Nonlinear Methods Most Applied to Heart-Rate Time Series: A Review
Abstract
:1. Introduction
2. Heart-Rate Dynamics
3. Nonlinear Methods
- Pubmed search: all the papers that contained the method’s name AND ((“Heart Rate” [Mesh] OR “Heart Rate Fetal” [Mesh]) OR (“Cardiotocography” [Mesh]) OR (“Electrocardiography” [Mesh])) AND (humans[MeSH Terms]). The query details are described in Appendix D.
- the number of citations in Google Scholar was accessed for each paper.
- the five most cited papers for each method were selected.
3.1. Notation
3.2. Poincaré Plot
3.2.1. Description of Poincaré Plot
3.2.2. Applications of Poincaré Plot
3.3. Recurrence Plot Analysis
3.3.1. Description of Recurrence Plot Analysis
3.3.2. Applications of Recurrence Plot Analysis
3.4. Fractal Dimension
3.4.1. Description of Fractal Dimension Methods
Correlation Dimension
Algorithm Proposed by Barabasi and Stanley
Algorithm Proposed by Katz
Algorithm Proposed by Higuchi
3.4.2. Applications of Fractal Dimension
3.5. Detrended Fluctuation Analysis
3.5.1. Description of Detrended Fluctuation Analysis
- if , the time series represents uncorrelated randomness (white noise);
- if (1/f-noise), the time series has long-range correlations and exhibits scale-invariant properties;
- if , the time series represents a random walk (Brownian motion).
3.5.2. Applications of Detrended Fluctuation Analysis
3.6. Hurst Exponent
3.6.1. Description of Hurst Exponent
3.6.2. Applications of Hurst Exponent
3.7. Lyapunov Exponent
3.7.1. Description of Lyapunov Exponent
3.7.2. Applications of Lyapunov Exponent
3.8. Entropies
3.8.1. Description of Entropies Methods
Shannon Entropy
Conditional Entropy
Corrected Conditional Entropy
Approximate Entropy
Sample Entropy
Multiscale Entropy
3.8.2. Applications of Entropy Methods
3.8.2.1. Applications of Shannon Entropy
3.8.2.2. Applications of Conditional Entropy and Corrected Conditional Entropy
3.8.2.3. Applications of Approximate Entropy
3.8.2.4. Applications of Sample Entropy
3.8.2.5. Applications of Multiscale Entropy
3.9. Symbolic Dynamics
3.9.1. Description of Symbolic Dynamics
Voss’s Technique
- forbidden words (FORBWORD): the number of word types that occur with a probability less than 0.001; a high number of forbidden words reflect a reduced dynamic behavior in time series and vice versa.
- measures of complexity:
- −
- Shannon entropy—SE computed over all word types: a measure of word-type distribution complexity;
- −
- Rényi entropy (RE) q = 0.25—RE with a weighting coefficient of 0.25 computed over all word-types, predominately assessing the words with low probability;
- −
- Rényi entropy q = 4—RE with a weighting coefficient of 4 computed over all word-types, predominantly assessing words with high probabilities.
- wpsum—wpsum02 is measured as the percentage of words consisting of the symbols “0” and “2” only, and the wpsum13 is the percentage of words containing only the symbols “1” and “3”. According to the meaning of the symbols, high values for wpsum02 indicate low complexity of HR time series while high wpsum13 indicates higher complexity.
Porta’s Technique
- patterns with no variation (0V, all the symbols were equal);
- patterns with one variation (1V, two consecutive symbols were equal, and the remaining one is different);
- patterns with two like variations (2LV, the three symbols formed an ascending or descending ramp);
- patterns with two unlike variations (2UV, the three symbols formed a peak or a valley).
3.9.2. Applications of Symbolic Dynamics
4. Discussion
5. Conclusions
- a detailed description of the nonlinear methods most used to assess heart-rate dynamics presenting their relationship and stating the limitations of methods;
- a synopsis the most cited articles applying each measure to understand the applicability of the methods.
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AF | atrial fibrillation |
AMI | average mutual information function |
ApEn | approximate entropy |
CAD | coronary artery disease |
CHF | congestive heart failure |
CCE | corrected conditional entropy |
CD | correlation dimension |
CE | conditional entropy |
DET | determinism |
DFA | detrended fluctuation analysis |
ECG | electrocardiogram |
EEG | electroencephalographies |
FD | fractal dimension |
HE | Hurst exponent |
HP | heart period |
HR | heart rate |
HRM | heart rate monitor |
HRV | heart rate variability |
LAM | laminarity |
LE | Lyapunov exponent |
LLE | largest Lyapunov exponent |
MF-DFA | multifractal detrended fluctuation analysis |
MIT-BIH | Massachusetts Institute of Technology - Boston’s Beth Israel Hospital |
ms | milliseconds |
MSE | multiscale entropy |
NN | normal to normal |
PSD | power spectral density |
Pplot | Poincaré plot |
RE | Rényi entropy |
REM | rapid eye movement |
RM | Recurrence Matrix |
ROC | receiver operating characteristic |
RP | recurrence plot |
RQA | recurrence quantification analysis |
SD1 | short-term standard deviation |
SD2 | long-term standard deviation |
SDRR | standard deviation of the RR intervals |
SDSD | standard deviation of the successive differences of the RR intervals |
SE | Shannon entropy |
SampEn | sample entropy |
SymD | symbolic dynamics |
TT | trapping time |
Appendix A. Estimation of Embedding Parameters
Appendix A.1. Estimation of Minimum Embedding Dimension (m)
Appendix A.2. Time Delay Embedding Estimation (τ)
Appendix B. Recurrence Plot Parameters
Appendix B.1. The Parameters Extracted from the RM Based on Diagonal Lines
- Determinism () is the ratio of recurrence points that form a diagonal structure:
- Average diagonal line length (L):Notice that the threshold excludes the diagonal lines that are formed by the tangential motion of the phase space trajectory. The choice of has to take into account that the histogram can become sparse if is too large, and, thus, the reliability of decreases.
- Maximal length of a diagonal (), or its inverse, the divergence (),
- refers to the Shannon entropy of the probability to find a diagonal line of length l.The entropy reflects the complexity of the RP with respect to the diagonal lines, e.g., for uncorrelated noise, the value of entropy is rather small, indicating its low complexity.
Appendix B.2. The Parameters Extracted from the RM based on Vertical Lines
- Laminarity (LAM), the ratio between the recurrence points forming the vertical structures and the entire set of recurrence points, is analogous to DET applied to vertical lines:LAM will decrease if the RP consists of more single recurrence points than vertical structures.
- The average vertical line length (trapping time (TT)) estimates the mean time that the system will abide at a specific state or how long the state will be trapped.
