The Influence of Signal Polarization on Quantum Bit Error Rate for Subcarrier Wave Quantum Key Distribution Protocol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Effects of Modulation Indices Mismatch
2.2. Analysis of the Polarization Dynamics
2.3. QBER Model
- Polarization of signal coincides with orientation of effective modulation, phase difference equals zero: ,
- Polarization of signal coincides with orientation of effective modulation, phase difference equals : ,
- Polarization of signal does not coincide with orientation of effective modulation, phase difference equals zero: ,
- Polarization of signal does not coincide with orientation of effective modulation, phase difference equals : .
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
Abbreviations
QKD | Quantum Key Distribution |
SCW | Subcarrier Wave |
OF | Optical Fiber |
QBER | Quantum Bit Error Rate |
References
- Scarani, V.; Bechmann-Pasquinucci, H.; Cerf, N.J.; Dušek, M.; Lütkenhaus, N.; Peev, M. The security of practical quantum key distribution. Rev. Mod. Phys. 2009, 81, 1301. [Google Scholar] [CrossRef] [Green Version]
- Pirandola, S.; Andersen, U.; Banchi, L.; Berta, M.; Bunandar, D.; Colbeck, R.; Englund, D.; Gehring, T.; Lupo, C.; Ottaviani, C.; et al. Advances in Quantum Cryptography. arXiv 2019, arXiv:1906.01645. [Google Scholar] [CrossRef] [Green Version]
- Lucamarini, M.; Yuan, Z.L.; Dynes, J.F.; Shields, A.J. Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 2018, 557, 400. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Hu, J.; Curty, M.; Qian, L.; Lo, H.K. Proof-of-principle experimental demonstration of twin-field type quantum key distribution. arXiv 2019, arXiv:1902.10209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; He, D.Y.; Yin, Z.Q.; Lu, F.Y.; Cui, C.H.; Chen, W.; Zhou, Z.; Guo, G.C.; Han, Z.F. Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system. Phys. Rev. X 2019, 9, 021046. [Google Scholar] [CrossRef] [Green Version]
- Minder, M.; Pittaluga, M.; Roberts, G.; Lucamarini, M.; Dynes, J.; Yuan, Z.; Shields, A. Experimental quantum key distribution beyond the repeaterless secret key capacity. Nat. Photonics 2019, 13, 334. [Google Scholar] [CrossRef]
- Miroshnichenko, G.P.; Kozubov, A.V.; Gaidash, A.A.; Gleim, A.V.; Horoshko, D.B. Security of subcarrier wave quantum key distribution against the collective beam-splitting attack. Opt. Express 2018, 26, 11292–11308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gleim, A.V.; Egorov, V.I.; Nazarov, Y.V.; Smirnov, S.V.; Chistyakov, V.V.; Bannik, O.I.; Anisimov, A.A.; Kynev, S.M.; Ivanova, A.E.; Collins, R.J.; et al. Secure polarization-independent subcarrier quantum key distribution in optical fiber channel using BB84 protocol with a strong reference. Opt. Express 2016, 24, 2619–2633. [Google Scholar] [CrossRef] [PubMed]
- Chistiakov, V.; Kozubov, A.; Gaidash, A.; Gleim, A.; Miroshnichenko, G. Feasibility of twin-field quantum key distribution based on multi-mode coherent phase-coded states. Opt. Express 2019, 27, 36551–36561. [Google Scholar] [CrossRef] [PubMed]
- Bennett, C.H. Quantum crytography. In Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, 9–12 December 1984; pp. 175–179. [Google Scholar]
- Bennett, C.H.; Bessette, F.; Brassard, G.; Salvail, L.; Smolin, J. Experimental quantum cryptography. J. Cryptol. 1992, 5, 3–28. [Google Scholar] [CrossRef]
- Bennett, C.H. Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 1992, 68, 3121. [Google Scholar] [CrossRef] [PubMed]
