Applications of Distributed-Order Fractional Operators: A Review
Abstract
:Contents | ||
1 | Introduction | 2 |
2 | Mathematical Background | 4 |
2.1 Definitions and Properties...................................................................................................................................... | 4 | |
2.2 Distributed-Order Differential Equations................................................................................................................ | 7 | |
2.3 Solution of DODEs: Analytical Methods............................................................................................................... | 8 | |
2.4 Solution of DODEs: Numerical Methods............................................................................................................... | 9 | |
2.4.1 Numerical Integration of the Integral Operator (Step 1)........................................................................... | 9 | |
2.4.2 Approximation of the Multi-term Fractional Derivatives (Step 2)............................................................ | 10 | |
3 | Relevance of Distributed-Order Operators | 14 |
4 | Applications to Viscoelasticity | 15 |
4.1 Constitutive Models............................................................................................................................................. | 15 | |
4.1.1 DO Integral Models................................................................................................................................ | 16 | |
4.1.2 Multi-Term Fractional Models................................................................................................................ | 17 | |
4.2 Material Characterization: Methods and Experiments............................................................................................. | 18 | |
4.3 Distributed-Variable-Order Models........................................................................................................................ | 18 | |
4.4 Some Practical Applications.................................................................................................................................. | 19 | |
5 | Applications to Transport Processes | 20 |
5.1 Anomalous Diffusion Processes.............................................................................................................................. | 21 | |
5.2 Reaction–Diffusion Processes................................................................................................................................ | 24 | |
5.3 Advection-Diffusion Processes............................................................................................................................... | 25 | |
5.4 Wave Propagation................................................................................................................................................. | 25 | |
6 | Applications to Control Theory | 26 |
6.1 DO Controllers and Filters.................................................................................................................................... | 27 | |
6.2 Stability and Control of DO Systems..................................................................................................................... | 28 | |
7 | Conclusions | 29 |
References | 30 |
1. Introduction
2. Mathematical Background
2.1. Definitions and Properties
2.2. Distributed-Order Differential Equations
2.3. Solution of DODEs: Analytical Methods
2.4. Solution of DODEs: Numerical Methods
- Step 1: Numerical integration of the integral operator. The DO derivative consists of a continuous distribution of the fractional order . In Step 1, a numerical integration is used to discretize the DO derivative into a multi-term CO fractional derivative.
- Step 2: Approximate solution of the multi-term fractional derivative. Following the conversion of the DO derivative into a multi-term fractional derivative at step 1, different numerical methods are used to evaluate each CO fractional derivative within the multi-term derivative.
2.4.1. Numerical Integration of the Integral Operator (Step 1)
2.4.2. Approximation of the Multi-term Fractional Derivatives (Step 2)
Mesh-Free Approaches
- Galerkin spectral methods can be divided broadly into two categories depending on the specific nature of the basis functions: (1) Galerkin spectral methods based on Legendre polynomials (GLSM) and (2) Galerkin spectral methods based on Jacobi polynomials (GJSM). GLSMs were proposed very recently in [92,118,125,143,148] to solve time-fractional DODEs. These were accurate to (where, ). A few researchers combined the GLSM scheme with an alternating direction implicit (ADI) scheme to improve the accuracy to [98,139]. Numerical studies based on the GJSM approach can be found in [85,91,149]. Some interesting conclusions were presented in [150], which combined a -stage implicit Runge–Kutta method in time and the GJSM/GLSM in space to solve time-space-fractional DODEs. They established that a convergence of in time could be obtained when employing an algebraically stable Runge–Kutta method with order p (). A few researchers have compared the performance of the GLSM and GJSM techniques in [90,150,151]. The results of these studies indicate that the specific basis functions do not drastically alter the computational performance.
- Collocation methods require that the approximate solution satisfies the DODE at specific locations known as the collocation points. Similar to the Galerkin spectral method, various collocation methods have been developed starting from (1) Legendre basis (LCM) [100,134] and (2) Jacobi basis (JCM) [105,152]. Zaky constructed a LCM to solve both linear and nonlinear boundary value problems [100], and later extended this method to simulate initial value DODEs [99,153]. Results indicated that the convergence error decays exponentially with an increasing number of Gauss–Legendre points. Very recently, the LCM was extended by Xu [96] to develop a higher-order Legendre–Gauss collocation method for nonlinear DODEs. JCMs were developed in [101,102,152] to solve DODEs concerning different physical applications (such as, for example, transport processes and control). A majority of the above studies achieved either first or second-order accuracy. Recently, Abdelkawy [105] proposed a fourth-order accurate scheme for time-fractional DODEs (admitting only smooth solutions) while also achieving an exponential convergence rate. Besides the popular LCM and JCM, collocation methods based on other basis functions including, for example, the Chebyshev polynomials [129,154], fractional Lagrange polynomials [92], and the wavelet method [119], were also developed. Some interesting numerical techniques were developed by combining selected aspects of the different basis functions such as, for example, the fractional-order Chelyshkov wavelets [104]. Similar to the Galerkin spectral methods, it appears that the different basis polynomials in the collocation methods, do not drastically alter computational accuracy.
- Tau methods also employ different basis functions similar to the Galerkin spectral method and collocation method. Tau methods for DODEs were first developed in [155,156] using shifted Chebyshev polynomials. Building on these studies, shifted Jacobi polynomials were adopted as basis functions in [157], and shifted Legendre polynomials were adopted in [103,158]. A detailed analysis of the results from these studies suggests that the accuracy and computational cost of simulating a given DODE using the tau methods are similar to the collocation and Galerkin spectral methods.
- Other mesh-free methods based on the formulation of fractional-order operational matrices have also been explored to solve DODEs. The operational matrix is based on different functions such as the block-pulse function (BPF) [89], Chebyshev polynomials [159,160], and shifted Legendre polynomials [154]. Following the same strategy, hybrid approximation methods based on the combination of different basis functions have also been developed. The specific combinations that have been explored in literature are BPFs and Bernoulli polynomials [95], BPFs and Taylor polynomials [93], and BPFs and shifted Legendre polynomials [161]. For completeness, we mention that other numerical methods including the Laguerre spectral method [108], Legendre wavelets method [84], fractional pseudo-spectral method [162], reproducing kernel method [163], radial basis function based mesh-free methods [86,114], and element-free Galerkin method [106] have also been proposed. Further, several semi-analytical approaches including the Homotopy perturbation method [164,165,166,167], harmonic approximations [168], and the Adomian decomposition method [169,170,171] have also been proposed and applied to derive the solution of DODEs and multi-term fractional differential equations (FDE).
Mesh-Based Approaches
- Finite difference methods are one of the most widely used mesh-based approaches for the solution of DODEs because they allow easy formulation and implementation. Compared with other approaches, the convergence and accuracy of FDM are easier to analyze [175,176,177]. A majority of the advanced FDMs are based on the Grünwald–Letnikov method (GLM) [122,142]. Recall that GLM uses a finite number of terms from a convergent series to approximate the fractional derivative and is a widely used approach [4]. Hu [126] used a shifted GLM to simulate a time-fractional DODE with accuracy up to . Second-order accurate schemes for space-fractional DODEs were developed in [136] by using a Crank–Nicolson scheme in time and a shifted GLM. Similar second-order accurate algorithms can also be found in [133,178]. The second-order accurate backward difference formula, first proposed by Diethelm [145], also appears to be popular among several researchers [124,129,138]. To further improve the numerical accuracy, more elaborate methods were developed using the weighted and shifted GLM (WSGLM). Li [179] developed a numerical scheme with high spatial accuracy () by combining WSGLM and the parametric quintic spline method. Another scheme capable of delivering high spatial accuracy () was proposed by using the WSGLM for temporal approximation and high-order compact difference scheme for spatial approximation [117]. Yang [180] also proposed a similar composite method based on WSGLM in time and orthogonal spline collocation method in space. This scheme was shown to be unconditionally stable and accurate up to (here r is the polynomial degree used in the spatial domain).FDM schemes have also been developed for high-dimensional problems, with particular attention being given to accuracy and convergence performance [141,181]. For applications requiring high accuracy, two techniques are often used: (1) compact FDM (CFDM) and (2) extrapolation method. Based on a fully discrete difference scheme [182], Ye [132] proposed a CFDM and demonstrated its convergence to be . Pimenov [121] constructed a linearized difference scheme for nonlinear time delay DODE. Several researchers [110,120,183] also obtained a CFDM with order based on higher order temporal approximation techniques. Gao [111,116] applied two extrapolation methods in time to achieve high temporal convergence: and . For high-dimensional problems, ADI schemes become highly popular and help achieve highly accurate (second-order in time and fourth-order in space) numerical schemes [107,184].
- Finite element methods: Starting from the study of multi-term FDEs, Jin [185] developed a Galerkin approach, Bu [186] used a multi-grid FEM, and Zhao [187] used a spatially nonconforming FEM to solve time fractional diffusion equations. Similarly, several researchers first developed FEMs to solve multi-term FDEs and later extended them to solve DODEs [87,123,188]. Few researchers [112,189] developed the -Galerkin FEM for DO sub-diffusion equations which allowed the estimation of the diffusive field variable as well as its spatial derivative. By using locally discontinuous Galerkin FEM, Aboelenen [137] and Wei [190] developed highly accurate numerical schemes with spatial convergence (k is the degree of basis polynomials). Given the FEM’s unique ability of handling complex geometry, several recent studies have focused on its application to irregular domains. Examples include the development of FEMs, based on unstructured meshes, to solve DO equations corresponding to different physical applications [109,191,192,193].
- Other mesh-based methods: In addition to FEM and FDM, a few other mesh-based methods were also explored. Examples include the combined B-spline interpolation and the Du Fort–Frankel method [130] for time-fractional DODEs. Heris [135] and Javidi [136] introduced a fractional backward differential formulas for space DODEs and obtained a second-order accurate numerical scheme. Diethelm et al. [60,188,194] introduced a convolution quadrature method for the numerical approximation of DO operators. Based on a backward difference formula, Podlubny [195,196] proposed a matrix form to represent discrete analogs of fractional operations and extended this method to the solution of DODEs [197]. Other mesh-based techniques developed in literature to solve DODEs and multi-terms FDEs include the predictor-corrector method [56,198,199,200,201] and the finite volume method [127,128,202].
Computational Aspects of DODEs
3. Relevance of Distributed-Order Operators
4. Applications to Viscoelasticity
4.1. Constitutive Models
4.1.1. DO Integral Models
4.1.2. Multi-Term Fractional Models
- Kelvin-Voigt models: The DO analogue of the Kelvin–Voigt model is obtained for the choice of , and [229].
- Zener models: If the material constants in Equation (14) are chosen as , , , and orders , the classical Zener model is obtained. Similarly, gives the generalized Zener model [232]. Wave propagation in fractional Zener-type viscoelastic media, obtained by choosing in Equation (13), was studied in [233,234]. Similarly, the choice of and in Equation (13), also results in a fractional version of the classical Zener model with springs and dashpots [223].
- Other models: Viscoelastic models described for the strength functions and in Equation (13), were analyzed in [235]. Variations of this latter model (also referred to as the four-parameter model [236]) including the use of five-parameters [237] were studied to simulate selected types of lossy behavior in real materials. Further extensions that explored the use of additional terms were also presented [79].
