BOOST: Medical Image Steganography Using Nuclear Spin Generator
Abstract
:1. Introduction
- We present novel algorithm for pseudorandom byte output using nuclear spin generator (NSG), which has acceptable statistical properties.
- We apply the pseudorandom algorithm to a novel medical image steganography scheme.
- We examine the proposed method, and the data show that it has excellent peak signal-to-noise ratio, strong collision resistance, and desirable security properties that can withstand most common theoretical and statistical attacks.
2. Pseudorandom Byte Output Algorithm Using Nuclear Spin Generator
2.1. Proposed Pseudorandom Byte Output Algorithm
- The seed values , , and from Equation (1) are determined. The output byte length L is determined.
- Equation (1) is iterated for N times.
- The iteration of the nuclear spin generator continues. As a result, the three floating-point values , , and are calculated. They are manipulated as follows: , , and , where returns the modulus of a, returns the the integer part of a, truncating the value behind the decimal sign, and returns the reminder after division.
- Perform XOR operation between , , and to get an output byte.
- Return to Step 3 until the output byte length L is reached.
2.2. Key Size Analysis
2.3. Statistical Tests
3. Medical Image Steganography Using Nuclear Spin Generator
3.1. Embedding Scheme
- Iterate for L times the pseudorandom generator based on the nuclear spin generator in Section 2.
- Apply XOR operation between the pseudorandom byte sequence and all of the input message to produce an encrypted bytes C.
- Specify the input intervals of gray levels of non-black pixels, where a and b determine the boundaries of the container.
- Index the image pixels by consecutive passing through columns and separate those that fall within the interval .
- Convert encrypted data to binary sequence using ASCII table.
- Consecutively embed the encrypted data into the last bits of the pixels from the interval
- The list output pixels is checked to see if their new values are in the input interval. For those pixels that fall outside this range, their value increases by if their new values are below the minimum value of the interval or decreases by if the maximum value of the range is exceeded.
3.2. Extraction Scheme
- Retrieve the number L of embedded bytes, input levels interval , and the secret key space of the pseudorandom generator based on the nuclear spin generator in Section 2.
- Index the image pixels by consecutive passing through columns and separate those that fall within the interval .
- Consecutively extract the embedded data from the last bits of the pixels from the interval .
- Iterate for L times the pseudorandom generator based on the nuclear spin generator in Section 2.
- Apply XOR operation between the output pseudorandom byte sequence and all of the extracted bytes to produce the input bytes C.
3.3. Steganographic Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Office for Civil Rights. HIPAA Compliance Assistance. Summary of the HIPAA Privacy Rule. Available online: https://www.hhs.gov/sites/default/files/privacysummary.pdf (accessed on 12 March 2020).
- Barrows, R.; Clayton, P. Privacy, Confidentiality, and Electronic Medical Records. J. Am. Med Inform. Assoc. 1996, 3, 139–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, X.M.; Lu, Z.M.; Sun, S.H. Digital watermarking of still images with gray-level digital watermarks. IEEE Trans. Consum. Electron. 2000, 46, 137–145. [Google Scholar] [CrossRef]
- Kutter, M.; Jordan, F.D.; Bossen, F. Digital watermarking of color images using amplitude modulation. J. Electron. Imaging 1998, 7, 326–332. [Google Scholar] [CrossRef]
- Cao, W.; Zhou, Y.; Chen, C.P.; Xia, L. Medical image encryption using edge maps. Signal Process. 2017, 132, 96–109. [Google Scholar] [CrossRef]
- Kanso, A.; Ghebleh, M. An efficient and robust image encryption scheme for medical applications. Commun. Nonlinear Sci. Numer. Simul. 2015, 24, 98–116. [Google Scholar] [CrossRef]
