Spin Glasses in a Field Show a Phase Transition Varying the Distance among Real Replicas (And How to Exploit It to Find the Critical Line in a Field)
Abstract
:1. Introduction
2. Phase Transition Varying the Overlap between Two Real Replicas in a Solvable Mean Field Model
2.1. The Truncated Model
2.2. The Model with Constrained Replicas
- If , then .
- If and , then .
- If , then either or .
2.3. Replica Symmetry (RS) Solutions
2.4. Replica Symmetry Breaking (RSB) Solutions in the Paramagnetic Phase
- a solution with and , i.e., with the and , respectively, very close to the RS corresponding overlaps p and q,
- a solution with , i.e., where and are close to the RS overlaps and at a small x, a mean overlap is roughly found .
3. Numerical Results in a Finite-Dimensional Spin Glass Model Varying the Overlap between Two Real Replicas
3.1. Model and Numerical Simulations
3.2. A New Tool of Analysis Conditioning on the Overlap
3.3. Numerical Results
- from the peak location in , and
- from the crossing points of the cumulative functions .
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- De Almeida, J.R.L.; Thouless, D.J. Stability of the Sherrington-Kirkpatrick solution of a spin glass model. J. Phys. A Math. Gen. 1978, 11, 983. [Google Scholar] [CrossRef] [Green Version]
- Caracciolo, S.; Parisi, G.; Patarnello, S.; Sourlas, N. Low temperature behaviour of 3-D spin glasses in a magnetic field. J. Phys. 1990, 51, 1877–1895. [Google Scholar] [CrossRef]
- Huse, D.A.; Fisher, D.S. On the behavior of Ising spin glasses in a uniform magnetic field. J. Phys. I 1991, 1, 621–625. [Google Scholar] [CrossRef]
- Caracciolo, S.; Parisi, G.; Patarnello, S.; Sourlas, N. On computer simulations for spin glasses to test mean field predictions. J. Phys. I 1991, 1, 627–628. [Google Scholar] [CrossRef]
- Ciria, J.C.; Parisi, G.; Ritort, F.; Ruiz-Lorenzo, J.J. The de Almeida-Thouless line in the four dimensional Ising spin glass. J. Phys. I 1993, 3, 2207–2227. [Google Scholar] [CrossRef]
- Parisi, G.; Ricci-Tersenghi, F.; Ruiz-Lorenzo, J.J. Dynamics of the four-dimensional spin glass in a magnetic field. Phys. Rev. B 1998, 57, 13617. [Google Scholar] [CrossRef] [Green Version]
- Marinari, E.; Parisi, G.; Zuliani, F. Four-dimensional spin glasses in a magnetic field have a mean-field-like phase. J. Phys. A Math. Gen. 1998, 31, 1181. [Google Scholar] [CrossRef]
- Marinari, E.; Naitza, C.; Parisi, G. Critical Behavior of the 4D Spin Glass in Magnetic Field. J. Phys. A Math. Gen. 1998, 31, 6355. [Google Scholar] [CrossRef] [Green Version]
- Marinari, E.; Naitza, C.; Zuliani, F.; Parisi, G.; Picco, M.; Ritort, F. General Method to Determine Replica Symmetry Breaking Transitions. Phys. Rev. Lett. 1998, 81, 1698–1701. [Google Scholar] [CrossRef] [Green Version]
- Houdayer, J.; Martin, O.C. Ising Spin Glasses in a Magnetic Field. Phys. Rev. Lett. 1999, 82, 4934–4937. [Google Scholar] [CrossRef] [Green Version]
- Marinari, E.; Parisi, G.; Zuliani, F. Comment on “Ising Spin Glasses in a Magnetic Field”. Phys. Rev. Lett. 2000, 84, 1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houdayer, J.; Martin, O.C. Houdayer and Martin Reply. Phys. Rev. Lett. 2000, 84, 1057. [Google Scholar] [CrossRef] [Green Version]
- Cruz, A.; Fernández, L.A.; Jiménez, S.; Ruiz-Lorenzo, J.J.; Tarancón, A. Off-equilibrium fluctuation-dissipation relations in the 3d Ising spin glass in a magnetic field. Phys. Rev. B 2003, 67, 214425. [Google Scholar] [CrossRef] [Green Version]