4.2. Material Characterization: Methods and Experiments
4.3. Distributed-Variable-Order Models
4.4. Some Practical Applications
5. Applications to Transport Processes
5.1. Anomalous Diffusion Processes
5.2. Reaction–Diffusion Processes
5.3. Advection-Diffusion Processes
5.4. Wave Propagation
6. Applications to Control Theory
6.1. DO Controllers and Filters
6.2. Stability and Control of DO Systems
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Leibniz, G. Letter from Hanover, Germany, to GFA L’Hopital, 30 September 1695. Math. Schriften 1849, 2, 301–302. [Google Scholar]
- De Oliveira, E.C.; Tenreiro Machado, J.A. A review of definitions for fractional derivatives and integral. Math. Probl. Eng. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Erdélyi, A. On fractional integration and its application to the theory of Hankel transforms. Q. J. Math. 1940, 293–303. [Google Scholar] [CrossRef]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: Hoboken, NJ, USA, 1993. [Google Scholar]
- Bagley, R.; Torvik, P. A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 1983, 27, 201–210. [Google Scholar] [CrossRef]
- Torvik, P.; Bagley, R. On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. Trans. ASME 1984, 51, 294–298. [Google Scholar] [CrossRef]
- Chatterjee, A. Statistical origins of fractional derivatives in viscoelasticity. J. Sound Vib. 2005, 284, 1239–1245. [Google Scholar] [CrossRef] [Green Version]
- Alotta, G.; Bologna, E.; Failla, G.; Zingales, M. A fractional approach to non-Newtonian blood rheology in capillary vessels. J. Peridyn. Nonlocal Model. 2019, 1, 88–96. [Google Scholar] [CrossRef] [Green Version]
- Mainardi, F. Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals 1996, 7, 1461–1477. [Google Scholar] [CrossRef]
- Gritsenko, D.; Paoli, R. Theoretical Analysis of Fractional Viscoelastic Flow in Circular Pipes: General Solutions. Appl. Sci. 2020, 10, 9093. [Google Scholar] [CrossRef]
- Gritsenko, D.; Paoli, R. Theoretical Analysis of Fractional Viscoelastic Flow in Circular Pipes: Parametric Study. Appl. Sci. 2020, 10, 9080. [Google Scholar] [CrossRef]
- Failla, G.; Zingales, M. Advanced Materials Modelling Via Fractional Calculus: Challenges and Perspectives; Royal Society: Cambridge, UK, 2020. [Google Scholar]
- Lazopoulos, K.A. Non-local continuum mechanics and fractional calculus. Mech. Res. Commun. 2006, 33, 753–757. [Google Scholar] [CrossRef]
- Drapaca, C.S.; Sivaloganathan, S. A fractional model of continuum mechanics. J. Elast. 2012, 107, 105–123. [Google Scholar] [CrossRef]
- Di Paola, M.; Failla, G.; Pirrotta, A.; Sofi, A.; Zingales, M. The mechanically based non-local elasticity: An overview of main results and future challenges. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20120433. [Google Scholar] [CrossRef] [Green Version]
- Sumelka, W. Thermoelasticity in the framework of the fractional continuum mechanics. J. Therm. Stress. 2014, 37, 678–706. [Google Scholar] [CrossRef]
- Carpinteri, A.; Cornetti, P.; Sapora, A. Nonlocal elasticity: An approach based on fractional calculus. Meccanica 2014, 49, 2551–2569. [Google Scholar] [CrossRef]
- Patnaik, S.; Sidhardh, S.; Semperlotti, F. A Ritz-based finite element method for a fractional-order boundary value problem of nonlocal elasticity. Int. J. Solids Struct. 2020, 202, 398–417. [Google Scholar] [CrossRef]
- Sidhardh, S.; Patnaik, S.; Semperlotti, F. Geometrically nonlinear response of a fractional-order nonlocal model of elasticity. Int. J. Nonlinear Mech. 2020, 125, 103529. [Google Scholar] [CrossRef]
- Patnaik, S.; Sidhardh, S.; Semperlotti, F. Fractional-order models for the static and dynamic analysis of nonlocal plates. Commun. Nonlinear Sci. Numer. Simul. 2020, 105601. [Google Scholar] [CrossRef]
- Patnaik, S.; Sidhardh, S.; Semperlotti, F. Geometrically nonlinear analysis of nonlocal plates using fractional calculus. Int. J. Mech. Sci. 2020, 179, 105710. [Google Scholar] [CrossRef]
- Sidhardh, S.; Patnaik, S.; Semperlotti, F. Fractional-Order Structural Stability: Formulation and Application to the Critical Load of Slender Structures. arXiv 2020, arXiv:2008.11528. [Google Scholar]
- Sidhardh, S.; Patnaik, S.; Semperlotti, F. Analysis of the Post-Buckling Response of Nonlocal Plates via Fractional Order Continuum Theory. J. Appl. Mech. 2020, 1–22. [Google Scholar] [CrossRef]
- Patnaik, S.; Semperlotti, F. A generalized fractional-order elastodynamic theory for non-local attenuating media. Proc. R. Soc. A 2020, 476, 20200200. [Google Scholar] [CrossRef] [PubMed]
- Sebaa, N.; Fellah, Z.E.A.; Lauriks, W.; Depollier, C. Application of fractional calculus to ultrasonic wave propagation in human cancellous bone. Signal Process. 2006, 86, 2668–2677. [Google Scholar] [CrossRef]
- Treeby, B.E.; Cox, B. Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian. J. Acoust. Soc. Am. 2010, 127, 2741–2748. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Aguilar, J.; Miranda-Hernández, M.; López-López, M.; Alvarado-Martínez, V.; Baleanu, D. Modeling and simulation of the fractional space-time diffusion equation. Commun. Nonlinear Sci. Numer. Simul. 2016, 30, 115–127. [Google Scholar] [CrossRef]
- Saad, K.M.; Gómez-Aguilar, J. Analysis of reaction–diffusion system via a new fractional derivative with non-singular kernel. Phys. A Stat. Mech. Its Appl. 2018, 509, 703–716. [Google Scholar] [CrossRef]
- Hollkamp, J.P.; Semperlotti, F. Application of fractional order operators to the simulation of ducts with acoustic black hole terminations. J. Sound Vib. 2020, 465, 115035. [Google Scholar] [CrossRef]
- Buonocore, S.; Sen, M. Scattering cross sections of acoustic nonlocal inclusions: A fractional dynamic approach. J. Appl. Phys. 2020, 127, 203101. [Google Scholar] [CrossRef]
- West, B.J.; Deering, W. Fractal physiology for physicists: Lévy statistics. Phys. Rep. 1994, 246, 1–100. [Google Scholar] [CrossRef]
- Carpinteri, A.; Cornetti, P. A fractional calculus approach to the description of stress and strain localization in fractal media. Chaos Solitons Fractals 2002, 13, 85–94. [Google Scholar] [CrossRef]
- Li, J.; Ostoja-Starzewski, M. Fractal solids, product measures and fractional wave equations. Proc. R. Soc. A Math. Phys. Eng. Sci. 2009, 465, 2521–2536. [Google Scholar] [CrossRef]
- West, B.J. Fractal physiology and the fractional calculus: A perspective. Front. Physiol. 2010, 1, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Ostoja-Starzewski, M. Thermo-poromechanics of fractal media. Philos. Trans. R. Soc. A 2020, 378, 20190288. [Google Scholar] [CrossRef] [PubMed]
- Sheng, H.; Chen, Y.; Qiu, T. Fractional Processes and Fractional-Order Signal Processing: Techniques and Applications; Springer Science & Business Media: New York, NY, USA, 2011. [Google Scholar]
- Magin, R.; Ortigueira, M.D.; Podlubny, I.; Trujillo, J. On the fractional signals and systems. Signal Process. 2011, 91, 350–371. [Google Scholar] [CrossRef]
- Lazarević, M.P.; Mandić, P.D.; Ostojić, S. Further results on advanced robust iterative learning control and modeling of robotic systems. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2020, 0954406220965996. [Google Scholar] [CrossRef]
- Oziablo, P.; Mozyrska, D.; Wyrwas, M. Discrete-Time Fractional, Variable-Order PID Controller for a Plant with Delay. Entropy 2020, 22, 771. [Google Scholar] [CrossRef]
- Machado, J.T.; Kiryakova, V.; Mainardi, F. Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 1140–1153. [Google Scholar] [CrossRef] [Green Version]
- Patnaik, S.; Hollkamp, J.P.; Semperlotti, F. Applications of variable-order fractional operators: A review. Proc. R. Soc. A 2020, 476, 20190498. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Chang, A.; Zhang, Y.; Chen, W. A review on variable-order fractional differential equations: Mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Appl. Anal. 2019, 22, 27–59. [Google Scholar] [CrossRef] [Green Version]
- Caputo, M.; Fabrizio, M. The kernel of the distributed order fractional derivatives with an application to complex materials. Fractal Fract. 2017, 1, 13. [Google Scholar] [CrossRef] [Green Version]
- Calcagni, G. Towards multifractional calculus. Front. Phys. 2018, 6, 58. [Google Scholar] [CrossRef]
- Lorenzo, C.F.; Hartley, T.T. Variable order and distributed order fractional operators. Nonlinear Dyn. 2002, 29, 57–98. [Google Scholar] [CrossRef]
- Caputo, M. Linear models of dissipation whose Q is almost frequency independent. Ann. Geophys. 1966, 19, 383–393. [Google Scholar] [CrossRef]
- Caputo, M. Linear models of dissipation whose Q is almost frequency independent—II. Geophys. J. Int. 1967, 13, 529–539. [Google Scholar] [CrossRef]
- Caputo, M. Elasticita e Dissipazione; Zanichelli: Bologna, Italy, 1969. [Google Scholar]
- Caputo, M. Mean fractional-order-derivatives differential equations and filters. Annali dell’Universita di Ferrara 1995, 41, 73–84. [Google Scholar]
- Bagley, R.; Torvik, P. On the existence of the order domain and the solution of distributed order equations—Part I. Int. J. Appl. Math. 2000, 2, 865–882. [Google Scholar]
- Bagley, R.; Torvik, P. On the existence of the order domain and the solution of distributed order equations—Part II. Int. J. Appl. Math. 2000, 2, 965–988. [Google Scholar]
- Garrappa, R.; Kaslik, E.; Popolizio, M. Evaluation of fractional integrals and derivatives of elementary functions: Overview and tutorial. Mathematics 2019, 7, 407. [Google Scholar] [CrossRef] [Green Version]
- Atanacković, T.M.; Pilipović, S.; Stanković, B.; Zorica, D. Fractional Calculus with Applications in Mechanics; Wiley Online Library: Hoboken, NJ, USA, 2014. [Google Scholar]
- Sandev, T.; Tomovski, Ž. Fractional Equations and Models: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2019; Volume 61. [Google Scholar]
- Ford, N.J.; Morgado, M.L. Distributed order equations as boundary value problems. Comput. Math. Appl. 2012, 64, 2973–2981. [Google Scholar] [CrossRef] [Green Version]
- Diethelm, K.; Ford, N.J. Numerical analysis for distributed-order differential equations. J. Comput. Appl. Math. 2009, 225, 96–104. [Google Scholar] [CrossRef] [Green Version]
- Pskhu, A.V. On the theory of the continual integro-differentiation operator. Differ. Equ. 2004, 40, 128–136. [Google Scholar] [CrossRef]
- Pskhu, A. Partial Differential Equations of Fractional Order; Nauka: Moscow, Russia, 2005. [Google Scholar]
