Decoding of Time-Varying Trellis Codes. In Proceedings of the 2019 XVI International Symposium “Problems of Redundancy in Information and Control Systems” (REDUNDANCY), Moscow, Russia, 21–25 October 2019; pp. 104–109. [Google Scholar] [CrossRef]
- Lafourcade, A.; Vardy, A. Optimal sectionalization of a trellis. IEEE Trans. Inf. Theory 1996, 42, 689–703. [Google Scholar] [CrossRef]
- Hartmann, C.; Rudolph, L. An optimum symbol-by-symbol decoding rule for linear codes. IEEE Trans. Inf. Theory 1976, 22, 514–517. [Google Scholar] [CrossRef]
- Berkmann, J.; Weiss, C. On dualizing trellis-based APP decoding algorithms. IEEE Trans. Commun. 2002, 50, 1743–1757. [Google Scholar] [CrossRef]
- Srinivasan, S.; Pietrobon, S.S. Decoding of High Rate Convolutional Codes Using the Dual Trellis. IEEE Trans. Inf. Theory 2010, 56, 273–295. [Google Scholar] [CrossRef]
- Esmaeili, M.; Gulliver, T.A.; Secord, N.P.; Mahmoud, S.A. A link between quasi-cyclic codes and convolutional codes. IEEE Trans. Inf. Theory 1998, 44, 431–435. [Google Scholar] [CrossRef]
- Kudryashov, B.D.; Zakharova, T.G. Block Codes from Convolution Codes. Probl. Peredachi Inf. 1989, 25, 98–102. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sidorenko, V.; Li, W.; Günlü, O.; Kramer, G. Skew Convolutional Codes. Entropy 2020, 22, 1364. https://doi.org/10.3390/e22121364
Sidorenko V, Li W, Günlü O, Kramer G. Skew Convolutional Codes. Entropy. 2020; 22(12):1364. https://doi.org/10.3390/e22121364
Chicago/Turabian StyleSidorenko, Vladimir, Wenhui Li, Onur Günlü, and Gerhard Kramer. 2020. "Skew Convolutional Codes" Entropy 22, no. 12: 1364. https://doi.org/10.3390/e22121364
APA StyleSidorenko, V., Li, W., Günlü, O., & Kramer, G. (2020). Skew Convolutional Codes. Entropy, 22(12), 1364. https://doi.org/10.3390/e22121364