The Operational Choi–Jamiołkowski Isomorphism
Abstract
:1. Introduction
2. Intratheoretic Causal Structure
2.1. Ontology
2.2. Intratheoretic Causation
2.3. Structural Realism
3. The Choi–Jamiołkowski Isomorphism
Related Work
4. Preliminaries
4.1. Operational Theories
4.2. Ensemble Preparations
4.3. The Choi–Jamiołkowski Isomorphism
4.4. Reformulation
Relation to Original Choi–Jamiołkowski Isomorphism
5. No-Broadcasting Theorem and the Monogamy of Entanglement
5.1. Background
5.2. Operational Formulations
5.3. Bell Nonlocality
5.4. Theorem
5.5. Quantum Interference
6. Preparation Contextuality and No-Signalling
6.1. Background
- is a column-stochastic matrix.
6.2. Operational Formulations
6.3. Theorem
7. Uncertainty Relations
7.1. Background
7.2. Operational Formulations
- 1.
- Specifying the values of all parameters for any preparation fully determines the probabilities for every outcome of every measurement M in .
- 2.
- For every possible set of values of the parameters, there exists a preparation described by those parameters.
7.3. Theorem
8. Discussion
Funding
Conflicts of Interest
Appendix A
Appendix A.1. Proof of Theorem 3
Appendix A.2. Proof of Theorem 4
Appendix A.3. Proof of Theorem 5
- Before the start of the game, Alice and Bob perform the preparation , and then Alice takes subsystem A and Bob takes subsystem B.
- When Alice is given input , she performs measurement and then returns her measurement outcome.
- When Bob is given input , he performs measurement and then returns his measurement outcome.
References
- Hardy, L. Are quantum states real? Int. J. Mod. Phys. B 2013, 27, 1345012. [Google Scholar] [CrossRef] [Green Version]
- Leifer, M. Is the quantum state real? An extended review of ψ-ontology theorems. Quanta 2014, 3, 67–155. [Google Scholar] [CrossRef]
- Pusey, M.F.; Barrett, J.; Rudolph, T. On the reality of the quantum state. Nat. Phys. 2012, 8, 476–479. [Google Scholar] [CrossRef] [Green Version]
- Adlam, E. Spooky Action at a Temporal Distance. Entropy 2018, 20, 41. [Google Scholar] [CrossRef] [Green Version]
- Masanes, L.; Müller, M.P. A derivation of quantum theory from physical requirements. New J. Phys. 2011, 13, 063001. [Google Scholar] [CrossRef]
- Chiribella, G.; D’Ariano, G.M.; Perinotti, P. Informational derivation of quantum theory. Phys. Rev. A 2011, 84, 012311. [Google Scholar] [CrossRef] [Green Version]
- Hardy, L. Quantum Theory From Five Reasonable Axioms. arXiv 2001, arXiv:0101012. [Google Scholar]
- Grinbaum, A. Elements of information-theoretic derivation of the formalism of quantum theory. Int. J. Quantum Inf. 2003, 1, 289–300. [Google Scholar] [CrossRef]
- Fuchs, C.A. Quantum Mechanics as Quantum Information (and only a little more). arXiv 2002, arXiv:0205039. [Google Scholar]
- Rohrlich, D.; Popescu, S. Nonlocality as an axiom for quantum theory. arXiv 1995, arXiv:9508009. [Google Scholar]
- Pawlowski, M.; Paterek, T.; Kaszlikowski, D.; Scarani, V.; Winter, A.; Żukowski, M. Information causality as a physical principle. Nature 2009, 461, 1101–1104. [Google Scholar] [CrossRef]
- Toner, B. Monogamy of non-local quantum correlations. Proc. R. Soc. Lond. Ser. A 2009, 465, 59–69. [Google Scholar] [CrossRef] [Green Version]
- Bub, J. Why the quantum? arXiv 2004, arXiv:0402149. [Google Scholar] [CrossRef]
- Stanford, K. Underdetermination of Scientific Theory. In The Stanford Encyclopedia of Philosophy, Winter 2017 ed.; Zalta, E.N., Ed.; Metaphysics Research Lab, Stanford University: Stanford, CA, USA, 2017. [Google Scholar]
- Ladyman, J. Structural Realism. In The Stanford Encyclopedia of Philosophy, Spring 2020 ed.; Zalta, E.N., Ed.; Metaphysics Research Lab, Stanford University: Stanford, CA, USA, 2020. [Google Scholar]
- Chakravartty, A. Scientific Realism. In The Stanford Encyclopedia of Philosophy, Summer 2017 ed.; Zalta, E.N., Ed.; Metaphysics Research Lab, Stanford University: Stanford, CA, USA, 2017. [Google Scholar]
- Van Fraassen, B.; Press, O.U.; Van Fraassen, P. The Scientific Image; Clarendon Library of Logic and Philosophy, Clarendon Press: Oxford, UK, 1980. [Google Scholar]