- Umarov, S.; Gorenflo, R. Cauchy and nonlocal multi-point problems for distributed order pseudo-differential equations: Part one. J. Anal. Its Appl. 2005, 245, 449–466. [Google Scholar]
- Diethelm, K.; Luchko, Y. Numerical solution of linear multi-term initial value problems of fractional order. J. Comput. Anal. Appl 2004, 6, 243–263. [Google Scholar]
- Diethelm, K.; Ford, N.J. Numerical Solution Methods for Distributed Order Differential Equations; Institute of Mathematics & Informatics, Bulgarian Academy of Sciences: Sofia, Bulgaria, 2005. [Google Scholar]
- Atanacković, T.M.; Oparnica, L.; Pilipović, S. On a nonlinear distributed order fractional differential equation. J. Math. Anal. Appl. 2007, 328, 590–608. [Google Scholar] [CrossRef]
- Van Bockstal, K. Existence of a Unique Weak Solution to a Nonlinear Non-Autonomous Time-Fractional Wave Equation (of Distributed-Order). Mathematics 2020, 8, 1283. [Google Scholar] [CrossRef]
- Noroozi, H.; Ansari, A.; Dahaghin, M.S. Existence results for the distributed order fractional hybrid differential equations. Abstr. Appl. Anal. 2012, 2012. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, S.; Han, Z.; Li, Q. Theory of fractional hybrid differential equations. Comput. Math. Appl. 2011, 62, 1312–1324. [Google Scholar] [CrossRef] [Green Version]
- Noroozi, H.; Ansari, A. Basic results on distributed order fractional hybrid differential equations with linear perturbations. J. Math. Model. 2014, 2, 55–73. [Google Scholar]
- Atanackovic, T.M.; Oparnica, L.; Pilipović, S. Distributional framework for solving fractional differential equations. Integral Transform. Spec. Funct. 2009, 20, 215–222. [Google Scholar] [CrossRef]
- Atanackovic, T.M.; Oparnica, L.; Pilipović, S. Semilinear ordinary differential equation coupled with distributed order fractional differential equation. Nonlinear Anal. Theory Methods Appl. 2010, 72, 4101–4114. [Google Scholar] [CrossRef] [Green Version]
- Fedorov, V.E. Generators of analytic resolving families for distributed order equations and perturbations. Mathematics 2020, 8, 1306. [Google Scholar] [CrossRef]
- Refahi, A.; Ansari, A.; Najafi, H.S.; Merhdoust, F. Analytic study on linear systems of distributed order fractional differential equations. Le Matematiche 2012, 67, 3–13. [Google Scholar]
- Luchko, Y. Boundary value problems for the generalized time-fractional diffusion equation of distributed order. Fract. Calc. Appl. Anal. 2009, 12, 409–422. [Google Scholar]
- Luchko, Y. Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation. J. Math. Anal. Appl. 2011, 374, 538–548. [Google Scholar] [CrossRef] [Green Version]
- Daftardar-Gejji, V.; Bhalekar, S. Boundary value problems for multi-term fractional differential equations. J. Math. Anal. Appl. 2008, 345, 754–765. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Liu, Y.; Yamamoto, M. Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients. Appl. Math. Comput. 2015, 257, 381–397. [Google Scholar] [CrossRef] [Green Version]
- Luchko, Y. Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation. Comput. Math. Appl. 2010, 59, 1766–1772. [Google Scholar] [CrossRef] [Green Version]
- Luchko, Y.; Gorenflo, R. An operational method for solving fractional differential equations with the Caputo derivatives. Acta Math. Vietnam 1999, 24, 207–233. [Google Scholar]
- Jiang, H.; Liu, F.; Turner, I.; Burrage, K. Analytical solutions for the multi-term time-space Caputo-Riesz fractional advection-diffusion equations on a finite domain. J. Math. Anal. Appl. 2012, 389, 1117–1127. [Google Scholar] [CrossRef] [Green Version]
- Bazhlekova, E. Completely monotone functions and some classes of fractional evolution equations. Integral Transform. Spec. Funct. 2015, 26, 737–752. [Google Scholar] [CrossRef] [Green Version]
- Bazhlekova, E.; Bazhlekov, I. Complete monotonicity of the relaxation moduli of distributed-order fractional Zener model. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2018; Volume 2048, p. 050008. [Google Scholar]
- Stojanović, M. Fractional relaxation equations of distributed order. Nonlinear Anal. Real World Appl. 2012, 13, 939–946. [Google Scholar] [CrossRef]
- Mainardi, F.; Mura, A.; Gorenflo, R.; Stojanović, M. The two forms of fractional relaxation of distributed order. J. Vib. Control 2007, 13, 1249–1268. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, C.F.; Hartley, T.T. Initialization, conceptualization, and application in the generalized (fractional) calculus. Crit. Rev. Biomed. Eng. 2007, 35. [Google Scholar] [CrossRef]
- Diethelm, K.; Ford, N.J. Numerical solution methods for distributed order differential equations. Fract. Calc. Appl. Anal. 2001, 4, 531–542. [Google Scholar]
- Yuttanan, B.; Razzaghi, M. Legendre wavelets approach for numerical solutions of distributed order fractional differential equations. Appl. Math. Model. 2019, 70, 350–364. [Google Scholar] [CrossRef]
- Abbaszadeh, M.; Dehghan, M.; Zhou, Y. Crank—Nicolson/Galerkin spectral method for solving two-dimensional time-space distributed-order weakly singular integro-partial differential equation. J. Comput. Appl. Math. 2020, 374, 112739. [Google Scholar] [CrossRef]
- Abbaszadeh, M.; Dehghan, M. Meshless upwind local radial basis function-finite difference technique to simulate the time-fractional distributed-order advection–diffusion equation. Eng. Comput. 2019, 1–17. [Google Scholar] [CrossRef]
- Bu, W.; Ji, L.; Tang, Y.; Zhou, J. Space-time finite element method for the distributed-order time fractional reaction diffusion equations. Appl. Numer. Math. 2020, 152, 446–465. [Google Scholar] [CrossRef]
- Dehghan, M.; Abbaszadeh, M. A Legendre spectral element method (SEM) based on the modified bases for solving neutral delay distributed-order fractional damped diffusion-wave equation. Math. Methods Appl. Sci. 2018, 41, 3476–3494. [Google Scholar] [CrossRef]
- Duong, P.L.T.; Kwok, E.; Lee, M. Deterministic analysis of distributed order systems using operational matrix. Appl. Math. Model. 2016, 40, 1929–1940. [Google Scholar] [CrossRef]
- Fakhar-Izadi, F. Fully Petrov—Galerkin spectral method for the distributed-order time-fractional fourth-order partial differential equation. Eng. Comput. 2020, 1–10. [Google Scholar] [CrossRef]
- Hafez, R.M.; Zaky, M.A.; Abdelkawy, M.A. Jacobi Spectral Galerkin method for Distributed-Order Fractional Rayleigh-Stokes problem for a Generalized Second Grade Fluid. Front. Phys. 2020, 7. [Google Scholar] [CrossRef]
- Kharazmi, E.; Zayernouri, M.; Karniadakis, G.E. Petrov–Galerkin and spectral collocation methods for distributed order differential equations. SIAM J. Sci. Comput. 2017, 39, A1003–A1037. [Google Scholar] [CrossRef]
- Jibenja, N.; Yuttanan, B.; Razzaghi, M. An Efficient Method for Numerical Solutions of Distributed-Order Fractional Differential Equations. J. Comput. Nonlinear Dyn. 2018, 13. [Google Scholar] [CrossRef]
- Morgado, M.L.; Rebelo, M.; Ferras, L.L.; Ford, N.J. Numerical solution for diffusion equations with distributed order in time using a Chebyshev collocation method. Appl. Numer. Math. 2017, 114, 108–123. [Google Scholar] [CrossRef]
- Mashayekhi, S.; Razzaghi, M. Numerical solution of distributed order fractional differential equations by hybrid functions. J. Comput. Phys. 2016, 315, 169–181. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, Y.; Zhao, J. Error analysis of the Legendre-Gauss collocation methods for the nonlinear distributed-order fractional differential equation. Appl. Numer. Math. 2019, 142, 122–138. [Google Scholar] [CrossRef]
- Pourbabaee, M.; Saadatmandi, A. Collocation method based on Chebyshev polynomials for solving distributed order fractional differential equations. Comput. Methods Differ. Equ. 2020. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, F.; Jiang, X.; Zeng, F.; Turner, I. A Crank—Nicolson ADI Galerkin—Legendre spectral method for the two-dimensional Riesz space distributed-order advection-diffusion equation. Comput. Math. Appl. 2018, 76, 2460–2476. [Google Scholar] [CrossRef] [Green Version]
- Zaky, M.; Doha, E.; Tenreiro Machado, J. A spectral numerical method for solving distributed-order fractional initial value problems. J. Comput. Nonlinear Dyn. 2018, 13. [Google Scholar] [CrossRef]
- Zaky, M.A. A Legendre collocation method for distributed-order fractional optimal control problems. Nonlinear Dyn. 2018, 91, 2667–2681. [Google Scholar] [CrossRef]
- Abdelkawy, M. A collocation method based on Jacobi and fractional order Jacobi basis functions for multi-dimensional distributed-order diffusion equations. Int. J. Nonlinear Sci. Numer. Simul. 2018, 19, 781–792. [Google Scholar] [CrossRef]
- Abdelkawy, M.; Lopes, A.M.; Zaky, M. Shifted fractional Jacobi spectral algorithm for solving distributed order time-fractional reaction–diffusion equations. Comput. Appl. Math. 2019, 38, 81. [Google Scholar] [CrossRef]
- Zaky, M.A.; Machado, J.T. Multi-dimensional spectral tau methods for distributed-order fractional diffusion equations. Comput. Math. Appl. 2020, 79, 476–488. [Google Scholar] [CrossRef]
- Rahimkhani, P.; Ordokhani, Y.; Lima, P. An improved composite collocation method for distributed-order fractional differential equations based on fractional Chelyshkov wavelets. Appl. Numer. Math. 2019, 145, 1–27. [Google Scholar] [CrossRef]
- Abdelkawy, M.; Babatin, M.M.; Lopes, A.M. Highly accurate technique for solving distributed-order time-fractional-sub-diffusion equations of fourth order. Comput. Appl. Math. 2020, 39, 1–22. [Google Scholar] [CrossRef]
- Abbaszadeh, M.; Dehghan, M. An improved meshless method for solving two-dimensional distributed order time-fractional diffusion-wave equation with error estimate. Numer. Algorithms 2017, 75, 173–211. [Google Scholar] [CrossRef]
- Hu, J.; Wang, J.; Nie, Y. Numerical algorithms for multidimensional time-fractional wave equation of distributed-order with a nonlinear source term. Adv. Differ. Equ. 2018, 2018, 352. [Google Scholar] [CrossRef]
- Chen, H.; Lü, S.; Chen, W. Finite difference/spectral approximations for the distributed order time fractional reaction–diffusion equation on an unbounded domain. J. Comput. Phys. 2016, 315, 84–97. [Google Scholar] [CrossRef]
- Gao, X.; Liu, F.; Li, H.; Liu, Y.; Turner, I.; Yin, B. A novel finite element method for the distributed-order time fractional Cable equation in two dimensions. Comput. Math. Appl. 2020, 80, 923–939. [Google Scholar] [CrossRef]