- Abdelfattah, M.; Hegazy, S.F.; Areed, N.F.; Obayya, S.S. Compact optical asymmetric cryptosystem based on unequal modulus decomposition of multiple color images. Opt. Lasers Eng. 2020, 129, 106063. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, H.; Feng, L.; Ye, X.; Zhang, H. High-sensitivity image encryption algorithm with random diffusion based on dynamic-coupled map lattices. Opt. Lasers Eng. 2019, 122, 225–238. [Google Scholar] [CrossRef]
- Chen, H.; Liu, Z.; Zhu, L.; Tanougast, C.; Blondel, W. Asymmetric color cryptosystem using chaotic Ushiki map and equal modulus decomposition in fractional Fourier transform domains. Opt. Lasers Eng. 2019, 112, 7–15. [Google Scholar] [CrossRef]
- Huang, L.C.; Tseng, L.Y.; Hwang, M.S. A reversible data hiding method by histogram shifting in high quality medical images. J. Syst. Softw. 2013, 86, 716–727. [Google Scholar] [CrossRef]
- Jiang, N.; Zhao, N.; Wang, L. LSB based quantum image steganography algorithm. Int. J. Theor. Phys. 2016, 55, 107–123. [Google Scholar] [CrossRef]
- Agrawal, M.; Mishra, P. A comparative survey on symmetric key encryption techniques. Int. J. Comput. Sci. Eng. 2012, 4, 877. [Google Scholar]
- Zielińska, E.; Mazurczyk, W.; Szczypiorski, K. Trends in steganography. Commun. ACM 2014, 57, 86–95. [Google Scholar] [CrossRef]
- Chen, H.; Du, X.; Liu, Z.; Yang, C. Optical color image hiding scheme by using Gerchberg–Saxton algorithm in fractional Fourier domain. Opt. Lasers Eng. 2015, 66, 144–151. [Google Scholar] [CrossRef]
- Ibrahim, R.; Kuan, T.S. Steganography Algorithm to Hide Secret Message inside an Image. Comput. Technol. Appl. 2011, 2, 102–108. [Google Scholar]
- Mantos, P.L.K.; Maglogiannis, I. Sensitive Patient Data Hiding using a ROI Reversible Steganography Scheme for DICOM Images. J. Med Syst. 2016, 40, 156. [Google Scholar] [CrossRef]
- National Electrical Manufacturers Association. Digital Imaging and Communications in Medicine (DICOM). Available online: https://www.dicomstandard.org/current/ (accessed on 12 March 2020).
- Wu, S.; Zhong, S.; Liu, Y. Deep residual learning for image steganalysis. Multimed. Tools Appl. 2018, 77, 10437–10453. [Google Scholar] [CrossRef]
- Jain, M.; Lenka, S.K. Diagonal queue medical image steganography with Rabin cryptosystem. Brain Inform. 2016, 3, 39–51. [Google Scholar] [CrossRef] [Green Version]
- Satish, K.; Jayakar, T.; Tobin, C.; Madhavi, K.; Murali, K. Chaos based spread spectrum image steganography. IEEE Trans. Consum. Electron. 2004, 50, 587–590. [Google Scholar] [CrossRef]
- Jain, M.; Kumar, A. RGB channel based decision tree grey-alpha medical image steganography with RSA cryptosystem. Int. J. Mach. Learn. Cybern. 2017, 8, 1695–1705. [Google Scholar] [CrossRef]
- Jain, M.; Kumar, A.; Choudhary, R.C. Improved diagonal queue medical image steganography using Chaos theory, LFSR, and Rabin cryptosystem. Brain Inform. 2017, 4, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Ambika.; Biradar, R.L. Secure medical image steganography through optimal pixel selection by EH-MB pipelined optimization technique. Health Technol. 2020, 10, 231–247. [Google Scholar] [CrossRef]
- Rajendran, S.; Doraipandian, M. Chaotic Map Based Random Image Steganography Using LSB Technique. Int. J. Netw. Secur. 2017, 19, 593–598. [Google Scholar] [CrossRef]
- Huang, Z. Stationary distribution of stochastic nuclear spin generator systems. J. Nonlinear Sci. Appl. 2016, 9, 5410–5427. [Google Scholar] [CrossRef] [Green Version]
- Sachdev, P.; Sarathy, R. Periodic and chaotic solutions for a nonlinear system arising from a nuclear spin generator. Chaos Solitons Fractals 1994, 4, 2015–2041. [Google Scholar] [CrossRef]
- Molaei, M.; Umut, O. Generalized synchronization of nuclear spin generator system. Chaos, Solitons Fractals 2008, 37, 227–232. [Google Scholar] [CrossRef]
- Nikolov, S.; Nedev, V.; Zlatanov, V. A Numerical Investigation of the Modified Sherman Systems. Eng. Mech. 2011, 18, 127–142. [Google Scholar]
- Nikolov, S.; Bozhov, B.; Nedev, V.; Zlatanov, V. The Sherman system: Bifurcations, regular and chaotic behaviour. Comptes Rendus De L’Academie Bulg. Des Sci. 2003, 56, 5–19. [Google Scholar]
- Sherman, S. A third-order nonlinear system arising from a nuclear spin generator. Contrib. Differ. Equations 1963, 2, 197–227. [Google Scholar]
- IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008. 2008, pp. 1–70. Available online: https://ieeexplore.ieee.org/document/4610935 (accessed on 12 March 2020).