- The maximal vertical line of the matrix (), analogously to the standard measure ( is the absolute number of vertical lines).
Appendix C. Multifractal Detrended Fluctuation Analysis
Appendix D. Pubmed Query
Method | Query: ((“Heart Rate” [Mesh] | Number of Papers | Number of Citations | Median Citations per Paper | Maximum Citations |
---|---|---|---|---|---|
OR “Heart Rate Fetal” [Mesh]) | |||||
OR (“Cardiotocography” [Mesh] | |||||
OR (“Electrocardiography” [Mesh])) | |||||
AND (humans [MeSH Terms]) | |||||
AND | |||||
Poincaré Plot | (Poincaré) | 335 | 18,536 | 20 | 790 |
Recurrence Plot Analysis | (Recurrence Plot) | 38 | 1115 | 24 | 189 |
Recurrence Quantification Analysis | (Recurrence Quantification Analysis) | 48 | 1708 | 18.5 | 289 |
Fractal Dimension | (Fractal Dimension) | 123 | 4766 | 21 | 285 |
Correlation Dimension | (Correlation Dimension) | 263 | 10,304 | 18 | 529 |
Detrended Fluctuation Analysis | (Detrended Fluctuation Analysis) | 222 | 14,628 | 19 | 3269 |
Hurst Exponent | (Hurst Exponent) | 34 | 963 | 22 | 108 |
Shannon Entropy | (Shannon Entropy) | 69 | 2307 | 15 | 310 |
Conditional Entropy | (Conditional Entropy) | 39 | 1194 | 10 | 310 |
Approximate Entropy | (Approximate Entropy) | 280 | 17,625 | 25 | 1275 |
Sample Entropy | (Sample Entropy) | 259 | 7682 | 14 | 902 |
Multiscale Entropy | (Multiscale Entropy) | 124 | 6237 | 14.5 | 2221 |
Lyapunov Exponent | (Lyapunov Exponent) | 79 | 3959 | 27 | 529 |
Symbolic Dynamics | (Symbolic Dynamics) | 112 | 4199 | 9 | 497 |
References
- Ott, E. Chaos in Dynamical Systems; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Mandelbrot, B.B. Fractals: Form, Chance and Dimension; WH Freeman & Co.: San Francisco, CA, USA, 1979. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Kolmogorov, A.N. Three approaches to the definition of the concept “quantity of information”. Problemy Peredachi Informatsii 1965, 1, 3–11. [Google Scholar]
- Li, M.; Vitányi, P. An Introduction to Kolmogorov Complexity and Its Applications; Springer: Berlin/Heidelberg, Germany, 2008; Volume 3. [Google Scholar]
- Xiong, W.; Faes, L.; Ivanov, P.C. Entropy measures, entropy estimators, and their performance in quantifying complex dynamics: Effects of artifacts, nonstationarity, and long-range correlations. Phys. Rev. E 2017, 95, 062114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansier, P.; Clairambault, J.; Charlotte, N.; Médigue, C.; Vermeiren, C.; LePape, G.; Carré, F.; Gounaropoulou, A.; Swynghedauw, B. Linear and non-linear analyses of heart rate variability: A minireview. Cardiovasc. Res. 1996, 31, 371–379. [Google Scholar] [CrossRef]
- Voss, A.; Schulz, S.; Schroeder, R.; Baumert, M.; Caminal, P. Methods derived from nonlinear dynamics for analysing heart rate variability. Philos. Trans. R. Soc. Lond. Ser. A 2008, 367, 277–296. [Google Scholar] [CrossRef]
- De Godoy, M.F. Nonlinear analysis of heart rate variability: A comprehensive review. J. Cardiol. Ther. 2016, 3, 528–533. [Google Scholar] [CrossRef]
- Nayak, S.K.; Bit, A.; Dey, A.; Mohapatra, B.; Pal, K. A review on the nonlinear dynamical system analysis of electrocardiogram signal. J. Healthcare Eng. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- García-Martínez, B.; Martinez-Rodrigo, A.; Alcaraz, R.; Fernández-Caballero, A. A review on nonlinear methods using electroencephalographic recordings for emotion recognition. IEEE Trans. Affective Comput. 2019. [Google Scholar] [CrossRef]
- Pan, J.; Tompkins, W.J. A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng 1985, 32, 230–236. [Google Scholar] [CrossRef]
- Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, e215–e220. [Google Scholar] [CrossRef] [Green Version]
- Woo, M.A.; Stevenson, W.G.; Moser, D.K.; Trelease, R.B.; Harper, R.M. Patterns of beat-to-beat heart rate variability in advanced heart failure. Am. Heart J. 1992, 123, 704–710. [Google Scholar] [CrossRef]
- Kamen, P.W.; Krum, H.; Tonkin, A.M. Poincare plot of heart rate variability allows quantitative display of parasympathetic nervous activity in humans. Clin. Sci. 1996, 91, 201–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brennan, M.; Palaniswami, M.; Kamen, P. New insights into the relationship between Poincare plot geometry and linear measures of heart rate variability. In Proceedings of the 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Istanbul, Turkey, 25–28 October 2001; pp. 526–529. [Google Scholar]
- Brennan, M.; Palaniswami, M.; Kamen, P. Poincaré plot interpretation using a physiological model of HRV based on a network of oscillators. Am. J. Physiol.-Heart Circ. Physiol. 2002, 283, H1873–H1886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamen, P.W.; Tonkin, A.M. Application of the Poincaré plot to heart rate variability: A new measure of functional status in heart failure. Aust. N. Z. J. Med. 1995, 25, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Tulppo, M.P.; Makikallio, T.H.; Takala, T.E.; Seppanen, T.; Huikuri, H.V. Quantitative beat-to-beat analysis of heart rate dynamics during exercise. Am. J. Physiol.-Heart Circ. Physiol. 1996, 271, H244–H252. [Google Scholar] [CrossRef]
- Brennan, M.; Palaniswami, M.; Kamen, P. Do existing measures of Poincare plot geometry reflect nonlinear features of heart rate variability? IEEE Trans. Biomed. Eng. 2001, 48, 1342–1347. [Google Scholar] [CrossRef]
- Cohen, M.E.; Hudson, D.L.; Deedwania, P.C. Applying continuous chaotic modeling to cardiac signal analysis. IEEE Eng. Med. Biol. Mag. 1996, 15, 97–102. [Google Scholar] [CrossRef]
- D’Addio, G.; Acanfora, D.; Pinna, G.D.; Maestri, R.; Furgi, G.; Picone, C.; Rengo, F. Reproducibility of short-and long-term poincare plot parameters compared with frequency-domain HRV indexes in congestive heart failure. In Proceedings of the Computers in Cardiology 1998, Cleveland, OH, USA, 13–16 September 1998; pp. 381–384. [Google Scholar]
