Energy Efficiency and Spectral Efficiency Tradeoff in Massive MIMO Multicast Transmission with Statistical CSI
Abstract
:1. Introduction
- With statistical CSI, we determine the eigenvectors of the optimal multicast transmit covariance matrix in closed form to maximize the system RE, which demonstrates that in massive MIMO multicast, optimal RE multicast transmission is supposed to be performed in the beam domain. Thus, the complex matrix-valued large-dimensional multicast precoding design problem for massive MIMO is reduced to a beam domain power allocation problem with a notable reduction of the optimization variables.
- Via adopting the quadratic transform, we propose a power allocation algorithm that can obtain an adjustable and reasonable EE-SE tradeoff.
- We deduce the deterministic equivalent (DE) of the design target, which is derived from the theory of large-dimensional random matrices, to further reduce the computational complexity of the RE maximization problem.
- Matrices and column vectors are represented by upper- and lower-case boldface letters, respectively, whereas italic letters represent scalars.
- represents the th element of matrix .
- denotes that is a positive semidefinite matrix.
- denotes the identity matrix.
- ⊙ represents the Hadamard product.
- denotes the expectation operation.
- ∼ denotes “be distributed as”, and ≜ denotes “be defined as”.
- We use to represent an -dimensional complex-valued vector space and to denote an -dimensional real-valued vector space.
- Denote by the conjugate operation, the transpose operation, the conjugate-transpose operation, the determinant operation, and the trace operation.
2. Massive MIMO Downlink Channel Model
3. Multicast Precoding for RE Maximization
3.1. Problem Formulation
3.2. Optimal Transmit Direction
3.3. Power Allocation for Multicast Transmission
Algorithm 1 Multicast power allocation algorithm in the beam domain for RE optimization. |
Input: Present iteration threshold , beam domain channel statistics , initial power allocation , |
Output: Power allocation matrix |
1: Initialization:; calculate with (20) |
2: repeat |
3: Let |
4: Solve (19) with to obtain |
5: Calculate by (20) |
6: until |
7: Return |
4. Numerical Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, W.; Liu, A.; Zhang, Q.; You, L.; Gao, X.Q.; Zheng, G. Robust multigroup multicast transmission for frame-based multi-beam satellite systems. IEEE Access 2018, 6, 46074–46083. [Google Scholar] [CrossRef]
- Xiang, Z.; Tao, M.; Wang, X. Massive MIMO multicasting in noncooperative cellular networks. IEEE J. Sel. Areas Commun. 2014, 32, 1180–1193. [Google Scholar] [CrossRef] [Green Version]
- Lecompte, D.; Gabin, F. Evolved multimedia broadcast/multicast service (eMBMS) in LTE-advanced: Overview and Rel-11 enhancements. IEEE Commun. Mag. 2012, 50, 68–74. [Google Scholar] [CrossRef]
- Wang, C.X.; Haider, F.; Gao, X.Q.; You, X.H.; Yang, Y.; Yuan, D.; Aggoune, H.M.; Haas, H.; Fletcher, S.; Hepsaydir, E. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun. Mag. 2014, 52, 122–130. [Google Scholar] [CrossRef] [Green Version]
- Barzegar Khalilsarai, M.; Haghighatshoar, S.; Yi, X.; Caire, G. FDD Massive MIMO via UL/DL Channel Covariance Extrapolation and Active Channel Sparsification. IEEE Trans. Wirel. Commun. 2019, 18, 121–135. [Google Scholar] [CrossRef]
- Zappone, A.; Jorswieck, E. Energy efficiency in wireless networks via fractional programming theory. Found. Trends Commun. Inf. Theory 2015, 11, 185–396. [Google Scholar] [CrossRef]