- Alvarez, G.; Li, S. Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurc. Chaos 2006, 16, 2129–2151. [Google Scholar] [CrossRef] [Green Version]
- Rukhin, A.; Soto, J.; Nechvatal, J.; Smid, M.; Barker, E.; Leigh, S.; Levenson, M.; Vangel, M.; Banks, D.; Heckert, A.; et al. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Application; NIST Special Publication 800-22: Revision 1a; Lawrence, E., Bassham, III, Eds.; NIST: Gaithersburg, MD, USA, 2010.
- Walker, J. A Pseudorandom Number Sequence Test Program. Available online: https://www.fourmilab.ch/random/ (accessed on 12 March 2020).
- Digital Imaging and Communications in Medicine (DICOM). Supplement 55: Attribute Level Confidentiality (Including De-Identification); Technical Report; National Electrical Manufacturers Association (NEMA): Rosslyn, VA, USA, 2002. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Thiyagarajan, P.; Aghila, G. Reversible dynamic secure steganography for medical image using graph coloring. Health Policy Technol. 2013, 2, 151–161. [Google Scholar] [CrossRef]
- Dong, P.; Brankov, J.G.; Galatsanos, N.P.; Yang, Y.; Davoine, F. Digital watermarking robust to geometric distortions. IEEE Trans. Image Process. 2005, 14, 2140–2150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elhoseny, M.; Ramírez-González, G.; Abu-Elnasr, O.M.; Shawkat, S.A.; Arunkumar, N.; Farouk, A. Secure medical data transmission model for IoT-based healthcare systems. IEEE Access 2018, 6, 20596–20608. [Google Scholar] [CrossRef]
NIST Test | p-Value | Pass Rate | Results |
---|---|---|---|
Frequency | 0.633649 | 2972/3000 | Success |
Block frequency | 0.014996 | 2964/3000 | Success |
Cumulative sums forward | 0.928857 | 2976/3000 | Success |
Cumulative sums reverse | 0.053059 | 2977/3000 | Success |
Runs | 0.215195 | 2970/3000 | Success |
Longest run of ones | 0.158133 | 2974/3000 | Success |
Rank | 0.851939 | 2971/3000 | Success |
Spectral | 0.552383 | 2955/3000 | Success |
Non overlapping templates | 0.489210 | 2970/3000 | Success |
Overlapping templates | 0.117661 | 2967/3000 | Success |
Universal | 0.800626 | 2971/3000 | Success |
Approximate entropy | 0.092411 | 2971/3000 | Success |
Serial first | 0.646836 | 2963/3000 | Success |
Serial second | 0.410055 | 2970/3000 | Success |
Linear complexity | 0.370821 | 2974/3000 | Success |
State | p-Value | Pass Rate | Result |
---|---|---|---|
−4 | 0.042839 | 1793/1819 | Success |
−3 | 0.176043 | 1792/1819 | Success |
−2 | 0.958805 | 1800/1819 | Success |
−1 | 0.821611 | 1791/1819 | Success |
+1 | 0.905874 | 1801/1819 | Success |
+2 | 0.932163 | 1804/1819 | Success |
+3 | 0.395583 | 1798/1819 | Success |
+4 | 0.695564 | 1793/1819 | Success |
State | p-Value | Pass Rate | Result |
---|---|---|---|
−9 | 0.136979 | 1804/1819 | Success |
−8 | 0.218022 | 1805/1819 | Success |
−7 | 0.458964 | 1806/1819 | Success |
−6 | 0.250128 | 1805/1819 | Success |
−5 | 0.368209 | 1805/1819 | Success |
−4 | 0.210521 | 1806/1819 | Success |
−3 | 0.821611 | 1805/1819 | Success |
−2 | 0.365446 | 1800/1819 | Success |
−1 | 0.475836 | 1796/1819 | Success |
+1 | 0.927657 | 1804/1819 | Success |
+2 | 0.183647 | 1805/1819 | Success |
+3 | 0.457919 | 1799/1819 | Success |
+4 | 0.188110 | 1795/1819 | Success |