- Huikuri, H.V.; Seppänen, T.; Koistinen, M.J.; Airaksinen, K.J.; Ikäheimo, M.; Castellanos, A.; Myerburg, R.J. Abnormalities in beat-to-beat dynamics of heart rate before the spontaneous onset of life-threatening ventricular tachyarrhythmias in patients with prior myocardial infarction. Circulation 1996, 93, 1836–1844. [Google Scholar] [CrossRef]
- Otzenberger, H.; Gronfier, C.; Simon, C.; Charloux, A.; Ehrhart, J.; Piquard, F.; Brandenberger, G. Dynamic heart rate variability: A tool for exploring sympathovagal balance continuously during sleep in men. Am. J. Physiol. 1998, 275, H946–H950. [Google Scholar] [CrossRef]
- Hnatkova, K.; Copie, X.; Staunton, A.; Malik, M. Numeric processing of Lorenz plots of RR intervals from long-term ECGs: Comparison with time-domain measures of heart rate variability for risk stratification after myocardial infarction. J. Electrocardiol. 1995, 28, 74–80. [Google Scholar] [CrossRef]
- Gamelin, F.X.; Berthoin, S.; Bosquet, L. Validity of the polar S810 heart rate monitor to measure RR intervals at rest. Med. Sci. Sports Exercise 2006, 38, 887–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babloyantz, A.; Destexhe, A. Is the normal heart a periodic oscillator? Biol. Cybern. 1988, 58, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Tulppo, M.P.; Makikallio, T.H.; Seppänen, T.; Laukkanen, R.T.; Huikuri, H.V. Vagal modulation of heart rate during exercise: Effects of age and physical fitness. Am. J. Physiol.-Heart Circ. Physiol. 1998, 274, H424–H429. [Google Scholar] [CrossRef] [PubMed]
- Eckmann, J.P.; Kamphorst, S.O.; Ruelle, D. Recurrence plots of dynamical systems. Europhys. Lett. 1987, 4, 973. [Google Scholar] [CrossRef] [Green Version]
- Marwan, N.; Carmen Romano, M.; Thiel, M.; Kurths, J. Recurrence plots for the analysis of complex systems. Phys. Rep. 2007, 438, 237–329. [Google Scholar] [CrossRef]
- Mindlin, G.M.; Gilmore, R. Topological analysis and synthesis of chaotic time series. Physica D 1992, 58, 229–242. [Google Scholar] [CrossRef]
- Zbilut, J.P.; Webber, C.L., Jr. Embeddings and delays as derived from quantification of recurrence plots. Phys. Lett. A 1992, 171, 199–203. [Google Scholar] [CrossRef]
- Koebbe, M.; Mayer-Kress, G.; Zbilut, J. Use of recurrence plots in the analysis of time-series data. In SFI Studies in the Science of Complexity; 1994; Volume 12, p. 361. Available online: https://pdfs.semanticscholar.org/37ae/58bae759a7d719fdcf1cb44e7d5b6752d22d.pdf (accessed on 20 February 2020).
- Zbilut, J.P.; Zaldivar-Comenges, J.M.; Strozzi, F. Recurrence quantification based Liapunov exponents for monitoring divergence in experimental data. Phys. Lett. A 2002, 297, 173–181. [Google Scholar] [CrossRef]
- Thiel, M.; Romano, M.C.; Kurths, J.; Meucci, R.; Allaria, E.; Arecchi, F.T. Influence of observational noise on the recurrence quantification analysis. Physica D 2002, 171, 138–152. [Google Scholar] [CrossRef] [Green Version]
- Webber, C.L., Jr.; Zbilut, J.P. Recurrence quantification analysis of nonlinear dynamical systems. In Tutorials in Contemporary Nonlinear Methods for the Behavioral Sciences; National Science Foundation: Alexandra, VA, USA, 2005; pp. 26–94. [Google Scholar]
- Marwan, N.; Wessel, N.; Meyerfeldt, U.; Schirdewan, A.; Kurths, J. Recurrence-plot-based measures of complexity and their application to heart-rate-variability data. Phys. Rev. E 2002, 66, 026702. [Google Scholar] [CrossRef] [Green Version]
- Webber, C.L., Jr.; Zbilut, J.P. Dynamical assessment of physiological systems and states using recurrence plot strategies. J. Appl. Physiol. 1994, 76, 965–973. [Google Scholar] [CrossRef] [PubMed]
- Melillo, P.; Bracale, M.; Pecchia, L. Nonlinear heart rate variability features for real-life stress detection. Case study: Students under stress due to university examination. Biomed. Eng. Online 2011, 10, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acharya, U.R.; Faust, O.; Sree, V.; Swapna, G.; Martis, R.J.; Kadri, N.A.; Suri, J.S. Linear and nonlinear analysis of normal and CAD-affected heart rate signals. Comput. Methods Prog. Biomed. 2014, 113, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Konvalinka, I.; Xygalatas, D.; Bulbulia, J.; Schjødt, U.; Jegindø, E.M.; Wallot, S.; Van Orden, G.; Roepstorff, A. Synchronized arousal between performers and related spectators in a fire-walking ritual. Proc. Natl. Acad. Sci. USA 2011, 108, 8514–8519. [Google Scholar] [CrossRef] [Green Version]
- Zbilut, J.P.; Thomasson, N.; Webber, C.L. Recurrence quantification analysis as a tool for nonlinear exploration of nonstationary cardiac signals. Med. Eng. Phys. 2002, 24, 53–60. [Google Scholar] [CrossRef]
- Censi, F.; Barbaro, V.; Bartolini, P.; Calcagnini, G.; Michelucci, A.; Gensini, G.; Cerutti, S. Recurrent patterns of atrial depolarization during atrial fibrillation assessed by recurrence plot quantification. Ann. Biomed. Eng. 2000, 28, 61–70. [Google Scholar] [CrossRef]
- Barabási, A.L. Fractal Concepts in Surface Growth; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Katz, M.J. Fractals and the analysis of waveforms. Comput. Biol. Med. 1988, 18, 145–156. [Google Scholar] [CrossRef]
- Higuchi, T. Approach to an irregular time series on the basis of the fractal theory. Physica D 1988, 31, 277–283. [Google Scholar] [CrossRef]
- Higuchi, T. Relationship between the fractal dimension and the power law index for a time series: A numerical investigation. Physica D 1990, 46, 254–264. [Google Scholar] [CrossRef]
- Bogaert, C.; Beckers, F.; Ramaekers, D.; Aubert, A.E. Analysis of heart rate variability with correlation dimension method in a normal population and in heart transplant patients. Auton. Neurosci. 2001, 90, 142–147. [Google Scholar] [CrossRef]