- Wharton, K. The Universe is not a Computer. In Questioning the Foundations of Physics; Aguirre, A., Foster, B., Merali, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 177–190. [Google Scholar]
- Brizard, A. An Introduction to Lagrangian Mechanics; World Scientific: Singapore, 2008. [Google Scholar]
- Feynman, R.; Hibbs, A.; Styer, D. Quantum Mechanics and Path Integrals; Dover Books on Physics, Dover Publications: Mineola, NY, USA, 2010. [Google Scholar]
- Spekkens, R.W. The paradigm of kinematics and dynamics must yield to causal structure. arXiv 2012, arXiv:1209.0023. [Google Scholar]
- Küchemann, S.; Klein, P.; Fouckhardt, H.; Gröber, S.; Kuhn, J. Students’ understanding of non-inertial frames of reference. Phys. Rev. Phys. Educ. Res. 2020, 16, 010112. [Google Scholar] [CrossRef] [Green Version]
- Menzies, P.; Beebee, H. Counterfactual Theories of Causation. In The Stanford Encyclopedia of Philosophy, Summer 2020 ed.; Zalta, E.N., Ed.; Metaphysics Research Lab, Stanford University: Stanford, CA, USA, 2020. [Google Scholar]
- Ghirardi, G.C.; Grassi, R.; Benatti, F. Describing the Macroscopic World: Closing the Circle Within the Dynamical Reduction Program. Found. Phys. 1995, 25, 5–38. [Google Scholar] [CrossRef] [Green Version]
- Holland, P. The Quantum Theory of Motion: An Account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Wallace, D. Everett and Structure. Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys. 2003, 34, 87–105. [Google Scholar] [CrossRef]
- Fuchs, C.A.; Mermin, N.D.; Schack, R. An introduction to QBism with an application to the locality of quantum mechanics. Am. J. Phys. 2014, 82, 749–754. [Google Scholar] [CrossRef] [Green Version]
- Jiang, M.; Luo, S.; Fu, S. Channel-state duality. Phys. Rev. A 2013, 87, 022310. [Google Scholar] [CrossRef] [Green Version]
- Leifer, M.S.; Spekkens, R.W. Towards a Formulation of Quantum Theory as a Causally Neutral Theory of Bayesian Inference. arXiv 2011, arXiv:1107.5849. [Google Scholar] [CrossRef] [Green Version]
- Gottesman, D.; Chuang, I.L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 1999, 402, 390–393. [Google Scholar] [CrossRef] [Green Version]
- Einstein, A. On the electrodynamics of moving bodies. Ann. Der Phys. 1905, 17, 891–921. [Google Scholar] [CrossRef]
- Goldstein, S.; Tumulka, R. Opposite arrows of time can reconcile relativity and nonlocality. Class. Quantum Gravity 2003, 20, 557–564. [Google Scholar] [CrossRef]
- Price, H. A Neglected Route to Realism about Quantum Mechanics. Mind 1994, 103, 303–336. [Google Scholar] [CrossRef] [Green Version]
- Leifer, M.; Pusey, M. Is a time symmetric interpretation of quantum theory possible without retrocausality? arXiv 2016, arXiv:1607.07871. [Google Scholar] [CrossRef] [PubMed]
- Wharton, K. Quantum States as Ordinary Information. Information 2014, 5, 190–208. [Google Scholar] [CrossRef] [Green Version]
- Oreshkov, O.; Costa, F.; Brukner, Č. Quantum correlations with no causal order. Nat. Commun. 2012, 3, 1092. [Google Scholar] [CrossRef] [Green Version]
- Shrapnel, S.; Costa, F. Causation does not explain contextuality. Quantum 2018, 2, 63. [Google Scholar] [CrossRef]
- Verstraete, F.; Verschelde, H. On quantum channels. arXiv 2002, arXiv:0202124. [Google Scholar]
- Aharonov, Y.; Popescu, S.; Tollaksen, J. Each Instant of Time a New Universe. In Quantum Theory: A Two-Time Success Story; Struppa, D.C., Tollaksen, J.M., Eds.; Springer: Milano, Italia, 2014; p. 21. ISBN 978-88-470-5216-1. [Google Scholar] [CrossRef] [Green Version]
- Niestegge, G. Three-Slit Experiments and Quantum Nonlocality. Found. Phys. 2013, 43, 805–812. [Google Scholar] [CrossRef] [Green Version]
- Cabello, A. Simple Explanation of the Quantum Violation of a Fundamental Inequality. Phys. Rev. Lett. 2013, 110, 060402. [Google Scholar] [CrossRef] [Green Version]
- Bub, J. Why the tsirelson bound. In Probability in Physics; Ben-Menahem, Y., Hemmo, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; p. 167. [Google Scholar] [CrossRef] [Green Version]
- Spekkens, R.W. Contextuality for preparations, transformations, and unsharp measurements. Phys. Rev. A 2005, 71, 052108. [Google Scholar] [CrossRef] [Green Version]