+5 | 0.286462 | 1798/1819 | Success |
+6 | 0.750377 | 1794/1819 | Success |
+7 | 0.957844 | 1793/1819 | Success |
+8 | 0.916782 | 1794/1819 | Success |
+9 | 0.542519 | 1798/1819 | Success |
Input Image | Image Size | Maximum Payload | Percent Volume | Available Levels | Input Levels | Message (Bytes) | MSE | PSNR (dB) |
---|---|---|---|---|---|---|---|---|
Brain IM_0001 | 336 × 336 | 83,179 | 73.68 | 1083 | 1050 | 0.0191 | 113.5238 | |
Brain IM_0002 | 336 × 336 | 83,362 | 73.84 | 851 | 1050 | 0.0192 | 113.4977 | |
Brain IM_0003 | 336 × 336 | 83,557 | 74.01 | 823 | 1050 | 0.0191 | 113.5218 | |
Brain IM_0004 | 336 × 336 | 83,341 | 73.82 | 875 | 1050 | 0.0190 | 113.5319 | |
Brain IM_0005 | 336 × 336 | 83,883 | 74.30 | 834 | 1050 | 0.0191 | 113.5198 | |
Knee IM_0001 | 720 × 720 | 249,148 | 48.06 | 449 | 1042 | 0.0041 | 120.1618 | |
Knee IM_0002 | 720 × 720 | 250,531 | 48.33 | 426 | 1042 | 0.0043 | 120.0302 | |
Knee IM_0003 | 720 × 720 | 251,867 | 48.59 | 461 | 1042 | 0.0043 | 120.0263 | |
Knee IM_0004 | 720 × 720 | 256,834 | 48.54 | 453 | 1042 | 0.0042 | 120.0637 | |
Knee IM_0005 | 720 × 720 | 260,969 | 50.34 | 444 | 1042 | 0.0042 | 120.0558 | |
Liver IM_0001 | 480 × 480 | 109,631 | 47.58 | 481 | 1119 | 0.0098 | 116.4055 | |
Liver IM_0002 | 480 × 480 | 112,992 | 49.04 | 581 | 1119 | 0.0100 | 116.3465 | |
Liver IM_0003 | 480 × 480 | 114,107 | 49.53 | 626 | 1119 | 0.0103 | 116.2160 | |
Liver IM_0004 | 480 × 480 | 115,670 | 50.20 | 643 | 1119 | 0.0098 | 116.4325 | |
Liver IM_0005 | 480 × 480 | 116,373 | 50.51 | 624 | 1119 | 0.0098 | 116.4383 |
Image | BER | NCC | SSIM |
---|---|---|---|
Brain IM_0001 | 0.0012 | 0.9999971 | 0.9999787 |
Brain IM_0002 | 0.0012 | 0.9999950 | 0.9999757 |
Brain IM_0003 | 0.0012 | 0.9999934 | 0.9999838 |
Brain IM_0004 | 0.0012 | 0.9999968 | 0.9999769 |
Brain IM_0005 | 0.0012 | 0.9999955 | 0.9999809 |
Knee IM_0001 | 0.00026 | 0.9999979 | 0.9999806 |
Knee IM_0002 | 0.00027 | 0.9999982 | 0.9999794 |
Knee IM_0003 | 0.00027 | 0.9999979 | 0.9999720 |
Knee IM_0004 | 0.00027 | 0.9999980 | 0.9999682 |
Knee IM_0005 | 0.00026 | 0.9999976 | 0.9999581 |
Liver IM_0001 | 0.00061 | 0.9999982 | 0.9998838 |
Liver IM_0002 | 0.00062 | 0.9999973 | 0.9998954 |
Liver IM_0003 | 0.00064 | 0.9999970 | 0.9999311 |
Liver IM_0004 | 0.00061 | 0.9999983 | 0.9999308 |
Liver IM_0005 | 0.00061 | 0.9999984 | 0.9999253 |
Cropping Attack | Brain IM_0001 | Knee IM_0001 | Liver IM_0001 | |
---|---|---|---|---|
Percent | 0.999 | 0.9872 | 0.9858 | |
0.981 | 0.9729 | 0.9724 | ||
0.8944 | 0.9455 | 0.9093 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoyanov, B.; Stoyanov, B. BOOST: Medical Image Steganography Using Nuclear Spin Generator. Entropy 2020, 22, 501. https://doi.org/10.3390/e22050501
Stoyanov B, Stoyanov B. BOOST: Medical Image Steganography Using Nuclear Spin Generator. Entropy. 2020; 22(5):501. https://doi.org/10.3390/e22050501
Chicago/Turabian StyleStoyanov, Bozhidar, and Borislav Stoyanov. 2020. "BOOST: Medical Image Steganography Using Nuclear Spin Generator" Entropy 22, no. 5: 501. https://doi.org/10.3390/e22050501
APA StyleStoyanov, B., & Stoyanov, B. (2020). BOOST: Medical Image Steganography Using Nuclear Spin Generator. Entropy, 22(5), 501. https://doi.org/10.3390/e22050501