- Guzzetti, S.; Signorini, M.G.; Cogliati, C.; Mezzetti, S.; Porta, A.; Cerutti, S.; Malliani, A. Non-linear dynamics and chaotic indices in heart rate variability of normal subjects and heart-transplanted patients. Cardiovasc. Res. 1996, 31, 441–446. [Google Scholar] [CrossRef] [Green Version]
- Grassberger, P.; Procaccia, I. Characterization of strange attractors. Phys. Rev. Lett. 1983, 50, 346–349. [Google Scholar] [CrossRef]
- Ding, M.; Grebogi, C.; Ott, E.; Sauer, T.; Yorke, J.A. Estimating correlation dimension from a chaotic time series: When does plateau onset occur? Physica D 1993, 69, 404–424. [Google Scholar] [CrossRef]
- Carvajal, R.; Wessel, N.; Vallverdú, M.; Caminal, P.; Voss, A. Correlation dimension analysis of heart rate variability in patients with dilated cardiomyopathy. Comput. Methods Prog. Biomed. 2005, 78, 133–140. [Google Scholar] [CrossRef]
- Moré, J.J. The Levenberg-Marquardt algorithm: Implementation and theory. Numer. Anal. 1978, 630, 105–116. [Google Scholar]
- Beckers, F.; Verheyden, B.; Aubert, A.E. Ageing and non-linear heart rate control in a healthy population. Am. J. Physiol.-Heart Circ. Physiol. 2006, 290, H2560–H2570. [Google Scholar] [CrossRef]
- Owis, M.I.; Abou-Zied, A.H.; Youssef, A.B.; Kadah, Y.M. Study of features based on nonlinear dynamical modeling in ECG arrhythmia detection and classification. IEEE Trans. Biomed. Eng. 2002, 49, 733–736. [Google Scholar] [CrossRef]
- Nakamura, Y.; Yamamoto, Y.; Muraoka, I. Autonomic control of heart rate during physical exercise and fractal dimension of heart rate variability. J. Appl. Physiol. 1993, 74, 875–881. [Google Scholar] [CrossRef]
- Vaughn, B.V.; Quint, S.; Messenheimer, J.; Robertson, K. Heart period variability in sleep. Electroencephalogr. Clin. Neurophysiol. 1995, 94, 155–162. [Google Scholar] [CrossRef]
- Turcott, R.G.; Teich, M.C. Fractal character of the electrocardiogram: Distinguishing heart-failure and normal patients. Ann. Biomed. Eng. 1996, 24, 269–293. [Google Scholar] [CrossRef]
- Peng, C.K.; Buldyrev, S.V.; Havlin, S.; Simons, M.; Stanley, H.E.; Goldberger, A.L. Mosaic organization of DNA nucleotides. Phys. Rev. E 1994, 49, 1685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, C.K.; Havlin, S.; Hausdorff, J.M.; Mietus, J.E.; Stanley, H.E.; Goldberger, A.L. Fractal mechanisms and heart rate dynamics: Long-range correlations and their breakdown with disease. J. Electrocardiol. 1995, 28, 59–65. [Google Scholar] [CrossRef]
- Peng, C.K.; Hausdorff, J.M.; Goldberger, A. Fractal Mechanisms in Neuronal Control: Human Heartbeat and Gait Dynamics in Health and Disease; Cambridge University Press: Cambridge, UK, 2000; pp. 66–96. [Google Scholar]
- Peng, C.K.; Havlin, S.; Stanley, H.E.; Goldberger, A.L. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos Interdiscip. J. Nonlinear Sci. 1995, 5, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Iyengar, N.; Peng, C.; Morin, R.; Goldberger, A.L.; Lipsitz, L.A. Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics. Am. J. Physiol. 1996, 271, R1078–R1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, K.K.; Moody, G.B.; Peng, C.K.; Mietus, J.E.; Larson, M.G.; Levy, D.; Goldberger, A.L. Predicting survival in heart failure case and control subjects by use of fully automated methods for deriving nonlinear and conventional indices of heart rate dynamics. Circulation 1997, 96, 842–848. [Google Scholar] [CrossRef] [PubMed]
- Bunde, A.; Havlin, S.; Kantelhardt, J.W.; Penzel, T.; Peter, J.H.; Voigt, K. Correlated and uncorrelated regions in heart-rate fluctuations during sleep. Phys. Rev. Lett. 2000, 85, 3736. [Google Scholar] [CrossRef] [Green Version]
- Pikkujaämsä, S.M.; Mäkikallio, T.H.; Sourander, L.B.; Räihä, I.J.; Puukka, P.; Skyttä, J.; Peng, C.K.; Goldberger, A.L.; Huikuri, H.V. Cardiac interbeat interval dynamics from childhood to senescence: Comparison of conventional and new measures based on fractals and chaos theory. Circulation 1999, 100, 393–399. [Google Scholar] [CrossRef] [Green Version]
- Hurst, H.E.; Black, R.P.; Simaika, Y.M. Long-Term Storage: An Experimental Study; Constable: London, UK, 1965. [Google Scholar]
- Hurst, H.E. Long-term storage capacity of reservoirs. Trans. Am. Soc. Eng. 1951, 116, 770–808. [Google Scholar]
- Schepers, H.E.; Van Beek, J.H.; Bassingthwaighte, J.B. Four methods to estimate the fractal dimension from self-affine signals (medical application). IEEE Eng. Med. Biol. Mag. 1992, 11, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Schuster, A. On the investigation of hidden periodicities with application to a supposed 26 day period of meteorological phenomena. Terr. Magn. 1898, 3, 13–41. [Google Scholar] [CrossRef]
- Bartlett, M.S. Smoothing periodograms from time series with continuous spectra. Nature 1948, 161, 686–687. [Google Scholar] [CrossRef]
- Engelberg, S. Digital Signal Processing: An Experimental Approach; Springer Publishing Company: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Welch, P.D. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 1967, 15, 70–73. [Google Scholar] [CrossRef] [Green Version]
- Bartlett, M.S. Periodogram analysis and continuous spectra. Biometrika 1950, 37, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Borg, F.G. Review of nonlinear methods and modelling. arXiv 2005, arXiv:physics/0503026. [Google Scholar]
- Goldberger, A.L. Non-linear dynamics for clinicians: Chaos theory, fractals, and complexity at the bedside. Lancet 1996, 347, 1312–1314. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Nakamura, Y.; Sato, H.; Yamamoto, M.; Kato, K.; Hughson, R. On the fractal nature of heart rate variability in humans: Effects of vagal blockade. Am. J. Physiol. 1995, 269, R830–R837. [Google Scholar] [CrossRef]
- Hoshi, R.A.; Pastre, C.M.; Vanderlei, L.C.M.; Godoy, M.F. Poincaré plot indexes of heart rate variability: Relationships with other nonlinear variables. Auton. Neurosci. 2013, 177, 271–274. [Google Scholar] [CrossRef]