- Young, A.P.; Katzgraber, H.G. Absence of an Almeida-Thouless line in three-dimensional spin glasses. Phys. Rev. Lett. 2004, 93, 207203. [Google Scholar] [CrossRef] [Green Version]
- Leuzzi, L.; Parisi, G.; Ricci-Tersenghi, F.; Ruiz-Lorenzo, J.J. Dilute One-Dimensional Spin Glasses with Power Law Decaying Interactions. Phys. Rev. Lett. 2008, 101, 107203. [Google Scholar] [CrossRef]
- Leuzzi, L.; Parisi, G.; Ricci-Tersenghi, F.; Ruiz-Lorenzo, J.J. Ising Spin-Glass Transition in a Magnetic Field Outside the Limit of Validity of Mean-Field Theory. Phys. Rev. Lett. 2009, 103, 267201. [Google Scholar] [CrossRef] [Green Version]
- Leuzzi, L.; Parisi, G.; Ricci-Tersenghi, F.; Ruiz-Lorenzo, J. Bond diluted Levy spin-glass model and a new finite-size scaling method to determine a phase transition. Philos. Mag. 2011, 91, 1917–1925. [Google Scholar] [CrossRef]
- Baños, R.A.; Cruz, A.; Fernandez, L.A.; Gil-Narvion, J.M.; Gordillo-Guerrero, A.; Guidetti, M.; Iniguez, D.; Maiorano, A.; Marinari, E.; Martín-Mayor, V.; et al. Thermodynamic glass transition in a spin glass without time-reversal symmetry. Proc. Natl. Acad. Sci. USA 2012, 109, 6452. [Google Scholar] [CrossRef] [Green Version]
- Larson, D.; Katzgraber, H.G.; Moore, M.A.; Young, A.P. Spin glasses in a field: Three and four dimensions as seen from one space dimension. Phys. Rev. B 2013, 87, 024414. [Google Scholar] [CrossRef] [Green Version]
- Baity-Jesi, M.; Baños, R.A.; Cruz, A.; Fernandez, L.A.; Gil-Narvion, J.M.; Gordillo-Guerrero, A.; Iñiguez, D.; Maiorano, A.; Mantovani, F.; Marinari, E.; et al. Dynamical Transition in the D = 3 Edwards-Anderson spin glass in an external magnetic field. Phys. Rev. E 2014, 89, 032140. [Google Scholar] [CrossRef] [Green Version]
- Baity-Jesi, M.; Banos, R.A.; Cruz, A.; Fernandez, L.A.; Gil-Narvion, J.M.; Gordillo-Guerrero, A.; Iñiguez, D.; Maiorano, A.; Mantovani, F.; Marinari, E.; et al. The three dimensional Ising spin glass in an external magnetic field: the role of the silent majority. J. Stat. Mech. 2014, 2014, P05014. [Google Scholar] [CrossRef]
- Takahashi, H.; Ricci-Tersenghi, F.; Kabashima, Y. Finite-size scaling of the de Almeida–Thouless instability in random sparse networks. Phys. Rev. B 2010, 81, 174407. [Google Scholar] [CrossRef] [Green Version]
- Mézard, M.; Parisi, G. The Bethe lattice spin glass revisited. Eur. Phys. J. B 2001, 20, 217–233. [Google Scholar] [CrossRef] [Green Version]
- Parisi, G.; Ricci-Tersenghi, F. A numerical study of the overlap probability distribution and its sample-to-sample fluctuations in a mean-field model. Philos. Mag. 2012, 92, 341–352. [Google Scholar] [CrossRef]
- Franz, S.; Rieger, H. Fluctuation-dissipation ratio in three-dimensional spin glasses. J. Stat. Phys. 1995, 79, 749–758. [Google Scholar] [CrossRef] [Green Version]
- Franz, S.; Parisi, G.; Virasoro, M.A. The replica method on and off equilibrium. J. Phys. I 1992, 2, 1869–1880. [Google Scholar] [CrossRef]
- Parisi, G. The order parameter for spin glasses: A function on the interval 0–1. J. Phys. A Math. Gen. 1980, 13, 1101. [Google Scholar] [CrossRef]
- Kotliar, G.; Anderson, P.W.; Stein, D.L. One-dimensional spin-glass model with long-range random interactions. Phys. Rev. B 1983, 27, 602. [Google Scholar] [CrossRef]
- Leuzzi, L. Critical behaviour and ultrametricity of Ising spin-glass with long-range interactions. J. Phys. A Math. Gen. 1999, 32, 1417–1426. [Google Scholar] [CrossRef] [Green Version]