- Gao, G.; Sun, H.; Sun, Z. Some high-order difference schemes for the distributed-order differential equations. J. Comput. Phys. 2015, 298, 337–359. [Google Scholar] [CrossRef]
- Gao, G.; Sun, Z. Two alternating direction implicit difference schemes for two-dimensional distributed-order fractional diffusion equations. J. Sci. Comput. 2016, 66, 1281–1312. [Google Scholar] [CrossRef]
- Li, X.; Rui, H. Two temporal second-order H1-Galerkin mixed finite element schemes for distributed-order fractional sub-diffusion equations. Numer. Algorithms 2018, 79, 1107–1130. [Google Scholar] [CrossRef]
- Katsikadelis, J.T. Numerical solution of distributed order fractional differential equations. J. Comput. Phys. 2014, 259, 11–22. [Google Scholar] [CrossRef]
- Liu, Q.; Mu, S.; Liu, Q.; Liu, B.; Bi, X.; Zhuang, P.; Li, B.; Gao, J. An RBF based meshless method for the distributed order time fractional advection–diffusion equation. Eng. Anal. Bound. Elem. 2018, 96, 55–63. [Google Scholar] [CrossRef]
- Bu, W.; Xiao, A.; Zeng, W. Finite difference/finite element methods for distributed-order time fractional diffusion equations. J. Sci. Comput. 2017, 72, 422–441. [Google Scholar] [CrossRef]
- Gao, G.; Sun, Z. Two alternating direction implicit difference schemes with the extrapolation method for the two-dimensional distributed-order differential equations. Comput. Math. Appl. 2015, 69, 926–948. [Google Scholar] [CrossRef]
- Gao, G.; Sun, Z. Two difference schemes for solving the one-dimensional time distributed-order fractional wave equations. Numer. Algorithms 2017, 74, 675–697. [Google Scholar] [CrossRef]
- Fei, M.; Huang, C. Galerkin—Legendre spectral method for the distributed-order time fractional fourth-order partial differential equation. Int. J. Comput. Math. 2020, 97, 1183–1196. [Google Scholar] [CrossRef]
- Kumar, S.; Gómez-Aguilar, J.F. Numerical Solution of Caputo-Fabrizio Time Fractional Distributed Order Reaction-diffusion Equation via Quasi Wavelet based Numerical Method. J. Appl. Comput. Mech. 2020, 6, 848–861. [Google Scholar]
- Du, R.; Hao, Z.; Sun, Z. Lubich second-order methods for distributed-order time-fractional differential equations with smooth solutions. East Asian J. Appl. Math. 2016, 6, 131–151. [Google Scholar] [CrossRef]
- Pimenov, V.G.; Hendy, A.S.; De Staelen, R.H. On a class of non-linear delay distributed order fractional diffusion equations. J. Comput. Appl. Math. 2017, 318, 433–443. [Google Scholar] [CrossRef]
- Aminikhah, H.; Sheikhani, A.H.R.; Houlari, T.; Rezazadeh, H. Numerical solution of the distributed-order fractional Bagley-Torvik equation. IEEE/CAA J. Autom. Sin. 2017, 6, 760–765. [Google Scholar] [CrossRef]
- Fan, W.; Liu, F. A numerical method for solving the two-dimensional distributed order space-fractional diffusion equation on an irregular convex domain. Appl. Math. Lett. 2018, 77, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Ford, N.J.; Morgado, M.L.; Rebelo, M. A numerical method for the distributed order time-fractional diffusion equation. In Proceedings of the ICFDA’14 International Conference on Fractional Differentiation and Its Applications 2014, Catania, Italy, 23–25 June 2014; IEEE: New York, NY, USA, 2014; pp. 1–6. [Google Scholar]
- Guo, S.; Mei, L.; Zhang, Z.; Jiang, Y. Finite difference/spectral-Galerkin method for a two-dimensional distributed-order time–space fractional reaction–diffusion equation. Appl. Math. Lett. 2018, 85, 157–163. [Google Scholar] [CrossRef]
- Hu, X.; Liu, F.; Turner, I.; Anh, V. An implicit numerical method of a new time distributed-order and two-sided space-fractional advection-dispersion equation. Numer. Algorithms 2016, 72, 393–407. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Liu, F.; Feng, L.; Turner, I. A novel finite volume method for the Riesz space distributed-order diffusion equation. Comput. Math. Appl. 2017, 74, 772–783. [Google Scholar] [CrossRef]
- Li, J.; Liu, F.; Feng, L.; Turner, I. A novel finite volume method for the Riesz space distributed-order advection–diffusion equation. Appl. Math. Model. 2017, 46, 536–553. [Google Scholar] [CrossRef] [Green Version]
- Morgado, M.L.; Rebelo, M. Numerical approximation of distributed order reaction–diffusion equations. J. Comput. Appl. Math. 2015, 275, 216–227. [Google Scholar] [CrossRef]
- Moghaddam, B.; Machado, J.T.; Morgado, M. Numerical approach for a class of distributed order time fractional partial differential equations. Appl. Numer. Math. 2019, 136, 152–162. [Google Scholar] [CrossRef]
- Ye, H.; Liu, F.; Anh, V.; Turner, I. Numerical analysis for the time distributed-order and Riesz space fractional diffusions on bounded domains. IMA J. Appl. Math. 2015, 80, 825–838. [Google Scholar] [CrossRef] [Green Version]
- Ye, H.; Liu, F.; Anh, V. Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains. J. Comput. Phys. 2015, 298, 652–660. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Liu, F.; Chen, X. Novel second-order accurate implicit numerical methods for the Riesz space distributed-order advection-dispersion equations. Adv. Math. Phys. 2015, 2015. [Google Scholar] [CrossRef]
- Zheng, R.; Liu, F.; Jiang, X.; Turner, I.W. Finite difference/spectral methods for the two-dimensional distributed-order time-fractional cable equation. Comput. Math. Appl. 2020, 80, 1523–1537. [Google Scholar] [CrossRef]
- Heris, M.S.; Javidi, M. Fractional backward differential formulas for the distributed-order differential equation with time delay. Bull. Iran. Math. Soc. 2019, 45, 1159–1176. [Google Scholar] [CrossRef]
- Javidi, M.; Heris, M.S. Analysis and numerical methods for the Riesz space distributed-order advection-diffusion equation with time delay. SEMA J. 2019, 76, 533–551. [Google Scholar] [CrossRef]
- Aboelenen, T. Local discontinuous Galerkin method for distributed-order time and space-fractional convection–diffusion and Schrödinger-type equations. Nonlinear Dyn. 2018, 92, 395–413. [Google Scholar] [CrossRef] [Green Version]
- Liao, H.; Lyu, P.; Vong, S.; Zhao, Y. Stability of fully discrete schemes with interpolation-type fractional formulas for distributed-order subdiffusion equations. Numer. Algorithms 2017, 75, 845–878. [Google Scholar] [CrossRef]
- Li, X.; Rui, H.; Liu, Z. Two alternating direction implicit spectral methods for two-dimensional distributed-order differential equation. Numer. Algorithms 2019, 82, 321–347. [Google Scholar] [CrossRef]
- Li, L.; Liu, F.; Feng, L.; Turner, I. A Galerkin finite element method for the modified distributed-order anomalous sub-diffusion equation. J. Comput. Appl. Math. 2020, 368, 112589. [Google Scholar] [CrossRef]
- Li, X.; Rui, H. A block-centered finite difference method for the distributed-order time-fractional diffusion-wave equation. Appl. Numer. Math. 2018, 131, 123–139. [Google Scholar] [CrossRef]
- Jian, H.; Huang, T.; Zhao, X.; Zhao, Y. A fast implicit difference scheme for a new class of time distributed-order and space fractional diffusion equations with variable coefficients. Adv. Differ. Equ. 2018, 2018, 205. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Chen, H. A numerical method for distributed order time fractional diffusion equation with weakly singular solutions. Appl. Math. Lett. 2019, 96, 159–165. [Google Scholar] [CrossRef]
- Li, C.; Zeng, F. Numerical Methods for Fractional Calculus; CRC Press: Boca Raton, FL, USA, 2015; Volume 24. [Google Scholar]
- Diethelm, K.; Ford, N.J.; Freed, A.D.; Luchko, Y. Algorithms for the fractional calculus: A selection of numerical methods. Comput. Methods Appl. Mech. Eng. 2005, 194, 743–773. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Zeng, F. Finite difference methods for fractional differential equations. Int. J. Bifurc. Chaos 2012, 22, 1230014. [Google Scholar] [CrossRef]
- Bhrawy, A.H.; Taha, T.M.; Machado, J.A.T. A review of operational matrices and spectral techniques for fractional calculus. Nonlinear Dyn. 2015, 81, 1023–1052. [Google Scholar] [CrossRef]
- Guo, S.; Mei, L.; Zhang, Z.; Li, C.; Li, M.; Wang, Y. A linearized finite difference/spectral-Galerkin scheme for three-dimensional distributed-order time–space fractional nonlinear reaction–diffusion-wave equation: Numerical simulations of Gordon-type solitons. Comput. Phys. Commun. 2020, 107144. [Google Scholar] [CrossRef]
- Hafez, R.M.; Zaky, M.A. High-order continuous Galerkin methods for multi-dimensional advection–reaction–diffusion problems. Eng. Comput. 2019, 36, 1813–1829. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Y.; Xu, Y. Implicit Runge–Kutta and spectral Galerkin methods for Riesz space fractional/distributed-order diffusion equation. Comput. Appl. Math. 2020, 39, 47. [Google Scholar] [CrossRef]
- Samiee, M.; Kharazmi, E.; Zayernouri, M.; Meerschaert, M.M. Petrov-Galerkin method for fully distributed-order fractional partial differential equations. arXiv 2018, arXiv:1805.08242. [Google Scholar]
- Bhrawy, A.; Zaky, M. Numerical simulation of multi-dimensional distributed-order generalized Schrödinger equations. Nonlinear Dyn. 2017, 89, 1415–1432. [Google Scholar] [CrossRef]
- Zaky, M.A.; Ameen, I.G. On the rate of convergence of spectral collocation methods for nonlinear multi-order fractional initial value problems. Comput. Appl. Math. 2019, 38, 144. [Google Scholar] [CrossRef]
- Pourbabaee, M.; Saadatmandi, A. A novel Legendre operational matrix for distributed order fractional differential equations. Appl. Math. Comput. 2019, 361, 215–231. [Google Scholar] [CrossRef]
- Doha, E.H.; Bhrawy, A.H.; Ezz-Eldien, S.S. A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order. Comput. Math. Appl. 2011, 62, 2364–2373. [Google Scholar] [CrossRef] [Green Version]
- Doha, E.H.; Bhrawy, A.H.; Ezz-Eldien, S. Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations. Appl. Math. Model. 2011, 35, 5662–5672. [Google Scholar] [CrossRef]
- Bhrawy, A.H.; Zaky, M.A. A method based on the Jacobi tau approximation for solving multi-term time–space fractional partial differential equations. J. Comput. Phys. 2015, 281, 876–895. [Google Scholar] [CrossRef]
- Zaky, M.A. A Legendre spectral quadrature tau method for the multi-term time-fractional diffusion equations. Comput. Appl. Math. 2018, 37, 3525–3538. [Google Scholar] [CrossRef]
- Atabakzadeh, M.; Akrami, M.; Erjaee, G. Chebyshev operational matrix method for solving multi-order fractional ordinary differential equations. Appl. Math. Model. 2013, 37, 8903–8911. [Google Scholar] [CrossRef]