- Struzik, Z.R.; Hayano, J.; Sakata, S.; Kwak, S.; Yamamoto, Y. 1/ f scaling in heart rate requires antagonistic autonomic control. Phys. Rev. E 2004, 70, 050901. [Google Scholar] [CrossRef] [Green Version]
- Martinis, M.; Knežević, A.; Krstačić, G.; Vargović, E. Changes in the Hurst exponent of heartbeat intervals during physical activity. Phys. Rev. E 2004, 70, 012903. [Google Scholar] [CrossRef]
- Acharya, U.R.; Chua, E.C.P.; Faust, O.; Lim, T.C.; Lim, L.F.B. Automated detection of sleep apnea from electrocardiogram signals using nonlinear parameters. Physiol. Meas. 2011, 32, 287. [Google Scholar] [CrossRef]
- Eckmann, J.P.; Kamphorst, S.O.; Ruelle, D.; Ciliberto, S. Liapunov exponents from time series. Phys. Rev. A 1986, 34, 4971–4979. [Google Scholar] [CrossRef] [PubMed]
- Abarbanel, H.D.; Brown, R.; Sidorowich, J.J.; Tsimring, L.S. The analysis of observed chaotic data in physical systems. Rev. Mod. Phys. 1993, 65, 1331. [Google Scholar] [CrossRef] [Green Version]
- Haykin, S.; Li, X.B. Detection of signals in chaos. Proc. IEEE 1995, 83, 95–122. [Google Scholar] [CrossRef]
- Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time series. Physica D 1985, 16, 285–317. [Google Scholar] [CrossRef] [Green Version]
- Acharya, U.R.; Kannathal, N.; Sing, O.W.; Ping, L.Y.; Chua, T. Heart rate analysis in normal subjects of various age groups. Biomed. Eng. Online 2004, 3, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeragani, V.K.; Radhakrishna, R.K.; Ramakrishnan, K.R.; Srinivasan, S. Measures of LLE of heart rate in different frequency bands: A possible measure of relative vagal and sympathetic activity. Nonlinear Anal. Real World Appl. 2004, 5, 441–462. [Google Scholar] [CrossRef]
- Yeragani, V.K.; Radhakrishna, R.K.A.; Smitha, M.R.; Pohl, R.B.; Balon, R.; Srinivasan, K. Diminished chaos of heart rate time series in patients with major depression. Biol. Psychiatry 2002, 51, 733–744. [Google Scholar] [CrossRef]
- Briggs, K. An improved method for estimating Liapunov exponents of chaotic time series. Phys. Lett. A 1990, 151, 27–32. [Google Scholar] [CrossRef]
- Brown, R. Calculating Lyapunov exponents for short and/or noisy data sets. Phys. Rev. E 1993, 47, 3962. [Google Scholar] [CrossRef]
- Rosenstein, M.T.; Collins, J.J.; De Luca, C.J. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 1993, 65, 117–134. [Google Scholar] [CrossRef]
- Sano, M.; Sawada, Y. Measurement of the Lyapunov spectrum from a chaotic time series. Phys. Rev. Lett. 1985, 55, 1082. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Sano, M.; Sawada, Y. Practical methods of measuring the generalized dimension and the largest Lyapunov exponent in high dimensional chaotic systems. Prog. Theor. Phys. 1987, 77, 1–5. [Google Scholar] [CrossRef]
- Zeng, X.; Eykholt, R.; Pielke, R.A. Estimating the Lyapunov-exponent spectrum from short time series of low precision. Phys. Rev. Lett. 1991, 66, 3229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fell, J.; Beckmann, P.E. Resonance-like phenomena in Lyapunov calculations from data reconstructed by the time-delay method. Phys. Lett. A 1994, 190, 172–176. [Google Scholar] [CrossRef]
- Shannon, C.E. Communication Theory of Secrecy Systems*. Bell Syst. Tech. J. 1949, 28, 656–715. [Google Scholar] [CrossRef]
- Eckmann, J.P.; Ruelle, D. Ergodic theory of chaos and strange attractors. In The Theory of Chaotic Attractors; Springer: Berlin/Heidelberg, Germany, 1985; pp. 273–312. [Google Scholar]
- Porta, A.; Baselli, G.; Liberati, D.; Montano, N.; Cogliati, C.; Gnecchi-Ruscone, T.; Malliani, A.; Cerutti, S. Measuring regularity by means of a corrected conditional entropy in sympathetic outflow. Biol. Cybern. 1998, 78, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Takens, F. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence; Springer: Berlin/Heidelberg, Germany, 1981; pp. 366–381. [Google Scholar]
- Porta, A.; Guzzetti, S.; Montano, N.; Pagani, M.; Somers, V.; Malliani, A.; Baselli, G.; Cerutti, S. Information domain analysis of cardiovascular variability signals: Evaluation of regularity, synchronisation and co-ordination. Med. Biol. Eng. Comput. 2000, 38, 180–188. [Google Scholar] [CrossRef]
- Porta, A.; Guzzetti, S.; Montano, N.; Furlan, R.; Pagani, M.; Malliani, A.; Cerutti, S. Entropy, entropy rate, and pattern classification as tools to typify complexity in short heart period variability series. IEEE Trans. Biomed. Eng. 2001, 48, 1282–1291. [Google Scholar] [CrossRef]
- Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef] [Green Version]
- Pincus, S.M.; Goldberger, A.L. Physiological time-series analysis: What does regularity quantify? Am. J. Physiol. 1994, 266, H1643. [Google Scholar] [CrossRef]
- Marques de Sá, J.P. Characterization of fetal heart rate using approximate entropy. In Proceedings of the Computers in Cardiology, Lyon, France, 25–28 September 2005; pp. 671–673. [Google Scholar]
- Magalhaes, F.; Marques de Sá, J.P.; Bernardes, J.; Ayres-de Campos, D. Characterization of fetal heart rate irregularity using approximate entropy and wavelet filtering. In Proceedings of the 2006 Computers in Cardiology, Valencia, Spain, 17–20 September 2006; pp. 933–936. [Google Scholar]
- Lu, S.; Chen, X.; Kanters, J.K.; Solomon, I.C.; Chon, K.H. Automatic selection of the threshold value for approximate entropy. IEEE Trans. Biomed. Eng. 2008, 55, 1966–1972. [Google Scholar] [PubMed]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol.-Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 2002, 89, 068102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of biological signals. Phys. Rev. E 2005, 71, 021906. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.C. Complexity and 1/f noise. A phase space approach. J. Phys. I 1991, 1, 971–977. [Google Scholar] [CrossRef]
