How Life Works—A Continuous Seebeck-Peltier Transition in Cell Membrane?
Abstract
:1. Introduction
- What it has: a cell, the basic unit of life, able to generate biochemical processes;
- What it does: growth, reproduction, adaptation and metabolism.
2. Materials and Methods
- A continue metabolic generation, characterised by ions and metabolites fluxes, for which a Peltier-like effect occurs and
- A continued heat exchange, towards the environment, for which a Seebeck-like effect occurs and .
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lucia, U.; Grisolia, G. Thermal Resonance and Cell Behavior. Entropy 2020, 22, 774. [Google Scholar] [CrossRef]
- Yang, M.; Brackenbury, W.J. Membrane potential and cancer progression. Front. Physiol. 2013, 4, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldman, D.E. Potential impedance, and rectification in membranes. J. Gen. Physiol. 1943, 27, 37–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodgkin, A.L.; Katz, B. The effect of sodium ions on the electrical activity of giant axon of the squid. J. Physiol. 1949, 108, 37–77. [Google Scholar] [CrossRef] [PubMed]
- Grabe, M.; Wang, H.; Oster, G. The mechanochemistry of V-ATPase proton pumps. Biophs. J. 2000, 78, 2798–2813. [Google Scholar] [CrossRef] [Green Version]
- Yourgrau, W.; van der Merwe, A.; Raw, G. Treatise on Irreversible and Statistical Thermophysics; Dover: New York, NY, USA, 1982. [Google Scholar]
- Callen, H.B. Thermodynamics; Wiley: New York, NY, USA, 1960. [Google Scholar]
- Katchalsky, A.; Currant, P.F. Nonequilibrium Thermodynamics in Biophysics; Harvard University Press: Cambridge, MA, USA, 1965. [Google Scholar]
- Lucia, U.; Grisolia, G. Resonance in Thermal Fluxes Through Cancer Membrane. AAPP 2020, 98, SC1–SC6. [Google Scholar] [CrossRef]
- Lucia, U.; Grisolia, G.; Ponzetto, A.; Bergandi, L.; Silvagno, F. Thermomagnetic resonance affects cancer growth and motility. R. Soc. Open Sci. 2020, 7, 200299. [Google Scholar] [CrossRef]
- Bergandi, L.; Lucia, U.; Grisolia, G.; Granata, R.; Gesmundo, I.; Ponzetto, A.; Paolucci, E.; Borchiellini, R.; Ghigo, E.; Silvagno, F. The extremely low frequency electromagnetic stimulation selective for cancer cells elicits growth arrest through a metabolic shift. Biochim. Biophys. Acta-Mol. Cell Res. 2019, 1866, 1389–1397. [Google Scholar] [CrossRef] [PubMed]
- Schrödinger, E. What’s Life? The Physical Aspect of the Living Cell; Cambridge University Press: Cambridge, UK, 1944. [Google Scholar]
- Tokuoka, S.; Marioka, H. The membrane potential of the human cancer and related cells (I). Gann 1957, 48, 353–354. [Google Scholar] [CrossRef] [PubMed]
- Altman, P.L.; Katz, D. Biological Handbook Vol. 1: Cell Biology; Federation of American Society for Experimental Biology: Bethesda, MD, USA, 1976. [Google Scholar]
- Balitsky, K.P.; Shuba, E.P. Resting potential of malignant tumour cells. Acta Unio. Int. Contra Cancrum 1964, 20, 1391–1393. [Google Scholar] [PubMed]
- Jamakosmanovic, A.; Loewenstein, W. Intracellular communication and tissue growth. III. Thyroid cancer. J. Cell Biol. 1968, 38, 556–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cone, C.D. Electroosmotic interactions accompanying mitosis initiation in sarcoma cells in vitro. Trans. N.Y. Acad. Sci. 1969, 31, 404–427. [Google Scholar] [CrossRef] [PubMed]
- Cone, C.D. Variation of the transmembrane potential level as a basic mechanism of mitosis control. Oncology 1970, 24, 438–470. [Google Scholar] [CrossRef] [PubMed]
- Ambrose, E.J.; James, A.M.; Lowick, J.H. Differences between the electrical charge carried by normal and homologous tumour cells. Nature 1956, 177, 576–577. [Google Scholar] [CrossRef] [PubMed]
- Sundelacruz, S.; Levin, M.; Kaplan, D.L. Role of the membrane potential in the regulation of cell proliferation and differentiation. Stemm Cell Rev. 2009, 5, 231–246. [Google Scholar] [CrossRef] [PubMed]
- Lobikin, M.; Chernet, B.; Lobo, D.; Levin, M. Resting potential, oncogene-induced tumorigenesis, and metastasis: The bioelectric basis of cancer in vivo. Phys. Biol. 2012, 9, 065002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucia, U.; Grisolia, G. Constructal law and ion transfer in normal and cancer cells. Proc. Rom. Acad. Ser. A-Math. Phys. 2018, 19, 213–218. [Google Scholar]
- Schwab, A.; Fabian, A.; Hanley, P.J.; Stock, C. Role of the ion channels and transporters in cell migration. Physiol. Rev. 2012, 92, 1865–1913. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucia, U.; Grisolia, G. How Life Works—A Continuous Seebeck-Peltier Transition in Cell Membrane? Entropy 2020, 22, 960. https://doi.org/10.3390/e22090960
Lucia U, Grisolia G. How Life Works—A Continuous Seebeck-Peltier Transition in Cell Membrane? Entropy. 2020; 22(9):960. https://doi.org/10.3390/e22090960
Chicago/Turabian StyleLucia, Umberto, and Giulia Grisolia. 2020. "How Life Works—A Continuous Seebeck-Peltier Transition in Cell Membrane?" Entropy 22, no. 9: 960. https://doi.org/10.3390/e22090960
APA StyleLucia, U., & Grisolia, G. (2020). How Life Works—A Continuous Seebeck-Peltier Transition in Cell Membrane? Entropy, 22(9), 960. https://doi.org/10.3390/e22090960