- Semary, M.S.; Hassan, H.N.; Radwan, A.G. Modified methods for solving two classes of distributed order linear fractional differential equations. Appl. Math. Comput. 2018, 323, 106–119. [Google Scholar] [CrossRef]
- Mashoof, M.; Sheikhani, A.R. Simulating the solution of the distributed order fractional differential equations by block-pulse wavelets. UPB Sci. Bull. Ser. A Appl. Math. Phys. 2017, 79, 193–206. [Google Scholar]
- Kharazmi, E.; Zayernouri, M. Fractional pseudo-spectral methods for distributed-order fractional PDEs. Int. J. Comput. Math. 2018, 95, 1340–1361. [Google Scholar] [CrossRef]
- Li, X.; Wu, B. A numerical method for solving distributed order diffusion equations. Appl. Math. Lett. 2016, 53, 92–99. [Google Scholar] [CrossRef]
- Sweilam, N.; Khader, M.; Al-Bar, R. Numerical studies for a multi-order fractional differential equation. Phys. Lett. A 2007, 371, 26–33. [Google Scholar] [CrossRef]
- Jafari, H.; Golbabai, A.; Seifi, S.; Sayevand, K. Homotopy analysis method for solving multi-term linear and nonlinear diffusion–wave equations of fractional order. Comput. Math. Appl. 2010, 59, 1337–1344. [Google Scholar] [CrossRef] [Green Version]
- Jafari, M.; Aminataei, A. An algorithm for solving multi-term diffusion-wave equations of fractional order. Comput. Math. Appl. 2011, 62, 1091–1097. [Google Scholar] [CrossRef] [Green Version]
- Aminikhah, H.; Sheikhani, A.H.R.; Rezazadeh, H. Approximate analytical solutions of distributed order fractional Riccati differential equation. Ain Shams Eng. J. 2018, 9, 581–588. [Google Scholar] [CrossRef] [Green Version]
- Patnaik, S.; Semperlotti, F. Application of variable-and distributed-order fractional operators to the dynamic analysis of nonlinear oscillators. Nonlinear Dyn. 2020, 100, 561–580. [Google Scholar] [CrossRef]
- Daftardar-Gejji, V.; Jafari, H. Solving a multi-order fractional differential equation using Adomian decomposition. Appl. Math. Comput. 2007, 189, 541–548. [Google Scholar] [CrossRef]
- Daftardar-Gejji, V.; Bhalekar, S. Solving multi-term linear and non-linear diffusion–wave equations of fractional order by Adomian decomposition method. Appl. Math. Comput. 2008, 202, 113–120. [Google Scholar] [CrossRef]
- Sadeghinia, A.; Kumar, P. One solution of multi-term fractional differential equations by Adomian decomposition method. Int. J. Sci. Innov. Math. Res. 2015, 3, 14–21. [Google Scholar]
- Jin, B.; Li, B.; Zhou, Z. Numerical analysis of nonlinear subdiffusion equations. SIAM J. Numer. Anal. 2018, 56, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Jin, B.; Lazarov, R.; Zhou, Z. Numerical methods for time-fractional evolution equations with nonsmooth data: A concise overview. Comput. Methods Appl. Mech. Eng. 2019, 346, 332–358. [Google Scholar] [CrossRef] [Green Version]
- Stynes, M.; O’Riordan, E.; Gracia, J.L. Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 2017, 55, 1057–1079. [Google Scholar] [CrossRef]
- Hu, X.; Liu, F.; Anh, V.; Turner, I. A numerical investigation of the time distributed-order diffusion model. ANZIAM J. 2013, 55, C464–C478. [Google Scholar] [CrossRef] [Green Version]
- Alikhanov, A.A. Numerical methods of solutions of boundary value problems for the multi-term variable-distributed order diffusion equation. Appl. Math. Comput. 2015, 268, 12–22. [Google Scholar] [CrossRef] [Green Version]
- Morgado, M.; Rebelo, M. Introducing graded meshes in the numerical approximation of distributed-order diffusion equations. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2016; Volume 1776, p. 070002. [Google Scholar]
- Abbaszadeh, M. Error estimate of second-order finite difference scheme for solving the Riesz space distributed-order diffusion equation. Appl. Math. Lett. 2019, 88, 179–185. [Google Scholar] [CrossRef]
- Li, X.; Wong, P.J. An efficient nonpolynomial spline method for distributed order fractional subdiffusion equations. Math. Methods Appl. Sci. 2018, 41, 4906–4922. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, H.; Xu, D. WSGD-OSC scheme for two-dimensional distributed order fractional reaction–diffusion equation. J. Sci. Comput. 2018, 76, 1502–1520. [Google Scholar] [CrossRef]
- Ran, M.; Zhang, C. New compact difference scheme for solving the fourth-order time fractional sub-diffusion equation of the distributed order. Appl. Numer. Math. 2018, 129, 58–70. [Google Scholar] [CrossRef]
- Sun, Z.; Wu, X. A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 2006, 56, 193–209. [Google Scholar] [CrossRef]
- Qiao, H.; Liu, Z.; Cheng, A. Two unconditionally stable difference schemes for time distributed-order differential equation based on Caputo–Fabrizio fractional derivative. Adv. Differ. Equ. 2020, 2020, 36. [Google Scholar] [CrossRef]
- Abbaszadeh, M.; Dehghan, M. A POD-based reduced-order Crank-Nicolson/fourth-order alternating direction implicit (ADI) finite difference scheme for solving the two-dimensional distributed-order Riesz space-fractional diffusion equation. Appl. Numer. Math. 2020, 158, 271–291. [Google Scholar] [CrossRef]
- Jin, B.; Lazarov, R.; Liu, Y.; Zhou, Z. The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 2015, 281, 825–843. [Google Scholar] [CrossRef] [Green Version]
- Bu, W.; Liu, X.; Tang, Y.; Yang, J. Finite element multigrid method for multi-term time fractional advection diffusion equations. Int. J. Model. Simul. Sci. Comput. 2015, 6, 1540001. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.; Liu, F.; Turner, I.; Shi, D. Analytical solution and nonconforming finite element approximation for the 2D multi-term fractional subdiffusion equation. Appl. Math. Model. 2016, 40, 8810–8825. [Google Scholar] [CrossRef]
- Jin, B.; Lazarov, R.; Sheen, D.; Zhou, Z. Error estimates for approximations of distributed order time fractional diffusion with nonsmooth data. Fract. Calc. Appl. Anal. 2016, 19, 69–93. [Google Scholar] [CrossRef] [Green Version]
- Hou, Y.; Wen, C.; Li, H.; Liu, Y.; Fang, Z.; Yang, Y. Some Second-Order σ Schemes Combined with an H1-Galerkin MFE Method for a Nonlinear Distributed-Order Sub-Diffusion Equation. Mathematics 2020, 8, 187. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; Liu, L.; Sun, H. Stability and convergence of a local discontinuous Galerkin method for the fractional diffusion equation with distributed order. J. Appl. Math. Comput. 2019, 59, 323–341. [Google Scholar] [CrossRef]
- Fan, W.; Jiang, X.; Liu, F.; Anh, V. The unstructured mesh finite element method for the two-dimensional multi-term time–space fractional diffusion-wave equation on an irregular convex domain. J. Sci. Comput. 2018, 77, 27–52. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Feng, L.; Anh, V.; Li, J. Unstructured-mesh Galerkin finite element method for the two-dimensional multi-term time–space fractional Bloch–Torrey equations on irregular convex domains. Comput. Math. Appl. 2019, 78, 1637–1650. [Google Scholar] [CrossRef]
- Shi, Y.H.; Liu, F.; Zhao, Y.M.; Wang, F.L.; Turner, I. An unstructured mesh finite element method for solving the multi-term time fractional and Riesz space distributed-order wave equation on an irregular convex domain. Appl. Math. Model. 2019, 73, 615–636. [Google Scholar] [CrossRef]
- Yin, B.; Liu, Y.; Li, H.; Zhang, Z. Approximation methods for the distributed order calculus using the convolution quadrature. Discret. Contin. Dyn. Syst. B 2017, 22. [Google Scholar] [CrossRef]
- Podlubny, I. Matrix approach to discrete fractional calculus. Fract. Calc. Appl. Anal. 2000, 3, 359–386. [Google Scholar]
- Podlubny, I.; Chechkin, A.; Skovranek, T.; Chen, Y.; Jara, B.M.V. Matrix approach to discrete fractional calculus II: Partial fractional differential equations. J. Comput. Phys. 2009, 228, 3137–3153. [Google Scholar] [CrossRef] [Green Version]
- Podlubny, I.; Skovranek, T.; Vinagre Jara, B.M.; Petras, I.; Verbitsky, V.; Chen, Y. Matrix approach to discrete fractional calculus III: Non-equidistant grids, variable step length and distributed orders. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20120153. [Google Scholar] [CrossRef]
- Diethelm, K.; Ford, N.J. Multi-order fractional differential equations and their numerical solution. Appl. Math. Comput. 2004, 154, 621–640. [Google Scholar] [CrossRef]
- Liu, F.; Meerschaert, M.; McGough, R.; Zhuang, P.; Liu, Q. Numerical methods for solving the multi-term time-fractional wave-diffusion equation. Fract. Calc. Appl. Anal. 2013, 16, 9–25. [Google Scholar] [CrossRef] [Green Version]
- Ye, H.; Liu, F.; Anh, V.; Turner, I. Maximum principle and numerical method for the multi-term time–space Riesz—Caputo fractional differential equations. Appl. Math. Comput. 2014, 227, 531–540. [Google Scholar] [CrossRef] [Green Version]
- Kazmi, K.; Khaliq, A.Q. An efficient split-step method for distributed-order space-fractional reaction-diffusion equations with time-dependent boundary conditions. Appl. Numer. Math. 2020, 147, 142–160. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, H.; Wang, H.; Fu, H. An efficient finite volume method for nonlinear distributed-order space-fractional diffusion equations in three space dimensions. J. Sci. Comput. 2019, 80, 1395–1418. [Google Scholar] [CrossRef]
- Jia, J.; Wang, H. A fast finite difference method for distributed-order space-fractional partial differential equations on convex domains. Comput. Math. Appl. 2018, 75, 2031–2043. [Google Scholar] [CrossRef]
- Gong, C.; Bao, W.; Tang, G.; Yang, B.; Liu, J. An efficient parallel solution for Caputo fractional reaction–diffusion equation. J. Supercomput. 2014, 68, 1521–1537. [Google Scholar] [CrossRef]
- Sweilam, N.H.; Moharram, H.; Moniem, N.A.; Ahmed, S. A parallel Crank–Nicolson finite difference method for time-fractional parabolic equation. J. Numer. Math. 2014, 22, 363–382. [Google Scholar] [CrossRef]
- Biala, T.; Khaliq, A. Parallel algorithms for nonlinear time–space fractional parabolic PDEs. J. Comput. Phys. 2018, 375, 135–154. [Google Scholar] [CrossRef]