- Faes, L.; Porta, A.; Javorka, M.; Nollo, G. Efficient computation of multiscale entropy over short biomedical time series based on linear state-space models. Complexity 2017, 2017, 1768264. [Google Scholar] [CrossRef]
- Valencia, J.F.; Porta, A.; Vallverdu, M.; Claria, F.; Baranowski, R.; Orlowska-Baranowska, E.; Caminal, P. Refined multiscale entropy: Application to 24-h holter recordings of heart period variability in healthy and aortic stenosis subjects. IEEE Trans. Biomed. Eng. 2009, 56, 2202–2213. [Google Scholar] [CrossRef]
- Ahmed, M.U.; Mandic, D.P. Multivariate multiscale entropy: A tool for complexity analysis of multichannel data. Phys. Rev. E 2011, 84, 061918. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.D.; Wu, C.W.; Lin, S.G.; Lee, K.Y.; Peng, C.K. Analysis of complex time series using refined composite multiscale entropy. Phys. Lett. A 2014, 378, 1369–1374. [Google Scholar] [CrossRef]
- Humeau-Heurtier, A. The multiscale entropy algorithm and its variants: A review. Entropy 2015, 17, 3110–3123. [Google Scholar] [CrossRef] [Green Version]
- Dash, S.; Chon, K.; Lu, S.; Raeder, E. Automatic real time detection of atrial fibrillation. Ann. Biomed. Eng. 2009, 37, 1701–1709. [Google Scholar] [CrossRef] [PubMed]
- McManus, D.D.; Lee, J.; Maitas, O.; Esa, N.; Pidikiti, R.; Carlucci, A.; Harrington, J.; Mick, E.; Chon, K.H. A novel application for the detection of an irregular pulse using an iPhone 4S in patients with atrial fibrillation. Heart Rhythm 2013, 10, 315–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Reyes, B.A.; McManus, D.D.; Maitas, O.; Chon, K.H. Atrial fibrillation detection using an iPhone 4S. IEEE Trans. Biomed. Eng. 2013, 60, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Javorka, M.; Trunkvalterova, Z.; Tonhajzerova, I.; Javorkova, J.; Javorka, K.; Baumert, M. Short-term heart rate complexity is reduced in patients with type 1 diabetes mellitus. Clin. Neurophysiol. 2008, 119, 1071–1081. [Google Scholar] [CrossRef]
- Porta, A.; Gnecchi-Ruscone, T.; Tobaldini, E.; Guzzetti, S.; Furlan, R.; Montano, N. Progressive decrease of heart period variability entropy-based complexity during graded head-up tilt. J. Appl. Physiol. 2007. [Google Scholar] [CrossRef]
- Porta, A.; Baselli, G.; Lombardi, F.; Montano, N.; Malliani, A.; Cerutti, S. Conditional entropy approach for the evaluation of the coupling strength. Biol. Cybern. 1999, 81, 119–129. [Google Scholar] [CrossRef]
- Porta, A.; Catai, A.M.; Takahashi, A.C.; Magagnin, V.; Bassani, T.; Tobaldini, E.; Van De Borne, P.; Montano, N. Causal relationships between heart period and systolic arterial pressure during graded head-up tilt. Am. J. Physiol.-Heart Circ. Physiol. 2010, 300, R378–R386. [Google Scholar] [CrossRef] [Green Version]
- Guzzetti, S.; Mezzetti, S.; Magatelli, R.; Porta, A.; De Angelis, G.; Rovelli, G.; Malliani, A. Linear and non-linear 24 h heart rate variability in chronic heart failure. Auton. Neurosci. 2000, 86, 114–119. [Google Scholar] [CrossRef]
- Lake, D.E.; Richman, J.S.; Griffin, M.P.; Moorman, J.R. Sample entropy analysis of neonatal heart rate variability. Am. J. Physiol. 2002, 283, R789–R797. [Google Scholar] [CrossRef] [Green Version]
- Pincus, S.M.; Gladstone, I.M.; Ehrenkranz, R.A. A regularity statistic for medical data analysis. J. Clin. Monit. 1991, 7, 335–345. [Google Scholar] [CrossRef]
- Javorka, M.; Zila, I.; Balharek, T.; Javorka, K. Heart rate recovery after exercise: Relations to heart rate variability and complexity. Braz. J. Med. Biol. Res. 2002, 35, 991–1000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lake, D.E.; Moorman, J.R. Accurate estimation of entropy in very short physiological time series: The problem of atrial fibrillation detection in implanted ventricular devices. Am. J. Physiol.-Heart Circ. Physiol. 2010, 300, H319–H325. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Ramsay, T.; Huebsch, L.; Flanagan, S.; McDiarmid, S.; Batkin, I.; McIntyre, L.; Sundaresan, S.R.; Maziak, D.E.; Shamji, F.M.; et al. Continuous multi-parameter heart rate variability analysis heralds onset of sepsis in adults. PLoS ONE 2009, 4, e6642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, M.; Goldberger, A.; Peng, C.K. Multiscale entropy to distinguish physiologic and synthetic RR time series. In Proceedings of the Computers in Cardiology, Memphis, TN, USA, 22–25 September 2002; pp. 137–140. [Google Scholar]
- Hadamard, J. Les surfaces à courbures opposées et leurs lignes géodésique. Eur. J. Pure Appl. Math. 1898, 4, 27–73. [Google Scholar]
- Voss, A.; Kurths, J.; Kleiner, H.; Witt, A.; Wessel, N.; Saparin, P.; Osterziel, K.J.; Schurath, R.; Dietz, R. The application of methods of non-linear dynamics for the improved and predictive recognition of patients threatened by sudden cardiac death. Cardiovasc. Res. 1996, 31, 419–433. [Google Scholar] [CrossRef]
- Voss, A.; Hnatkova, K.; Wessel, N.; Kurths, J.; Sander, A.; Schirdewan, A.; Camm, A.J.; Malik, M. Multiparametric analysis of heart rate variability used for risk stratification among survivors of acute myocardial infarction. Pacing and Clin. Electrophysiol. 1998, 21, 186–196. [Google Scholar] [CrossRef]
- Porta, A.; Tobaldini, E.; Guzzetti, S.; Furlan, R.; Montano, N.; Gnecchi-Ruscone, T. Assessment of cardiac autonomic modulation during graded head-up tilt by symbolic analysis of heart rate variability. Am. J. Physiol.-Heart Circ. Physiol. 2007, 293, H702–H708. [Google Scholar] [CrossRef] [Green Version]
- Voss, A.; Schroeder, R.; Heitmann, A.; Peters, A.; Perz, S. Short-term heart rate variability—influence of gender and age in healthy subjects. PLoS ONE 2015, 10, e0118308. [Google Scholar] [CrossRef] [Green Version]