- You, L.; Xiong, J.; Yi, X.; Wang, J.; Wang, W.; Gao, X. Energy Efficiency Optimization for Downlink Massive MIMO With Statistical CSIT. IEEE Trans. Wirel. Commun. 2020, 19, 2684–2698. [Google Scholar] [CrossRef]
- Wang, W.; Huang, Y.; You, L.; Xiong, J.; Li, J.; Gao, X. Energy Efficiency Optimization for Massive MIMO Non-Orthogonal Unicast and Multicast Transmission with Statistical CSI. Electronics 2019, 8, 857. [Google Scholar] [CrossRef] [Green Version]
- You, L.; Xiao, M.; Song, X.; Liu, Y.; Wang, W.; Gao, X.; Fettweis, G. Pilot Reuse for Vehicle-to-Vehicle Underlay Massive MIMO Transmission. IEEE Trans. Veh. Technol. 2020, 69, 5693–5697. [Google Scholar] [CrossRef]
- Björnson, E.; Sanguinetti, L.; Hoydis, J.; Debbah, M. Optimal design of energy efficient multi-user MIMO systems: Is massive MIMO the answer? IEEE Trans. Wirel. Commun. 2015, 14, 3059–3075. [Google Scholar] [CrossRef] [Green Version]
- He, S.; Huang, Y.; Yang, L.; Ottersten, B. Coordinated multicell multiuser precoding for maximizing weighted sum energy efficiency. IEEE Trans. Signal Process. 2014, 62, 741–751. [Google Scholar] [CrossRef]
- Ng, D.W.K.; Lo, E.S.; Schober, R. Energy efficient resource allocation in OFDMA systems with large numbers of base station antennas. IEEE Trans. Wireless Commun. 2012, 11, 3292–3304. [Google Scholar] [CrossRef]
- You, L.; Xiong, J.; Li, K.X.; Wang, W.; Gao, X. Non-Orthogonal Unicast and Multicast Transmission for Massive MIMO With Statistical Channel State Information. IEEE Access 2018, 6, 66841–66849. [Google Scholar] [CrossRef]
- Tervo, O.; Tran, L.N.; Chatzinotas, S.; Juntti, M.; Ottersten, B. Energy efficient joint unicast and multicast beamforming with multiantenna user terminals. In Proceedings of the 2017 IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) 2017, Sapporo, Japan, 3–6 July 2017; pp. 1–5. [Google Scholar]
- He, S.; Huang, Y.; Jin, S.; Yang, L. Energy efficient coordinated beamforming design in multi-cell multicast networks. IEEE Commun. Lett. 2015, 19, 985–988. [Google Scholar] [CrossRef]
- Tervo, O.; Tran, L.N.; Pennanen, H.; Chatzinotas, S.; Ottersten, B.; Juntti, M. Energy efficient multi-cell multigroup multicasting with joint beamforming and antenna selection. IEEE Trans. Signal Process. 2018, 66, 4904–4919. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Wang, C.; Chen, D.; Xiong, H. Energy–Spectral Efficiency Tradeoff in Cognitive Radio Networks. IEEE Trans. Veh. Technol. 2016, 65, 2208–2218. [Google Scholar] [CrossRef]
- Li, K.X.; You, L.; Wang, J.; Gao, X. Physical Layer Multicasting in Massive MIMO Systems With Statistical CSIT. IEEE Trans. Veh. Technol. 2020, 69, 1651–1665. [Google Scholar] [CrossRef]
- You, L.; Gao, X.Q.; Swindlehurst, A.L.; Zhong, W. Channel acquisition for massive MIMO-OFDM with adjustable phase shift pilots. IEEE Trans. Signal Process. 2016, 64, 1461–1476. [Google Scholar] [CrossRef]
- You, L.; Gao, X.Q.; Xia, X.G.; Ma, N.; Peng, Y. Pilot reuse for massive MIMO transmission over spatially correlated Rayleigh fading channels. IEEE Trans. Wirel. Commun. 2015, 14, 3352–3366. [Google Scholar] [CrossRef] [Green Version]
- You, L.; Gao, X.Q.; Li, G.Y.; Xia, X.G.; Ma, N. BDMA for millimeter-wave/Terahertz massive MIMO transmission with per-beam synchronization. IEEE J. Sel. Areas Commun. 2017, 35, 1550–1563. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; So, D.K.C.; Alsusa, E.; Hamdi, K.A. Resource Efficiency: A New Paradigm on Energy Efficiency and Spectral Efficiency Tradeoff. IEEE Trans. Wirel. Commun. 2014, 13, 4656–4669. [Google Scholar] [CrossRef]