- Liu, J.; Gong, C.; Bao, W.; Tang, G.; Jiang, Y. Solving the Caputo fractional reaction-diffusion equation on GPU. Discret. Dyn. Nat. Soc. 2014, 2014. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, P.; Gu, X.; Zhao, X.; Cao, J. A limited-memory block bi-diagonal Toeplitz preconditioner for block lower triangular Toeplitz system from time–space fractional diffusion equation. J. Comput. Appl. Math. 2019, 362, 99–115. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Gu, X.; Li, M.; Jian, H. Preconditioners for all-at-once system from the fractional mobile/immobile advection–diffusion model. J. Appl. Math. Comput. 2020, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Chen, Y. Theory and implementation of distributed-order element networks. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Washington, DC, USA, 28–31 August 2011; Volume 54808, pp. 361–367. [Google Scholar]
- West, B.J.; Latka, M.; Glaubic-Latka, M.; Latka, D. Multifractality of cerebral blood flow. Phys. A Stat. Mech. Its Appl. 2003, 318, 453–460. [Google Scholar] [CrossRef]
- Shlesinger, M.F.; West, B.J.; Klafter, J. Lévy dynamics of enhanced diffusion: Application to turbulence. Phys. Rev. Lett. 1987, 58, 1100. [Google Scholar] [CrossRef]
- Patnaik, S.; Sidhardh, S.; Semperlotti, F. Towards a unified approach to nonlocal elasticity via fractional-order mechanics. Int. J. Mech. Sci. 2020, 189, 105992. [Google Scholar] [CrossRef]
- Demontis, P.; Suffritti, G.B. Fractional diffusion interpretation of simulated single-file systems in microporous materials. Phys. Rev. E 2006, 74, 051112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srokowski, T. Lévy flights in nonhomogeneous media: Distributed-order fractional equation approach. Phys. Rev. E 2008, 78, 031135. [Google Scholar] [CrossRef] [PubMed]
- Martins, J.; Ribeiro, H.V.; Evangelista, L.R.; da Silva, L.R.; Lenzi, E.K. Fractional Schrödinger equation with noninteger dimensions. Appl. Math. Comput. 2012, 219, 2313–2319. [Google Scholar] [CrossRef]
- Sandev, T.; Tomovski, Ž. Langevin equation for a free particle driven by power law type of noises. Phys. Lett. A 2014, 378, 1–9. [Google Scholar] [CrossRef]
- Gemant, A. A method of analyzing experimental results obtained from elasto-viscous bodies. Physics 1936, 7, 311–317. [Google Scholar] [CrossRef]
- Gemant, A. On fractional differentials. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1938, 25, 540–549. [Google Scholar] [CrossRef]
- Hartley, T.T.; Lorenzo, C.F. Fractional-order system identification based on continuous order-distributions. Signal Process. 2003, 83, 2287–2300. [Google Scholar] [CrossRef]
- Atanackovic, T.M. A generalized model for the uniaxial isothermal deformation of a viscoelastic body. Acta Mech. 2002, 159, 77–86. [Google Scholar] [CrossRef]
- Atanackovic, T.M. On a distributed derivative model of a viscoelastic body. Comptes Rendus Mec. 2003, 331, 687–692. [Google Scholar] [CrossRef]
- Atanacković, T.M.; Konjik, S.; Oparnica, L.; Zorica, D. Thermodynamical restrictions and wave propagation for a class of fractional order viscoelastic rods. Abstr. Appl. Anal. 2011, 2011. [Google Scholar] [CrossRef] [Green Version]
- Caputo, M.; Mainardi, F. Linear models of dissipation in anelastic solids. La Rivista Del Nuovo Cimento (1971–1977) 1971, 1, 161–198. [Google Scholar] [CrossRef]
- Atanackovic, T.M.; Pilipovic, S.; Zorica, D. Distributed-order fractional wave equation on a finite domain: Creep and forced oscillations of a rod. Contin. Mech. Thermodyn. 2011, 23, 305–318. [Google Scholar] [CrossRef]
- Atanackovic, T.M.; Pilipovic, S.; Zorica, D. Distributed-order fractional wave equation on a finite domain. Stress relaxation in a rod. Int. J. Eng. Sci. 2011, 49, 175–190. [Google Scholar] [CrossRef] [Green Version]
- Atanackovic, T.M.; Budincevic, M.; Pilipovic, S. On a fractional distributed-order oscillator. J. Phys. A Math. Gen. 2005, 38, 6703. [Google Scholar] [CrossRef]
- Duan, J.S.; Chen, Y. Mechanical response and simulation for constitutive equations with distributed order derivatives. Int. J. Model. Simul. Sci. Comput. 2017, 8, 1750040. [Google Scholar] [CrossRef] [Green Version]
- Stankovic, B.; Atanackovic, T. Dynamics of a rod made of generalized Kelvin–Voigt visco-elastic material. J. Math. Anal. Appl. 2002, 268, 550–563. [Google Scholar] [CrossRef] [Green Version]
- Rossikhin, Y.A.; Shitikova, M. A new method for solving dynamic problems of fractional derivative viscoelasticity. Int. J. Eng. Sci. 2001, 39, 149–176. [Google Scholar] [CrossRef]
- Näsholm, S.P.; Holm, S. On a fractional Zener elastic wave equation. Fract. Calc. Appl. Anal. 2013, 16, 26–50. [Google Scholar] [CrossRef] [Green Version]
- Atanackovic, T.M. A modified Zener model of a viscoelastic body. Contin. Mech. Thermodyn. 2002, 14, 137. [Google Scholar] [CrossRef]
- Konjik, S.; Oparnica, L.; Zorica, D. Waves in fractional Zener type viscoelastic media. J. Math. Anal. Appl. 2010, 365, 259–268. [Google Scholar] [CrossRef] [Green Version]
- Konjik, S.; Oparnica, L.; Zorica, D. Distributed-order fractional constitutive stress–strain relation in wave propagation modeling. Zeitschrift für angewandte Mathematik und Physik 2019, 70, 51. [Google Scholar] [CrossRef] [Green Version]
- Rossikhin, Y.A.; Shitikova, M. Analysis of dynamic behaviour of viscoelastic rods whose rheological models contain fractional derivatives of two different orders. ZAMM-J. Appl. Math. Mech. 2001, 81, 363–376. [Google Scholar] [CrossRef]
- Pritz, T. Analysis of four-parameter fractional derivative model of real solid materials. J. Sound Vib. 1996, 195, 103–115. [Google Scholar] [CrossRef]
- Pritz, T. Five-parameter fractional derivative model for polymeric damping materials. J. Sound Vib. 2003, 265, 935–952. [Google Scholar] [CrossRef]
- Petrovic, L.M.; Zorica, D.M.; Stojanac, I.L.; Krstonosic, V.S.; Hadnadjev, M.S.; Janev, M.B.; Premovic, M.T.; Atanackovic, T.M. Viscoelastic properties of uncured resin composites: Dynamic oscillatory shear test and fractional derivative model. Dent. Mater. 2015, 31, 1003–1009. [Google Scholar] [CrossRef]
- Naranjani, Y.; Sardahi, Y.; Chen, Y.; Sun, J.Q. Multi-objective optimization of distributed-order fractional damping. Commun. Nonlinear Sci. Numer. Simul. 2015, 24, 159–168. [Google Scholar] [CrossRef]
- Jokar, M.; Patnaik, S.; Semperlotti, F. Variable-Order Approach to Nonlocal Elasticity: Theoretical Formulation and Order Identification via Deep Learning Techniques. arXiv 2020, arXiv:2008.13582. [Google Scholar]
- Li, G.; Zhu, Z.; Cheng, C. Dynamical stability of viscoelastic column with fractional derivative constitutive relation. Appl. Math. Mech. 2001, 22, 294–303. [Google Scholar] [CrossRef]
- Bačlić, B.; Atanacković, T. Stability and creep of a fractional derivative order viscoelastic rod. Bulletin (Académie serbe des sciences et des arts. Classe des sciences mathématiques et naturelles. Sciences mathématiques) 2000, 25, 115–131. [Google Scholar]
- Atanackovic, T.; Stankovic, B. Dynamics of a viscoelastic rod of fractional derivative type. ZAMM-J. Appl. Math. Mech. 2002, 82, 377–386. [Google Scholar] [CrossRef]
- Stankovic, B.; Atanackovic, T. On a model of a viscoelastic rod. Fract. Calc. Appl. Anal. 2001, 4, 501–522. [Google Scholar]
- Stankovic, B.; Atanackovic, T. On a viscoelastic rod with constitutive equation containing fractional derivatives of two different orders. Math. Mech. Solids 2004, 9, 629–656. [Google Scholar] [CrossRef]
- Zorica, D.; Atanacković, T.M.; Vrcelj, Z.; Novaković, B. Dynamic stability of axially loaded nonlocal rod on generalized Pasternak foundation. J. Eng. Mech. 2017, 143, D4016003. [Google Scholar] [CrossRef]
- Varghaei, P.; Kharazmi, E.; Suzuki, J.L.; Zayernouri, M. Vibration analysis of geometrically nonlinear and fractional viscoelastic cantilever beams. arXiv 2019, arXiv:1909.02142. [Google Scholar]
- Duan, J.; Chen, L. Oscillatory shear flow between two parallel plates for viscoelastic constitutive model of distributed-order derivative. Int. J. Numer. Methods Heat Fluid Flow 2019. [Google Scholar] [CrossRef]
- Metzler, R.; Klafter, J. The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A Math. Gen. 2004, 37, R161. [Google Scholar] [CrossRef]
- Hanyga, A. Anomalous diffusion without scale invariance. J. Phys. A Math. Theor. 2007, 40, 5551. [Google Scholar] [CrossRef]
- Tateishi, A.A.; Ribeiro, H.V.; Lenzi, E.K. The role of fractional time-derivative operators on anomalous diffusion. Front. Phys. 2017, 5, 52. [Google Scholar] [CrossRef] [Green Version]
- Meerschaert, M.M.; Nane, E.; Vellaisamy, P. Distributed-order fractional diffusions on bounded domains. J. Math. Anal. Appl. 2011, 379, 216–228. [Google Scholar] [CrossRef] [Green Version]
- Sandev, T.; Chechkin, A.V.; Korabel, N.; Kantz, H.; Sokolov, I.M.; Metzler, R. Distributed-order diffusion equations and multifractality: Models and solutions. Phys. Rev. E 2015, 92, 042117. [Google Scholar] [CrossRef] [Green Version]
- Koscielny-Bunde, E.; Bunde, A.; Havlin, S.; Roman, H.E.; Goldreich, Y.; Schellnhuber, H.J. Indication of a universal persistence law governing atmospheric variability. Phys. Rev. Lett. 1998, 81, 729. [Google Scholar] [CrossRef]
- Ashkenazy, Y.; Baker, D.R.; Gildor, H.; Havlin, S. Nonlinearity and multifractality of climate change in the past 420,000 years. Geophys. Res. Lett. 2003, 30, 2146. [Google Scholar] [CrossRef] [Green Version]
- Su, N. Distributed-order infiltration, absorption and water exchange in mobile and immobile zones of swelling soils. J. Hydrol. 2012, 468, 1–10. [Google Scholar] [CrossRef]
- Yang, Z.; Zheng, X.; Wang, H. A variably distributed-order time-fractional diffusion equation: Analysis and approximation. Comput. Methods Appl. Mech. Eng. 2020, 367, 113118. [Google Scholar] [CrossRef]
- Oświecimka, P.; Kwapień, J.; Drożdż, S. Wavelet versus detrended fluctuation analysis of multifractal structures. Phys. Rev. E 2006, 74, 016103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benzi, R.; Biferale, L.; Toschi, F. Multiscale velocity correlations in turbulence. Phys. Rev. Lett. 1998, 80, 3244. [Google Scholar] [CrossRef] [Green Version]
- Beghin, L. Random-time processes governed by differential equations of fractional distributed order. Chaos Solitons Fractals 2012, 45, 1314–1327. [Google Scholar] [CrossRef] [Green Version]
- Chechkin, A.V.; Gorenflo, R.; Sokolov, I.M. Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Phys. Rev. E 2002, 66, 046129. [Google Scholar] [CrossRef] [Green Version]
- Sokolov, I.M.; Chechkin, A.V.; Klafter, J. Fractional diffusion equation for a power-law-truncated Lévy process. Phys. A Stat. Mech. Its Appl. 2004, 336, 245–251. [Google Scholar] [CrossRef] [Green Version]