- Wessel, N.; Ziehmann, C.; Kurths, J.; Meyerfeldt, U.; Schirdewan, A.; Voss, A. Short-term forecasting of life-threatening cardiac arrhythmias based on symbolic dynamics and finite-time growth rates. Phys. Rev. E 2000, 61, 733. [Google Scholar] [CrossRef] [Green Version]
- Maestri, R.; Pinna, G.D.; Accardo, A.; Allegrini, P.; Balocchi, R.; D’addio, G.; Ferrario, M.; Menicucci, D.; Porta, A.; Sassi, R.; et al. Nonlinear indices of heart rate variability in chronic heart failure patients: Redundancy and comparative clinical value. J. Cardiovasc. Electrophysiol. 2007, 18, 425–433. [Google Scholar] [CrossRef]
- Boyett, M.; Wang, Y.; D’Souza, A. CrossTalk opposing view: Heart rate variability as a measure of cardiac autonomic responsiveness is fundamentally flawed. J. Physiol. 2019, 597, 2599–2601. [Google Scholar] [CrossRef] [PubMed]
- Malik, M. Components of heart rate variability-what they really mean and what we really measure. Am. J. Cardiol. 1993, 72, 821–822. [Google Scholar] [CrossRef]
- Sassi, R.; Cerutti, S.; Lombardi, F.; Malik, M.; Huikuri, H.V.; Peng, C.K.; Schmidt, G.; Yamamoto, Y.; Reviewers:, D.; Gorenek, B.; et al. Advances in heart rate variability signal analysis: Joint position statement by the e-Cardiology ESC Working Group and the European Heart Rhythm Association co-endorsed by the Asia Pacific Heart Rhythm Society. EP Europace 2015, 17, 1341–1353. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, K.; Zhao, L.; Liu, F.; Zheng, D.; Liu, C.; Liu, S. Analysis of heart rate variability using fuzzy measure entropy. Comput. Biol. Med. 2013, 43, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Frank, B.; Pompe, B.; Schneider, U.; Hoyer, D. Permutation entropy improves fetal behavioural state classification based on heart rate analysis from biomagnetic recordings in near term fetuses. Med. Biol. Eng. Comput. 2006, 44, 179. [Google Scholar] [CrossRef] [PubMed]
- Luque, B.; Lacasa, L.; Ballesteros, F.; Luque, J. Horizontal visibility graphs: Exact results for random time series. Phys. Rev. E 2009, 80, 046103. [Google Scholar] [CrossRef] [Green Version]
- Madl, T. Network analysis of heart beat intervals using horizontal visibility graphs. In Proceedings of the 2016 Computing in Cardiology Conference (CinC), Vancouver, BC, Canada, 11–14 September 2016; pp. 733–736. [Google Scholar]
- Bhaduri, A.; Bhaduri, S.; Ghosh, D. Visibility graph analysis of heart rate time series and bio-marker of congestive heart failure. Physica A 2017, 482, 786–795. [Google Scholar] [CrossRef]
- Henriques, T.; Gonçalves, H.; Antunes, L.; Matias, M.; Bernardes, J.; Costa-Santos, C. Entropy and compression: Two measures of complexity. J. Eval. Clin. Pract. 2013, 19, 1101–1106. [Google Scholar] [CrossRef]
- Santos, C.C.; Bernardes, J.; Vitányi, P.M.; Antunes, L. Clustering fetal heart rate tracings by compression. In Proceedings of the 19th IEEE Symposium on Computer-Based Medical Systems (CBMS’06), Salt Lake City, UT, USA, 22–23 June 2006; pp. 685–690. [Google Scholar]
- Esteller, R.; Vachtsevanos, G.; Echauz, J.; Litt, B. A comparison of waveform fractal dimension algorithms. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2001, 48, 177–183. [Google Scholar] [CrossRef] [Green Version]
- Wessel, N.; Malberg, H.; Bauernschmitt, R.; Kurths, J. Nonlinear methods of cardiovascular physics and their clinical applicability. Int. J. Bifurcation Chaos 2007, 17, 3325–3371. [Google Scholar] [CrossRef] [Green Version]
- Rajaram, R.; Castellani, B.; Wilson, A. Advancing Shannon entropy for measuring diversity in systems. Complexity 2017, 2017, 8715605. [Google Scholar] [CrossRef] [Green Version]
- Faes, L.; Gòmez-Extremera, M.; Pernice, R.; Carpena, P.; Nollo, G.; Porta, A.; Bernaola-Galvàn, P. Comparison of methods for the assessment of nonlinearity in short-term heart rate variability under different physiopathological states. arXiv 2019, arXiv:1906.05918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennel, M.B.; Brown, R.; Abarbanel, H.D.I. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 1992, 45, 3403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, L. Practical method for determining the minimum embedding dimension of a scalar time series. Physica D 1997, 110, 43–50. [Google Scholar] [CrossRef]
- Fraser, A.M.; Swinney, H.L. Independent coordinates for strange attractors from mutual information. Phys. Rev. A 1986, 33, 1134. [Google Scholar] [CrossRef]
- Muzy, J.F.; Bacry, E.; Arneodo, A. The multifractal formalism revisited with wavelets. Int. J. Bifurcation Chaos 1994, 4, 245–302. [Google Scholar] [CrossRef]
- Ivanov, P.C.; Amaral, L.A.N.; Goldberger, A.L.; Havlin, S.; Rosenblum, M.G.; Struzik, Z.R.; Stanley, H.E. Multifractality in human heartbeat dynamics. Nature 1999, 399, 461–465. [Google Scholar] [CrossRef] [Green Version]
- Muzy, J.F.; Bacry, E.; Arneodo, A. Wavelets and multifractal formalism for singular signals: Application to turbulence data. Phys. Rev. Lett. 1991, 67, 3515–3518. [Google Scholar] [CrossRef]
- Amaral, L.A.; Ivanov, P.C.; Aoyagi, N.; Hidaka, I.; Tomono, S.; Goldberger, A.L.; Stanley, H.E.; Yamamoto, Y. Behavioral-independent features of complex heartbeat dynamics. Phys. Rev. Lett. 2001, 86, 6026. [Google Scholar] [CrossRef] [Green Version]
- Kantelhardt, J.W.; Koscielny-Bunde, E.; Rego, H.H.A.; Havlin, S.; Bunde, A. Detecting long-range correlations with detrended fluctuation analysis. Physica A 2001, 295, 441–454. [Google Scholar] [CrossRef] [Green Version]
- Kantelhardt, J.W.; Zschiegner, S.A.; Koscielny-Bunde, E.; Havlin, S.; Bunde, A.; Stanley, H.E. Multifractal detrended fluctuation analysis of nonstationary time series. Physica A 2002, 316, 87–114. [Google Scholar] [CrossRef] [Green Version]
- Ossadnik, S.; Buldyrev, S.V.; Goldberger, A.L.; Havlin, S.; Mantegna, R.N.; Peng, C.K.; Simons, M.; Stanley, H.E. Correlation approach to identify coding regions in DNA sequences. Biophys. J. 1994, 67, 64–70. [Google Scholar] [CrossRef] [Green Version]