- Gao, X.Q.; Jiang, B.; Li, X.; Gershman, A.B.; McKay, M.R. Statistical eigenmode transmission over jointly correlated MIMO channels. IEEE Trans. Inf. Theory 2009, 55, 3735–3750. [Google Scholar] [CrossRef]
- Adhikary, A.; Nam, J.; Ahn, J.-Y.; Caire, G. Joint Spatial Division and Multiplexing—The Large-Scale Array Regime. IEEE Trans. Inf. Theory 2013, 59, 6441–6463. [Google Scholar] [CrossRef]
- Lu, A.; Gao, X.; Zhong, W.; Xiao, C.; Meng, X. Robust Transmission for Massive MIMO Downlink with Imperfect CSI. IEEE Trans. Commun. 2019, 67, 5362–5376. [Google Scholar] [CrossRef]
- Wen, C.K.; Jin, S.; Wong, K.K.; Chen, J.C.; Ting, P. Channel Estimation for Massive MIMO Using Gaussian-Mixture Bayesian Learning. IEEE Trans. Wirel. Commun. 2015, 14, 1356–1368. [Google Scholar] [CrossRef]
- Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University: New York, NY, USA, 2004. [Google Scholar]
- Tulino, A.M.; Lozano, A.; Verdú, S. Capacity-achieving input covariance for single-user multi-antenna channels. IEEE Trans. Wirel. Commun. 2006, 5, 662–671. [Google Scholar] [CrossRef] [Green Version]
- Shen, K.; Yu, W. Fractional Programming for Communication Systems, Part I: Power Control and Beamforming. IEEE Trans. Signal Process. 2018, 66, 2616–2630. [Google Scholar] [CrossRef] [Green Version]
- Couillet, R.; Debbah, M. Random Matrix Methods for Wireless Communications; Cambridge University Press: New York, NY, USA, 2011. [Google Scholar]
- Lu, A.A.; Gao, X.Q.; Xiao, C. Free deterministic equivalents for the analysis of MIMO multiple access channel. IEEE Trans. Inf. Theory 2016, 62, 4604–4629. [Google Scholar] [CrossRef] [Green Version]
- Jaeckel, S.; Raschkowski, L.; Borner, K.; Thiele, L. QuaDRiGa: A 3-D Multi-Cell Channel Model with Time Evolution for Enabling Virtual Field Trials. IEEE Trans. Antennas Propag. 2014, 62, 3242–3256. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Propagation scene | Suburban macro |
Model | 3GPP SCM |
Array topology | Uniform linear array (ULA) |
Antenna spacing | Half wavelength |
Transmission bandwidth | W= 10 MHz |
Noise variance | dBm |
Number of UTs | |
Number of UT antennas | |
Number of BS antennas | |
Amplifier drain efficiency | |
Path loss for each UT | −120 dB |
Circuit power consumption | dBm per antenna |
Static power consumption | dBm |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, B.; Ren, B.; Huang, Y.; Chen, T.; You, L.; Wang, W. Energy Efficiency and Spectral Efficiency Tradeoff in Massive MIMO Multicast Transmission with Statistical CSI. Entropy 2020, 22, 1045. https://doi.org/10.3390/e22091045
Jiang B, Ren B, Huang Y, Chen T, You L, Wang W. Energy Efficiency and Spectral Efficiency Tradeoff in Massive MIMO Multicast Transmission with Statistical CSI. Entropy. 2020; 22(9):1045. https://doi.org/10.3390/e22091045
Chicago/Turabian StyleJiang, Bin, Bowen Ren, Yufei Huang, Tingting Chen, Li You, and Wenjin Wang. 2020. "Energy Efficiency and Spectral Efficiency Tradeoff in Massive MIMO Multicast Transmission with Statistical CSI" Entropy 22, no. 9: 1045. https://doi.org/10.3390/e22091045
APA StyleJiang, B., Ren, B., Huang, Y., Chen, T., You, L., & Wang, W. (2020). Energy Efficiency and Spectral Efficiency Tradeoff in Massive MIMO Multicast Transmission with Statistical CSI. Entropy, 22(9), 1045. https://doi.org/10.3390/e22091045