- Sandev, T.; Sokolov, I.M.; Metzler, R.; Chechkin, A. Beyond monofractional kinetics. Chaos Solitons Fractals 2017, 102, 210–217. [Google Scholar] [CrossRef]
- Sandev, T.; Iomin, A.; Kantz, H.; Metzler, R.; Chechkin, A. Comb model with slow and ultraslow diffusion. Math. Model. Nat. Phenom. 2016, 11, 18–33. [Google Scholar] [CrossRef]
- Sinai, Y.G. The limiting behavior of a one-dimensional random walk in a random medium. Theory Probab. Its Appl. 1983, 27, 256–268. [Google Scholar] [CrossRef]
- Schiessel, H.; Sokolov, I.M.; Blumen, A. Dynamics of a polyampholyte hooked around an obstacle. Phys. Rev. E 1997, 56, R2390. [Google Scholar] [CrossRef]
- Prosen, T.; Žnidarič, M. Anomalous diffusion and dynamical localization in polygonal billiards. Phys. Rev. Lett. 2001, 87, 114101. [Google Scholar] [CrossRef] [Green Version]
- Iglói, F.; Turban, L.; Rieger, H. Anomalous diffusion in aperiodic environments. Phys. Rev. E 1999, 59, 1465. [Google Scholar] [CrossRef] [Green Version]
- Dräger, J.; Klafter, J. Strong anomaly in diffusion generated by iterated maps. Phys. Rev. Lett. 2000, 84, 5998. [Google Scholar] [CrossRef] [PubMed]
- Chechkin, A.V.; Gorenflo, R.; Sokolov, I.M.; Gonchar, V.Y. Distributed order time fractional diffusion equation. Fract. Calc. Appl. Anal. 2003, 6, 259–280. [Google Scholar]
- Chechkin, A.V.; Klafter, J.; Sokolov, I.M. Fractional Fokker-Planck equation for ultraslow kinetics. EPL (Europhys. Lett.) 2003, 63, 326. [Google Scholar] [CrossRef] [Green Version]
- Mainardi, F.; Pagnini, G.; Gorenflo, R. Some aspects of fractional diffusion equations of single and distributed order. Appl. Math. Comput. 2007, 187, 295–305. [Google Scholar] [CrossRef] [Green Version]
- Mainardi, F.; Mura, A.; Pagnini, G.; Gorenflo, R. Sub-diffusion equations of fractional order and their fundamental solutions. In Mathematical Methods in Engineering; Springer: Berlin/Heidelberg, Germany, 2007; pp. 23–55. [Google Scholar]
- Mainardi, F.; Mura, A.; Pagnini, G.; Gorenflo, R. Time-fractional diffusion of distributed order. J. Vib. Control 2008, 14, 1267–1290. [Google Scholar] [CrossRef] [Green Version]
- Shen, S.; Liu, F.; Anh, V. Fundamental solution and discrete random walk model for a time-space fractional diffusion equation of distributed order. J. Appl. Math. Comput. 2008, 28, 147. [Google Scholar] [CrossRef] [Green Version]
- Saxena, R.K.; Pagnini, G. Exact solutions of triple-order time-fractional differential equations for anomalous relaxation and diffusion I: The accelerating case. Phys. A Stat. Mech. Its Appl. 2011, 390, 602–613. [Google Scholar] [CrossRef]
- Umarov, S.; Steinberg, S. Random walk models associated with distributed fractional order differential equations. In High Dimensional Probability; Giné, E., Koltchinskii, V., Li, W., Zinn, J., Eds.; Institute of Mathematical: Statistics: Hayward, CA, USA, 2006; pp. 117–127. [Google Scholar]
- Sokolov, I.M.; Chechkin, A.V.; Klafter, J. Distributed-order fractional kinetics. arXiv 2004, arXiv:cond-mat/0401146. [Google Scholar]
- Chechkin, A.V.; Gonchar, V.Y.; Gorenflo, R.; Korabel, N.; Sokolov, I.M. Generalized fractional diffusion equations for accelerating subdiffusion and truncated Lévy flights. Phys. Rev. E 2008, 78, 021111. [Google Scholar] [CrossRef]
- Chechkin, A.; Sokolov, I.M.; Klafter, J. Natural and modified forms of distributed-order fractional diffusion equations. In Fractional Dynamics: Recent Advances; Klafter, J., Lim, S.C., Metzler, R., Eds.; World Scientific: Singapore, 2012; pp. 107–127. [Google Scholar]
- Langlands, T.A.M. Solution of a modified fractional diffusion equation. Phys. A Stat. Mech. Its Appl. 2006, 367, 136–144. [Google Scholar] [CrossRef] [Green Version]
- Meerschaert, M.M.; Scheffler, H.P. Stochastic model for ultraslow diffusion. Stoch. Process. Their Appl. 2006, 116, 1215–1235. [Google Scholar] [CrossRef] [Green Version]
- Hahn, M.; Umarov, S. Fractional Fokker-Planck-Kolmogorov type equations and their associated stochastic differential equations. Fract. Calc. Appl. Anal. 2011, 14, 56–79. [Google Scholar] [CrossRef] [Green Version]
- Eab, C.H.; Lim, S.C. Fractional Langevin equations of distributed order. Phys. Rev. E 2011, 83, 031136. [Google Scholar] [CrossRef] [Green Version]
- Hahn, M.; Kobayashi, K.; Umarov, S. SDEs driven by a time-changed Lévy process and their associated time-fractional order pseudo-differential equations. J. Theor. Probab. 2012, 25, 262–279. [Google Scholar] [CrossRef] [Green Version]
- Toaldo, B. Lévy mixing related to distributed order calculus, subordinators and slow diffusions. J. Math. Anal. Appl. 2015, 430, 1009–1036. [Google Scholar] [CrossRef]
- Awad, E. On the time-fractional Cattaneo equation of distributed order. Phys. A Stat. Mech. Its Appl. 2019, 518, 210–233. [Google Scholar]
- Meerschaert, M.; Nane, E.; Vellaisamy, P. The fractional Poisson process and the inverse stable subordinator. Electron. J. Probab. 2011, 16, 1600–1620. [Google Scholar]
- Magdziarz, M.; Teuerle, M. Fractional diffusion equation with distributed-order material derivative. Stochastic foundations. J. Phys. A Math. Theor. 2017, 50, 184005. [Google Scholar]
- Orzeł, S.; Mydlarczyk, W.; Jurlewicz, A. Accelerating subdiffusions governed by multiple-order time-fractional diffusion equations: Stochastic representation by a subordinated Brownian motion and computer simulations. Phys. Rev. E 2013, 87, 032110. [Google Scholar]
- Naber, M. Distributed order fractional sub-diffusion. Fractals 2004, 12, 23–32. [Google Scholar]
- Mainardi, F.; Pagnini, G. The role of the Fox–Wright functions in fractional sub-diffusion of distributed order. J. Comput. Appl. Math. 2007, 207, 245–257. [Google Scholar]
- Li, Z.; Luchko, Y.; Yamamoto, M. Asymptotic estimates of solutions to initial-boundary-value problems for distributed order time-fractional diffusion equations. Fract. Calc. Appl. Anal. 2014, 17, 1114–1136. [Google Scholar]
- Tomovski, Ž.; Sandev, T. Distributed-order wave equations with composite time fractional derivative. Int. J. Comput. Math. 2018, 95, 1100–1113. [Google Scholar]
- Kochubei, A.N. Distributed order calculus and equations of ultraslow diffusion. J. Math. Anal. Appl. 2008, 340, 252–281. [Google Scholar]
- Atanackovic, T.M.; Pilipovic, S.; Zorica, D. Existence and calculation of the solution to the time distributed order diffusion equation. Phys. Scr. 2009, 2009, 014012. [Google Scholar]
- Li, Z.; Yamamoto, M. Initial-boundary value problems for linear diffusion equation with multiple time-fractional derivatives. arXiv 2013, arXiv:1306.2778. [Google Scholar]
- Gorenflo, R.; Luchko, Y.; Stojanović, M. Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density. Fract. Calc. Appl. Anal. 2013, 16, 297–316. [Google Scholar] [CrossRef]
- Sandev, T.; Tomovski, Z.; Crnkovic, B. Generalized distributed order diffusion equations with composite time fractional derivative. Comput. Math. Appl. 2017, 73, 1028–1040. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Kian, Y.; Soccorsi, E. Initial-boundary value problem for distributed order time-fractional diffusion equations. Asymptot. Anal. 2019, 115, 95–126. [Google Scholar] [CrossRef] [Green Version]
- Al-Refai, M.; Luchko, Y. Analysis of fractional diffusion equations of distributed order: Maximum principles and their applications. Analysis 2016, 36, 123–133. [Google Scholar] [CrossRef]
- Luchko, Y. Maximum principle and its application for the time-fractional diffusion equations. Fract. Calc. Appl. Anal. 2011, 14, 110–124. [Google Scholar] [CrossRef] [Green Version]
- Rundell, W.; Zhang, Z. Fractional diffusion: Recovering the distributed fractional derivative from overposed data. Inverse Probl. 2017, 33, 035008. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Luchko, Y.; Yamamoto, M. Analyticity of solutions to a distributed order time-fractional diffusion equation and its application to an inverse problem. Comput. Math. Appl. 2017, 73, 1041–1052. [Google Scholar] [CrossRef]
- Ruan, Z.; Wang, Z. A backward problem for distributed order diffusion equation: Uniqueness and numerical solution. Inverse Probl. Sci. Eng. 2020. [Google Scholar] [CrossRef]
- Li, Z.; Fujishiro, K.; Li, G. Uniqueness in the inversion of distributed orders in ultraslow diffusion equations. J. Comput. Appl. Math. 2020, 369, 112564. [Google Scholar] [CrossRef]
- Sun, C.; Liu, J. An inverse source problem for distributed order time-fractional diffusion equation. Inverse Probl. 2020, 36, 055008. [Google Scholar] [CrossRef]
- Sibatov, R.T. Anomalous grain boundary diffusion: Fractional calculus approach. Adv. Math. Phys. 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Santoro, P.A.; De Paula, J.L.; Lenzi, E.K.; Evangelista, L.R. Anomalous diffusion governed by a fractional diffusion equation and the electrical response of an electrolytic cell. J. Chem. Phys. 2011, 135, 114704. [Google Scholar] [CrossRef] [PubMed]
- Ciuchi, F.; Mazzulla, A.; Scaramuzza, N.; Lenzi, E.K.; Evangelista, L.R. Fractional diffusion equation and the electrical impedance: Experimental evidence in liquid-crystalline cells. J. Phys. Chem. C 2012, 116, 8773–8777. [Google Scholar] [CrossRef]
- Lenzi, E.K.; Fernandes, P.R.G.; Petrucci, T.; Mukai, H.; Ribeiro, H.V.; Lenzi, M.K.; Gonçalves, G. Anomalous diffusion and electrical response of ionic solutions. Int. J. Electrochem. Sci. 2013, 8, 2849–2862. [Google Scholar]
- Chen, Y.; Fiorentino, A.; Dal Negro, L. A fractional diffusion random laser. Sci. Rep. 2019, 9, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Kitsyuk, E.P.; Sibatov, R.T.; Svetukhin, V.V. Memory Effect and Fractional Differential Dynamics in Planar Microsupercapacitors Based on Multiwalled Carbon Nanotube Arrays. Energies 2020, 13, 213. [Google Scholar] [CrossRef] [Green Version]
- Bard, J.B.L. A model for generating aspects of zebra and other mammalian coat patterns. J. Theor. Biol. 1981, 93, 363–385. [Google Scholar] [CrossRef]
- Murray, J.D. On pattern formation mechanisms for Lepidopteran wing patterns and mammalian coat markings. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1981, 295, 473–496. [Google Scholar]
- Saxena, R.K.; Mathai, A.M.; Haubold, H.J. Distributed order reaction-diffusion systems associated with Caputo derivatives. J. Math. Phys. 2014, 55, 083519. [Google Scholar] [CrossRef] [Green Version]
- Lenzi, E.K.; Neto, R.M.; Tateishi, A.A.; Lenzi, M.K.; Ribeiro, H.V. Fractional diffusion equations coupled by reaction terms. Phys. A Stat. Mech. Its Appl. 2016, 458, 9–16. [Google Scholar] [CrossRef]