- Merolla, J.M.; Mazurenko, Y.; Goedgebuer, J.P.; Rhodes, W.T. Single-photon interference in sidebands of phase-modulated light for quantum cryptography. Phys. Rev. Lett. 1999, 82, 1656. [Google Scholar] [CrossRef]
- Merolla, J.M.; Mazurenko, Y.; Goedgebuer, J.P.; Duraffourg, L.; Porte, H.; Rhodes, W.T. Quantum cryptographic device using single-photon phase modulation. Phys. Rev. A 1999, 60, 1899. [Google Scholar] [CrossRef]
- Merolla, J.M.; Duraffourg, L.; Goedgebuer, J.P.; Soujaeff, A.; Patois, F.; Rhodes, W. Integrated quantum key distribution system using single sideband detection. Eur. Phys. J. D At. Mol. Opt. Plasma Phys. 2002, 18, 141–146. [Google Scholar]
- Mora, J.; Amaya, W.; Ruiz-Alba, A.; Martinez, A.; Calvo, D.; Muñoz, V.G.; Capmany, J. Simultaneous transmission of 20x2 WDM/SCM-QKD and 4 bidirectional classical channels over a PON. Opt. Express 2012, 20, 16358–16365. [Google Scholar] [CrossRef]
- Guerreau, O.L.; Malassenet, F.J.; McLaughlin, S.W.; Merolla, J.M. Quantum key distribution without a single-photon source using a strong reference. IEEE Photonics Technol. Lett. 2005, 17, 1755–1757. [Google Scholar] [CrossRef]
- Gleim, A.; Chistyakov, V.; Bannik, O.; Egorov, V.; Buldakov, N.; Vasilev, A.; Gaidash, A.; Kozubov, A.; Smirnov, S.; Kynev, S.; et al. Sideband quantum communication at 1 Mbit/s on a metropolitan area network. J. Opt. Technol. 2017, 84, 362–367. [Google Scholar] [CrossRef]
- Samsonov, E.; Goncharov, R.; Gaidash, A.; Kozubov, A.; Egorov, V.; Gleim, A. Subcarrier wave continuous variable quantum key distribution with discrete modulation: Mathematical model and finite-key analysis. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef]
- Miroshnichenko, G.P.; Kiselev, A.D.; Trifanov, A.I.; Gleim, A.V. Algebraic approach to electro-optic modulation of light: Exactly solvable multimode quantum model. J. Opt. Soc. Am. B 2017, 34, 1177–1190. [Google Scholar] [CrossRef] [Green Version]
- Mandel, L.; Wolf, E. Optical Coherence and Quantum Optics; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Scully, M.; Zubairy, M. Quantum Optics; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Born, M.; Wolf, E. Principles of Optics. Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 4th ed.; Cambridge University Press: Cambridge, UK, 1968. [Google Scholar]
- Agranovič, V.M.; Ginzburg, V.L. Kristallooptika s Učetom Prostranstvennoj Dispersii i Teorija Eksitonov; Nauka: Moscow, Russia, 1965. [Google Scholar]
- Gisin, N.; Huttner, B. Combined effects of polarization mode dispersion and polarization dependent losses in optical fibers. Opt. Commun. 1997, 142, 119–125. [Google Scholar] [CrossRef]
- Dong, H.; Shum, P.; Yan, M.; Zhou, J.; Ning, G.; Gong, Y.; Wu, C. Measurement of Mueller matrix for an optical fiber system with birefringence and polarization-dependent loss or gain. Opt. Commun. 2007, 274, 116–123. [Google Scholar] [CrossRef]
- Palmieri, L. Polarization properties of spun single-mode fibers. J. Light. Technol. 2006, 24, 4075–4088. [Google Scholar] [CrossRef]
- Rashleigh, S.; Ulrich, R. Polarization mode dispersion in single-mode fibers. Opt. Lett. 1978, 3, 60–62. [Google Scholar] [CrossRef] [PubMed]
- Poole, C.D.; Winters, J.H.; Nagel, J.A. Dynamical equation for polarization dispersion. Opt. Lett. 1991, 16, 372–374. [Google Scholar] [CrossRef] [PubMed]