- Leuzzi, L.; Parisi, G.; Ricci-Tersenghi, F.; Ruiz-Lorenzo, J.J. Infinite volume extrapolation in the one-dimensional bond diluted Levy spin-glass model near its lower critical dimension. Phys. Rev. B 2015, 91, 064202. [Google Scholar] [CrossRef] [Green Version]
- Hukushima, K.; Nemoto, K. Exchange Monte Carlo Method and Application to Spin Glass Simulations. J. Phys. Soc. Jpn. 1996, 65, 1604. [Google Scholar] [CrossRef] [Green Version]
- Marinari, E. Optimized Monte Carlo Methods. In Advances in Computer Simulation; Kerstész, J., Kondor, I., Eds.; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar] [CrossRef]
- De Dominicis, C.; Giardina, I. Random Fields and Spin Glasses: A Field Theory Approach; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Parisi, G.; Ricci-Tersenghi, F. On the origin of ultrametricity. J. Phys. A Math. Gen. 2000, 33, 113. [Google Scholar] [CrossRef] [Green Version]
- Marinari, E.; Parisi, G.; Ricci-Tersenghi, F.; Ruiz-Lorenzo, J.J.; Zuliani, F. Replica Symmetry Breaking in Short-Range Spin Glasses: Theoretical Foundations and Numerical Evidences. J. Stat. Phys. 2000, 98, 973. [Google Scholar] [CrossRef] [Green Version]
- Alvarez Baños, R.; Cruz, A.; Fernandez, L.A.; Gil-Narvion, J.M.; Gordillo-Guerrero, A.; Guidetti, M.; Maiorano, A.; Mantovani, F.; Marinari, E.; Martín-Mayor, V.; et al. Nature of the spin-glass phase at experimental length scales. J. Stat. Mech. 2010, 2010, P06026. [Google Scholar] [CrossRef] [Green Version]
- Leuzzi, L.; Parisi, G. Long-range random-field Ising model: Phase transition threshold and equivalence of short and long ranges. Phys. Rev. B 2013, 88, 224204. [Google Scholar] [CrossRef] [Green Version]
- Höller, J.; Read, N. One-step replica-symmetry-breaking phase below the de Almeida-Thouless line in low-dimensional spin glasses. arXiv 2019, arXiv:1909.03284. [Google Scholar]
8 | 1.88(1) | 1.56(6) | 1.31(4) | 8 | 1.47(10) | |
9 | 1.89(3) | 1.44(6) | 1.39(3) | 9 | 1.36(5) | 1.38(5) |
10 | 1.85(1) | 1.47(2) | 1.40(1) | 10 | 1.4(1) | 1.43(4) |
11 | 1.40(3) | 1.53(1) | 1.39(3) | 11 | 1.48(5) | 1.47(3) |
12 | 1.57(9) | 1.51(1) | 1.37(1) | 12 | 1.51(5) | 1.53(2) |
FSSA | 1.67(7) | 1.2(2) | FSSA | 1.4(2) | 1.5(4) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dilucca, M.; Leuzzi, L.; Parisi, G.; Ricci-Tersenghi, F.; Ruiz-Lorenzo, J.J. Spin Glasses in a Field Show a Phase Transition Varying the Distance among Real Replicas (And How to Exploit It to Find the Critical Line in a Field). Entropy 2020, 22, 250. https://doi.org/10.3390/e22020250
Dilucca M, Leuzzi L, Parisi G, Ricci-Tersenghi F, Ruiz-Lorenzo JJ. Spin Glasses in a Field Show a Phase Transition Varying the Distance among Real Replicas (And How to Exploit It to Find the Critical Line in a Field). Entropy. 2020; 22(2):250. https://doi.org/10.3390/e22020250
Chicago/Turabian StyleDilucca, Maddalena, Luca Leuzzi, Giorgio Parisi, Federico Ricci-Tersenghi, and Juan J. Ruiz-Lorenzo. 2020. "Spin Glasses in a Field Show a Phase Transition Varying the Distance among Real Replicas (And How to Exploit It to Find the Critical Line in a Field)" Entropy 22, no. 2: 250. https://doi.org/10.3390/e22020250
APA StyleDilucca, M., Leuzzi, L., Parisi, G., Ricci-Tersenghi, F., & Ruiz-Lorenzo, J. J. (2020). Spin Glasses in a Field Show a Phase Transition Varying the Distance among Real Replicas (And How to Exploit It to Find the Critical Line in a Field). Entropy, 22(2), 250. https://doi.org/10.3390/e22020250