- Ashkenazy, Y.; Havlin, S.; Ivanov, P.C.; Peng, C.K.; Schulte-Frohlinde, V.; Stanley, H.E. Magnitude and sign scaling in power-law correlated time series. Physica A 2003, 323, 19–41. [Google Scholar] [CrossRef]
Applications | Pplot | RP | FD | CD | DFA | HE | LE | SE | CCE | ApEn | SampEn | MSE | SymD |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Theoretical application | [20,27] | [42] | [129] | ||||||||||
Aging | [8,86,134] | [54] | [54] | [8,54,63,66,86,134] | [54,86] | [8,54,66,86] | [8] | [108,109,129] | [8,134] | ||||
Gender | [8,134] | [54] | [54] | [8,54,134] | [54] | [8,54] | [8] | [8,134] | |||||
Physical Activity | [19,28] | [56] | [80] | [19] | [126] | ||||||||
Orthostatic test | [26] | ||||||||||||
Head-tilt test | [120] | [120,122] | [120] | [120] | |||||||||
Stress | [39] | [39,41] | [39] | [39] | [39] | ||||||||
Sleep | [57,81] | [81] | [65] | [81] | [81] | [81] | [109] | ||||||
Diabetes | [119] | ||||||||||||
Sepsis | [128] | ||||||||||||
Epilepsy | [42] | ||||||||||||
Infants | [103,124,125] | [124] | |||||||||||
Cardiac Pathologies | |||||||||||||
CAD | [40,78] | [40] | [40] | [78] | [40] | [40] | [40] | [40] | |||||
Heart failure | [136] | [58,136] | [62,64,136] | [79,136] | [123] | [64] | [136] | [109] | [135,136] | ||||
AF | [43] | [116,117,118] | [118,127] | [109] | |||||||||
Arrhythmia | [55] | [55] | [55] | [131] | |||||||||
Other | [8] | [49] | [8] | [49,77,80] | [49] | [121,122] | [8] | [8] | [112] | [8] |
NONLINEAR METHODS | LIMITATIONS |
---|---|
Representation Methods | visual display techniques; several techniques to quantify the information. |
Poincaré Plot | |
and | ellipse-fitting technique; lack of temporal information; correlation on other time-domain measures [8]. |
Recurrence plot analysis | |
Recurrence Plot | parametric: needs r, m and parameters. |
RQA | many measures hard to interpret. |
Fractal | the algorithms give a number regardless of whether the object is factal. |
DFA | parametric: needs r, m, and parameters; requires a choice of and split; assumption that the same scaling pattern is present throughout the signal; expects large time series; is a monofractal method; normal-to-normal interbeat intervals are required and dependency on editing ectopic beats [8]. |
Hurst exponent | hard to compute |
Fractal Dimension | |
Correlation dimension | parametric: needs r, m, , and k parameters; assumes linearity and/or exponential. |
Box-counting dimension | parametric: needs . |
Algorithm by Katz | heavily dependent on the record length; highly sensitive to the amplitude of noise. |
Algorithm by Higuchi | parametric: needs m and r; sensitive to the amplitude of noise. |
Lyapunov exponent | reflect effective growth rates of infinitesimal uncertainties over an infinite duration. However, time series analysis is restricted to the analysis of finite-time series, and thus, it is difficult to determine Lyapunov exponents [148]. |
Algorithm by Rosenstein | parametric: needs m and . |
Algorithm by Wolf | does not take advantage to all the data; appropriate selection of maximum and minimum. |
Information/entropy | measures the sequential regularity of contiguous events. |
Shannon entropy | the distribution is not known; it cannot be used to compare diversity distributions that have different levels of scale; it cannot be used to compare parts of diversity distributions to the whole [149]. |
CCE | recoded and has to be pre-chosen. |
Approximate entropy | parametric: needs r and m parameters; heavily dependent on the record length and uniformly lower than expected for short records; counts self-matches; stationary data is required; inherent bias exists; lacks relative consistency; evaluates regularity on one time scale; outliers (missed beat detections, artefacts) may affect the entropy values [8]. |
Sample entropy | parametric: needs r and m parameters; a global marker of irregularity that might not represent reliably the local behavior in the neighborhood of a specific pattern and blur nonlinear feature [150]; stationary data is required; higher pattern length requires an increased number of data points; evaluates regularity on one scale; outliers (missed beats, artefacts) may affect the entropy values [8]. |
Multiscale entropy | artificial reduction of multiscale entropy due to the coarse-grained procedure; introduction of simulated oscillations due to the elimination of rapid time scales; lack an analytical framework allowing their calculation for known dynamic processes; reduction of reliability when applied in short time series [111]. |
Symbolic dynamics | detailed information will be lost; outliers (ectopic beats and noise) influence symbol strings [8]. |
Voss’s technique | parametric: need time limit choice. |
Porta’s technique | parametric: needs m and . |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Henriques, T.; Ribeiro, M.; Teixeira, A.; Castro, L.; Antunes, L.; Costa-Santos, C. Nonlinear Methods Most Applied to Heart-Rate Time Series: A Review. Entropy 2020, 22, 309. https://doi.org/10.3390/e22030309
Henriques T, Ribeiro M, Teixeira A, Castro L, Antunes L, Costa-Santos C. Nonlinear Methods Most Applied to Heart-Rate Time Series: A Review. Entropy. 2020; 22(3):309. https://doi.org/10.3390/e22030309
Chicago/Turabian StyleHenriques, Teresa, Maria Ribeiro, Andreia Teixeira, Luísa Castro, Luís Antunes, and Cristina Costa-Santos. 2020. "Nonlinear Methods Most Applied to Heart-Rate Time Series: A Review" Entropy 22, no. 3: 309. https://doi.org/10.3390/e22030309
APA StyleHenriques, T., Ribeiro, M., Teixeira, A., Castro, L., Antunes, L., & Costa-Santos, C. (2020). Nonlinear Methods Most Applied to Heart-Rate Time Series: A Review. Entropy, 22(3), 309. https://doi.org/10.3390/e22030309