- Leifer, M.S. Conditional Density Operators and the Subjectivity of Quantum Operations. In AIP Conference Proceedings; Foundations of Probability and Physics—4; Adenier, G., Fuchs, C., Khrennikov, A.Y., Eds.; American Institute of Physics: College Park, MD, USA, 2007; Volume 889, pp. 172–186. [Google Scholar] [CrossRef]
- Zyczkowski, K.; Bengtsson, I. On duality between quantum maps and quantum states. arXiv 2004, arXiv:0401119. [Google Scholar] [CrossRef] [Green Version]
- Leifer, M.S. Quantum dynamics as an analog of conditional probability. Phys. Rev. A 2006, 74, 042310. [Google Scholar] [CrossRef] [Green Version]
- Barnum, H.; Caves, C.M.; Fuchs, C.A.; Jozsa, R.; Schumacher, B. Noncommuting Mixed States Cannot Be Broadcast. Phys. Rev. Lett. 1996, 76, 2818–2821. [Google Scholar] [CrossRef] [Green Version]
- Coffman, V.; Kundu, J.; Wootters, W.K. Distributed entanglement. Phys. Rev. A 2000, 61, 052306. [Google Scholar] [CrossRef] [Green Version]
- Toner, B.; Verstraete, F. Monogamy of Bell correlations and Tsirelson’s bound. arXiv 2006, arXiv:0611001. [Google Scholar]
- Halvorson, H. On information-theoretic characterizations of physical theories. Stud. Hist. Philos. Sci. Part B Stud. History Philos. Mod. Phys. 2004, 35, 277–293. [Google Scholar] [CrossRef] [Green Version]
- Clifton, R.; Bub, J.; Halvorson, H. Characterizing quantum theory in terms of information-theoretic constraints. Found. Phys. 2003, 33, 1561–1591. [Google Scholar] [CrossRef] [Green Version]
- Held, C. The Kochen-Specker Theorem. In The Stanford Encyclopedia of Philosophy, Winter 2014 ed.; Zalta, E.N., Ed.; Metaphysics Research Lab, Stanford University: Stanford, CA, USA, 2014. [Google Scholar]
- Harrigan, N.; Spekkens, R.W. Einstein, Incompleteness, and the Epistemic View of Quantum States. Found. Phys. 2010, 40, 125–157. [Google Scholar] [CrossRef] [Green Version]
- Barrett, J.; Hardy, L.; Kent, A. No signaling and quantum key distribution. Phys. Rev. Lett. 2005, 95, 010503. [Google Scholar] [CrossRef] [Green Version]
- Deutsch, D. Uncertainty in Quantum Measurements. Phys. Rev. Lett. 1983, 50, 631–633. [Google Scholar] [CrossRef]
- Wehner, S.; Winter, A. Entropic uncertainty relations—A survey. New J. Phys. 2010, 12, 025009. [Google Scholar] [CrossRef]
- Li, C.F.; Xu, J.S.; Xu, X.Y.; Li, K.; Guo, G.C. Experimental investigation of the entanglement-assisted entropic uncertainty principle. Nat. Phys. 2011, 7, 752–756. [Google Scholar] [CrossRef]
- Oppenheim, J.; Wehner, S. The Uncertainty Principle Determines the Nonlocality of Quantum Mechanics. Science 2010, 330, 1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tumulka, R. A Relativistic Version of the Ghirardi Rimini Weber Model. J. Stat. Phys. 2006, 125, 821–840. [Google Scholar] [CrossRef] [Green Version]
- Bell, J.S.; Aspect, A. Are there quantum jumps? In Speakable and Unspeakable in Quantum Mechanics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004; pp. 201–212. [Google Scholar]
- Kent, A. Solution to the Lorentzian quantum reality problem. Phys. Rev. A 2014, 90, 012107. [Google Scholar] [CrossRef] [Green Version]
- Bell, J.S. On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 1966, 38, 447. [Google Scholar] [CrossRef]
Property | Implies |
---|---|
Strong monogamy of correlations and Bell nonlocality | No-broadcasting and quantum interference |
No-signalling and Bell nonlocality | Preparation contextuality |
Information causality | Fine-grained uncertainty relations |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adlam, E. The Operational Choi–Jamiołkowski Isomorphism. Entropy 2020, 22, 1063. https://doi.org/10.3390/e22091063
Adlam E. The Operational Choi–Jamiołkowski Isomorphism. Entropy. 2020; 22(9):1063. https://doi.org/10.3390/e22091063
Chicago/Turabian StyleAdlam, Emily. 2020. "The Operational Choi–Jamiołkowski Isomorphism" Entropy 22, no. 9: 1063. https://doi.org/10.3390/e22091063
APA StyleAdlam, E. (2020). The Operational Choi–Jamiołkowski Isomorphism. Entropy, 22(9), 1063. https://doi.org/10.3390/e22091063