- Nolan, D.A.; Chen, X.; Li, M.J. Fibers with low polarization-mode dispersion. J. Light. Technol. 2004, 22, 1066–1077. [Google Scholar] [CrossRef]
- Kozubov, A.; Gaidash, A.; Miroshnichenko, G. Quantum model of decoherence in the polarization domain for the fiber channel. Phys. Rev. A 2019, 99, 053842. [Google Scholar] [CrossRef]
- Rivas, Á.; Luis, A. SU (2)-invariant depolarization of quantum states of light. Phys. Rev. A 2013, 88, 052120. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S. Analysis of the polarization-mode-dispersion vector distribution for linearly birefringent optical fibers. IEEE Photonics Technol. Lett. 2007, 19, 972–974. [Google Scholar]
- Savović, S.; Djordjevich, A. Solution of mode coupling in step-index optical fibers by the Fokker-Planck equation and the Langevin equation. Appl. Opt. 2002, 41, 2826–2830. [Google Scholar] [CrossRef]
- Gisin, N.; Von der Weid, J.P.; Pellaux, J.P. Polarization mode dispersion of short and long single-mode fibers. J. Light. Technol. 1991, 9, 821–827. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, D.Y.; Zhao, L.; Wu, X. Observation of polarization domain wall solitons in weakly birefringent cavity fiber lasers. Phys. Rev. B 2009, 80, 052302. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Tang, D.; Zhao, L.; Knize, R. Vector dark domain wall solitons in a fiber ring laser. Opt. Express 2010, 18, 4428–4433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Tang, D.; Zhao, L.; Wu, X. Dual-wavelength domain wall solitons in a fiber ring laser. Opt. Express 2011, 19, 3525–3530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaidash, A.; Kozubov, A.; Miroshnichenko, G. Dissipative dynamics of quantum states in the fiber channel. Phys. Rev. A 2020, 102, 023711. [Google Scholar] [CrossRef]
- Carmichael, H. An Open Systems Approach to Quantum Optics: Lectures Presented at the Université Libre de Bruxelles, October 28 to November 4, 1991; Springer-Verlag: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Khersonskii, V.; Moskalev, A.; Varshalovich, D. Quantum Theory of Angular Momentum; World Scientific: London, UK, 1988. [Google Scholar]
- Klyshko, D. Polarization of light: Fourth-order effects and polarization-squeezed states. J. Exp. Theor. Phys. 1997, 84, 1065–1079. [Google Scholar] [CrossRef]
- Han, C.; Zhou, Z.W.; Guo, G.C. Long distance quantum communication over a noisy channel. J. Phys. B At. Mol. Opt. Phys. 2006, 39, 1677. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaidash, A.; Kozubov, A.; Medvedeva, S.; Miroshnichenko, G. The Influence of Signal Polarization on Quantum Bit Error Rate for Subcarrier Wave Quantum Key Distribution Protocol. Entropy 2020, 22, 1393. https://doi.org/10.3390/e22121393
Gaidash A, Kozubov A, Medvedeva S, Miroshnichenko G. The Influence of Signal Polarization on Quantum Bit Error Rate for Subcarrier Wave Quantum Key Distribution Protocol. Entropy. 2020; 22(12):1393. https://doi.org/10.3390/e22121393
Chicago/Turabian StyleGaidash, Andrei, Anton Kozubov, Svetlana Medvedeva, and George Miroshnichenko. 2020. "The Influence of Signal Polarization on Quantum Bit Error Rate for Subcarrier Wave Quantum Key Distribution Protocol" Entropy 22, no. 12: 1393. https://doi.org/10.3390/e22121393
APA StyleGaidash, A., Kozubov, A., Medvedeva, S., & Miroshnichenko, G. (2020). The Influence of Signal Polarization on Quantum Bit Error Rate for Subcarrier Wave Quantum Key Distribution Protocol. Entropy, 22(12), 1393. https://doi.org/10.3390/e22121393