- Saxena, R.K.; Mathai, A.M.; Haubold, H.J. Computational solutions of distributed order reaction-diffusion systems associated with Riemann-Liouville derivatives. Axioms 2015, 4, 120–133. [Google Scholar] [CrossRef] [Green Version]
- Bulavatsky, V.M.; Krivonos, Y.G. Mathematical modeling of the dynamics of anomalous migration fields within the framework of the model of distributed order. Cybern. Syst. Anal. 2013, 49, 390–396. [Google Scholar] [CrossRef]
- Yin, M.; Ma, R.; Zhang, Y.; Wei, S.; Tick, G.R.; Wang, J.; Sun, Z.; Sun, H.; Zheng, C. A distributed-order time fractional derivative model for simulating bimodal sub-diffusion in heterogeneous media. J. Hydrol. 2020, 125504. [Google Scholar] [CrossRef]
- Yin, M.; Zhang, Y.; Ma, R.; Tick, G.R.; Bianchi, M.; Zheng, C.; Wei, W.; Wei, S.; Liu, X. Super-diffusion affected by hydrofacies mean length and source geometry in alluvial settings. J. Hydrol. 2020, 582, 124515. [Google Scholar] [CrossRef]
- Su, N.; Nelson, P.N.; Connor, S. The distributed-order fractional diffusion-wave equation of groundwater flow: Theory and application to pumping and slug tests. J. Hydrol. 2015, 529, 1262–1273. [Google Scholar] [CrossRef]
- Liang, Y.; Chen, W.; Xu, W.; Sun, H. Distributed order Hausdorff derivative diffusion model to characterize non-Fickian diffusion in porous media. Commun. Nonlinear Sci. Numer. Simul. 2019, 70, 384–393. [Google Scholar] [CrossRef] [Green Version]
- Caputo, M. Diffusion with space memory modelled with distributed order space fractional differential equations. Ann. Geophys. 2003. [Google Scholar] [CrossRef]
- Atanackovic, T.M.; Pilipovic, S.; Zorica, D. A diffusion wave equation with two fractional derivatives of different order. J. Phys. A Math. Theor. 2007, 40, 5319. [Google Scholar] [CrossRef]
- Atanackovic, T.M.; Pilipovic, S.; Zorica, D. Time distributed-order diffusion-wave equation. I. Volterra-type equation. Proc. R. Soc. A Math. Phys. Eng. Sci. 2009, 465, 1869–1891. [Google Scholar] [CrossRef]
- Sandev, T.; Tomovski, Z.; Dubbeldam, J.L.; Chechkin, A. Generalized diffusion-wave equation with memory kernel. J. Phys. A Math. Theor. 2018, 52, 015201. [Google Scholar] [CrossRef] [Green Version]
- Atanackovic, T.M.; Pilipovic, S.; Zorica, D. Time distributed-order diffusion-wave equation. II. Applications of Laplace and Fourier transformations. Proc. R. Soc. A Math. Phys. Eng. Sci. 2009, 465, 1893–1917. [Google Scholar] [CrossRef]
- Caputo, M.; Carcione, J.M. Wave simulation in dissipative media described by distributed-order fractional time derivatives. J. Vib. Control 2011, 17, 1121–1130. [Google Scholar] [CrossRef]
- Mahmoud, G.M.; Farghaly, A.A.; Abed-Elhameed, T.M.; Aly, S.A.; Arafa, A.A. Dynamics of distributed-order hyperchaotic complex van der Pol oscillators and their synchronization and control. Eur. Phys. J. Plus 2020, 135, 32. [Google Scholar] [CrossRef]
- Zhou, F.; Zhao, Y.; Li, Y.; Chen, Y. Design, implementation and application of distributed order PI control. ISA Trans. 2013, 52, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Guo, Y.; Zheng, S.; Chen, Y. Robust stability analysis of LTI systems with fractional degree generalized frequency variables. Fract. Calc. Appl. Anal. 2019, 22, 1655–1674. [Google Scholar] [CrossRef]
- Adams, J.L.; Hartley, T.T.; Lorenzo, C.F. Fractional-order system identification using complex order-distributions. IFAC Proc. Vol. 2006, 39, 200–205. [Google Scholar] [CrossRef]
- Zaky, M.; Machado, J.T. On the formulation and numerical simulation of distributed-order fractional optimal control problems. Commun. Nonlinear Sci. Numer. Simul. 2017, 52, 177–189. [Google Scholar] [CrossRef]
- Li, Y.; Sheng, H.; Chen, Y. On distributed order low-pass filter. In Proceedings of the 2010 IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, Qingdao, China, 15–17 July 2010; IEEE: New York, NY, USA, 2010; pp. 588–592. [Google Scholar]
- Jakovljević, B.B.; Rapaić, M.R.; Jelicić, Z.D.; Sekara, T.B. Optimization of distributed order fractional PID controller under constraints on robustness and sensitivity to measurement noise. In Proceedings of the ICFDA’14 International Conference on Fractional Differentiation and Its Applications 2014, Catania, Italy, 23–25 June 2014; IEEE: New York, NY, USA, 2014; pp. 1–6. [Google Scholar]
- Jakovljević, B.B.; Šekara, T.B.; Rapaić, M.R.; Jeličić, Z.D. On the distributed order PID controller. AEU-Int. J. Electron. Commun. 2017, 79, 94–101. [Google Scholar] [CrossRef]
- Jakovljević, B.; Lino, P.; Maione, G. Fractional and Distributed Order PID Controllers for PMSM Drives. In Proceedings of the 2019 18th European Control Conference (ECC), Naples, Italy, 25–28 June 2019; IEEE: New York, NY, USA, 2019; pp. 4100–4105. [Google Scholar]
- Li, Y.; Sheng, H.; Chen, Y.Q. On distributed order integrator/differentiator. Signal Process. 2011, 91, 1079–1084. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.Q. Theory and implementation of weighted distributed order integrator. In Proceedings of the 2012 IEEE/ASME 8th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, Suzhou, China, 8–10 July 2012; IEEE: New York, NY, USA, 2012; pp. 119–124. [Google Scholar]
- Najafi, H.S.; Sheikhani, A.R.; Ansari, A. Stability analysis of distributed order fractional differential equations. Abstr. Appl. Anal. 2011, 2011. [Google Scholar] [CrossRef]
- Jiao, Z.; Chen, Y.; Podlubny, I. Distributed Order Dynamic Systems, Modeling, Analysis and Simulation; Springer: New York, NY, USA, 2012. [Google Scholar]
- Jiao, Z.; Chen, Y.; Zhong, Y. Stability analysis of linear time-invariant distributed-order systems. Asian J. Control 2013, 15, 640–647. [Google Scholar] [CrossRef]
- Rivero, M.; Rogosin, S.V.; Tenreiro Machado, J.A.; Trujillo, J.J. Stability of fractional order systems. Math. Probl. Eng. 2013, 2013. [Google Scholar] [CrossRef]
- Taghavian, H.; Tavazoei, M.S. Algebraic conditions for stability analysis of linear time-invariant distributed order dynamic systems: A Lagrange inversion theorem approach. Asian J. Control 2019, 21, 879–890. [Google Scholar] [CrossRef]
- Tavazoei, M.S. Fractional/distributed-order systems and irrational transfer functions with monotonic step responses. J. Vib. Control 2014, 20, 1697–1706. [Google Scholar] [CrossRef]
- Taghavian, H.; Saleh Tavazoei, M. Robust Stability Analysis of Distributed-Order Linear Time-Invariant Systems With Uncertain Order Weight Functions and Uncertain Dynamic Matrices. J. Dyn. Syst. Meas. Control 2017, 139, 121010. [Google Scholar] [CrossRef]
- Majma, E.; Tavazoei, M.S. Properties of the stability boundary in linear distributed-order systems. Int. J. Syst. Sci. 2020, 51, 1733–1743. [Google Scholar] [CrossRef]
- Fernández-Anaya, G.; Flores-Godoy, J.; Lugo-Peñaloza, A.; Muñoz-Vega, R. Stabilization and passification of distributed-order fractional linear systems using methods of preservation. J. Frankl. Inst. 2013, 350, 2881–2900. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y. Lyapunov stability of fractional-order nonlinear systems: A distributed-order approach. In Proceedings of the ICFDA’14 International Conference on Fractional Differentiation and Its Applications 2014, Catania, Italy, 23–25 June 2014; IEEE: New York, NY, USA, 2014; pp. 1–6. [Google Scholar]
- Boyadzhiev, D.; Kiskinov, H.; Veselinova, M.; Zahariev, A. Stability analysis of linear distributed order fractional systems with distributed delays. Fract. Calc. Appl. Anal. 2017, 20, 914. [Google Scholar] [CrossRef]
- He, B.; Chen, Y.; Kou, C. On the Controllability of Distributed-Order Fractional Systems With Distributed Delays. In Proceedings of the ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Cleveland, OH, USA, 6–9 August 2017; American Society of Mechanical Engineers Digital Collection: New York, NY, USA, 2017. [Google Scholar]
- Aminikhah, H.; Refahi Sheikhani, A.; Rezazadeh, H. Stability analysis of distributed order fractional Chen system. Sci. World J. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Aminikhah, H.; Sheikhani, A.R.; Rezazadeh, H. Stability analysis of linear distributed order system with multiple time delays. UPB Sci. Bull. 2015, 77, 207–218. [Google Scholar]
- Fernández-Anaya, G.; Nava-Antonio, G.; Jamous-Galante, J.; Muñoz-Vega, R.; Hernández-Martínez, E. Asymptotic stability of distributed order nonlinear dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 2017, 48, 541–549. [Google Scholar]
- Taghavian, H.; Tavazoei, M.S. Stability analysis of distributed-order nonlinear dynamic systems. Int. J. Syst. Sci. 2018, 49, 523–536. [Google Scholar]
- Fernández-Anaya, G.; Quezada-Téllez, L.; Franco-Pérez, L. Stability analysis of distributed order of Hilfer nonlinear systems. Math. Methods Appl. Sci. 2020. [Google Scholar] [CrossRef]
- Nava-Antonio, G.; Fernandez-Anaya, G.; Hernandez-Martinez, E.; Jamous-Galante, J.; Ferreira-Vazquez, E.; Flores-Godoy, J. Consensus of multi-agent systems with distributed fractional order dynamics. In Proceedings of the 2017 International Workshop on Complex Systems and Networks (IWCSN), Doha, Qatar, 8–10 December 2017; IEEE: New York, NY, USA, 2017; pp. 190–197. [Google Scholar]
- Mahmoud, G.M.; Aboelenen, T.; Abed-Elhameed, T.M.; Farghaly, A.A. Generalized Wright stability for distributed fractional-order nonlinear dynamical systems and their synchronization. Nonlinear Dyn. 2019, 97, 413–429. [Google Scholar]
- Al Themairi, A.; Farghaly, A. The Dynamics Behavior of Coupled Generalized van der Pol Oscillator with Distributed Order. Math. Probl. Eng. 2020, 2020. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, W.; Patnaik, S.; Sidhardh, S.; Semperlotti, F. Applications of Distributed-Order Fractional Operators: A Review. Entropy 2021, 23, 110. https://doi.org/10.3390/e23010110
Ding W, Patnaik S, Sidhardh S, Semperlotti F. Applications of Distributed-Order Fractional Operators: A Review. Entropy. 2021; 23(1):110. https://doi.org/10.3390/e23010110
Chicago/Turabian StyleDing, Wei, Sansit Patnaik, Sai Sidhardh, and Fabio Semperlotti. 2021. "Applications of Distributed-Order Fractional Operators: A Review" Entropy 23, no. 1: 110. https://doi.org/10.3390/e23010110
APA StyleDing, W., Patnaik, S., Sidhardh, S., & Semperlotti, F. (2021). Applications of Distributed-Order Fractional Operators: A Review. Entropy, 23(1), 110. https://doi.org/10.3390/e23010110