A Multi-Class Automatic Sleep Staging Method Based on Photoplethysmography Signals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preprocessing of Raw Data
2.2. Feature Extraction Process
2.2.1. Time-Domain Feature Extraction of PPG Signal
2.2.2. Frequency-Domain Features
2.2.3. Nonlinear Features
2.2.4. Summary of PPG Features
2.3. Classification Procedures
2.4. Decision Mechanism
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stephansen, J.B.; Olesen, A.N.; Olsen, M.; Ambati, A.; Leary, E.B.; Moore, H.; Carrillo, O.; Lin, L.; Han, F.; Yan, H.; et al. Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy. Nat. Commun. 2018, 9, 5229. [Google Scholar] [CrossRef] [Green Version]
- Krieger, A.C. Social and Economic Dimensions of Sleep Disorders, An Issue of Sleep Medicine Clinics, E-Book; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Algın, D.; Akdağ, G.; Erdinç, O. Kaliteli uyku ve uyku bozukluklari/Quality sleep and sleep disorders. Osmangazi Tıp Dergisi 2016, 38, 29–34. [Google Scholar]
- Steriade, M.M.; McCarley, R.W. Brainstem Control of Wakefulness and Sleep; Springer: Berlin, Germany, 2013. [Google Scholar]
- Rechtschaffen, A. A manual for standardized terminology, techniques and scoring system for sleep stages in human subjects. Brain Inf. Serv. 1968, 22–34. [Google Scholar]
- Fonseca, P.; Long, X.; Radha, M.; Haakma, R.; Aarts, R.M. Rolink, J. Sleep stage classification with ECG and respiratory effort. Physiol. Meas. 2015, 36, 2027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, M.; Yan, H.; Song, J.Z.; Yang, Y.Z.; Yang, X.L. Sleep stages classification based on heart rate variability and random forest. Biomed. Signal Process. Control 2013, 8, 624–633. [Google Scholar] [CrossRef]
- Hori, T.; Sugita, Y.; Koga, E.; Shirakawa, S. Proposed supplements and amendments to ‘a manual of standardized terminology, techniques and scoring system for sleep stages of human subjects’, the Rechtschaffen & Kales (1968) standard. Psychiatry Clin. Neurosci. 2001, 55, 305–310. [Google Scholar] [PubMed] [Green Version]
- Berry, R.B.; Budhiraja, R.; Gottlieb, D.J.; Gozal, D.; Iber, C.; Kapur, V.K.; Marcus, C.L.; Mehra, R.; Parthasarathy, S.; Quan, S.F.; et al. Rules for scoring respiratory events in sleep: Update of the 2007 AASM manual for the scoring of sleep and associated events. J. Clin. Sleep Med. 2012, 8, 597–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spriggs, W. Essentials of Polysomnography; Jones & Bartlett Publishers: Mississauga, ON, Canada, 2009. [Google Scholar]
- Penzel, T.; Conradt, R. Computer based sleep recording and analysis. Sleep Med. Rev. 2000, 4, 131–148. [Google Scholar] [CrossRef]
- Dimitriadis, S.I.; Salis, C.; Linden, D. A novel, fast and efficient single-sensor automatic sleep-stage classification based on complementary cross-frequency coupling estimates. Clin. Neurophysiol. 2018, 129, 815–828. [Google Scholar] [CrossRef]
- Wang, G.; Teng, C.; Li, K.; Zhang, Z.L.; Yan, X.G. The removal of EOG artifacts from EEG signals using independent component analysis and multivariate empirical mode decomposition. IEEE J. Biomed. Health Inform. 2015, 20, 1301–1308. [Google Scholar] [CrossRef]
- Hassan, A.R.; Bhuiyan, M.I.H. A decision support system for automatic sleep staging from EEG signals using tunable Q-factor wavelet transform and spectral features. J. Neurosci. Methods 2016, 271, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Bhuiyan MI, H.; Hassan, A.R. Sleep stage classification using single-channel EOG. Comput. Biol. Med. 2018, 102, 211–220. [Google Scholar] [CrossRef]
- Yoon, H.; Hwang, S.H.; Choi, J.W.; Deong, D.U.; Park, K.S. REM sleep estimation based on autonomic dynamics using R–R intervals. Physiol. Meas. [CrossRef]
- Yücelbaş, Ş.; Yücelbaş, C.; Tezel, G.; Özşen, S.; Yosunkaya, Ş. Automatic sleep staging based on SVD, VMD, HHT and morphological features of single-lead ECG signal. Expert Syst. Appl. 2018, 102, 193–206. [Google Scholar] [CrossRef]
- Beattie, Z.; Oyang, Y.; Statan, A.; Ghoreyshi, A.; Pantelopoulos, A.; Russell, A.; Heneghan, C. Estimation of sleep stages in a healthy adult population from optical plethysmography and accelerometer signals. Physiol Meas. 2017, 38, 1968–1979. [Google Scholar] [CrossRef]
- Fonseca, P.; Weysen, T.; Goelema, M.S.; Møst, E.I.S.; Radha, M.; Scheurleer, C.L.; Heuvel, L.; Aarts, R.M. Validation of Photoplethysmography-Based Sleep Staging Compared With Polysomnography in Healthy Middle-Aged Adults. Sleep 2017, 7, zsx097. [Google Scholar] [CrossRef]
- Terzano, M.G.; Parrino, L.; Smerieri, A.; Chervin, R.; Chokroverty, S.; Guilleminault, C.; Hirshkowitz, M.; Mahowald, M.; Moldofsky, H.; Rosa, A.; et al. Atlas, rules, and recording techniques for the scoring of cyclic alternating pattern (CAP) in human sleep. Sleep Med. 2002, 3, 187–199. [Google Scholar] [CrossRef]
- Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, e215–e220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Electrophysiology, Task Force of the European Society of Cardiology the North American Society of Pacing. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef] [Green Version]
- Pincus, S. Approximate entropy (ApEn) as a complexity measure. Chaos Interdiscip. J. Nonlinear Sci. 1995, 5, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chen, Z.; Zhou, Y.; Du, S.H.; Zhang, Y.; Mei, T.; Tian, X.H. Construction of rules for seizure prediction based on approximate entropy. Clin. Neurophysiol. 2014, 125, 1959–1966. [Google Scholar] [CrossRef] [PubMed]
- Yoo, C.S.; Yi, S.H. Effects of detrending for analysis of heart rate variability and applications to the estimation of depth of anesthesia. J. Korean Phys. Soc. 2004, 44, 561. [Google Scholar]
- Pham, T.D. Time-shift multiscale entropy analysis of physiological signals. Entropy 2017, 19, 257. [Google Scholar] [CrossRef]
- Costa, M.; Peng, C.K.; Goldberger, A.L.; Hausdorff, J.M. Multiscale entropy analysis of human gait dynamics. Phys. A Stat. Mech. Appl. 2003, 330, 53–60. [Google Scholar] [CrossRef]
- Pincus, S.M.; Gladstone, I.M.; Ehrenkranz, R.A. A regularity statistic for medical data analysis. J. Clin. Monit. 1991, 7, 335–345. [Google Scholar] [CrossRef]
- Chen, W.; Wang, Z.; Xie, H.; Yu, W. Characterization of surface EMG signal based on fuzzy entropy. IEEE Trans. Neural Syst. Rehabil. Eng. 2007, 15, 266–272. [Google Scholar] [CrossRef]
- Chen, W.; Zhuang, J.; Yu, W.; Wang, Z. Measuring complexity using fuzzyen, apen, and sampen. Med Eng. Phys. 2009, 31, 61–68. [Google Scholar] [CrossRef]
- Bandt, C.; Pompe, B. Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett. 2002, 88, 174102. [Google Scholar] [CrossRef]
- Webber, C.L., Jr.; Marwan, N. Recurrence Quantification Analysis; Springer: Cham, Switzerland, 2006. [Google Scholar]
- Eckmann, J.P.; Kamphorst, S.O.; Ruelle, D. Recurrence Plots of Dynamical Systems. Europhys. Lett. 1987, 4, 17. [Google Scholar] [CrossRef] [Green Version]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. Lightgbm: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems. 2017; pp. 3146-3154. In Advances in Neural Information Processing Systems; Curran Associates Inc.: Red Hook, NY, USA.
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, ACM, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [Green Version]
Pathology | Male | Female | Age | Identification Number |
---|---|---|---|---|
No pathology | 1 | 3 | 28–35 | n2, n3, n5, n11 |
Nocturnal frontal lobe Epilepsy | 5 | 5 | 14–41 | nfle1–nfle10 |
Insomnia | 1 | 4 | 47–64 | ins2, ins5–ins8 |
REM behavior disorder | 7 | 1 | 70–82 | ins2–ins9 |
Name | Meaning | Formula |
---|---|---|
Med_PPG | median | |
Max_PPG | maximum value | |
Min_PPG | minimum value | |
Dif_PPG | difference between the maximum and the minimum | |
Var_PPG | variance | |
Ske_PPG | Coefficient of skewness | |
Kur_PPG | Coefficient of kurtosis | |
Mean_PPG | mean value | |
En1st_PPG | Comentropy of first order difference | |
En2nd_PPG | Comentropy of Second order difference | |
En1st_2nd_PPG | Comentropy of first-order difference divided by entropy of second-order difference |
Category | Name | Number |
---|---|---|
Time domain | Mad_PPG, Max_PPG, Min_PPG, Dif_PPG, Var_PPG, Ske_PPG, Kur_PPG, Mean_PPG, En1st_PPG, En2st_ PPG, En1st_2st_PPG | 11 |
Frequency domain | LF_power, TLF_power, HF_power, MF_power | 4 |
Nonlinear analysis | , , , , , Recurrence Rate | 6 |
In total | 21 |
3-Class | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Predicted result by the proposed method | |||||||||||
Clinical analysis result | W | NREM | REM | Precision | Recall | F1-score | |||||
W | 342 | 36 | 14 | 0.82 | 0.87 | 0.84 | |||||
NREM | 51 | 353 | 14 | 0.85 | 0.84 | 0.85 | |||||
REM | 26 | 24 | 340 | 0.92 | 0.87 | 0.90 | |||||
Accuracy: 0.8625 | Cohen’s kappa statistic k: 0.79 | ||||||||||
4-Class | |||||||||||
Predicted result by the proposed method | |||||||||||
Clinical analysis result | W | LS | SWS | REM | Precision | Recall | F1-score | ||||
W | 360 | 25 | 20 | 6 | 0.81 | 0.88 | 0.84 | ||||
LS | 36 | 276 | 40 | 34 | 0.70 | 0.72 | 0.71 | ||||
SWS | 25 | 48 | 308 | 40 | 0.78 | 0.73 | 0.75 | ||||
REM | 21 | 43 | 29 | 289 | 0.86 | 0.76 | 0.77 | ||||
Accuracy: 0.7706 | Cohen’s kappa statistic k: 0.69 | ||||||||||
5-Class | |||||||||||
Predicted result by the proposed method | |||||||||||
Clinical analysis result | W | N1 | N2 | N3 | REM | Precision | Recall | F1-score | |||
W | 193 | 1 | 11 | 14 | 11 | 0.78 | 0.84 | 0.81 | |||
N1 | 11 | 38 | 7 | 16 | 22 | 0.75 | 0.40 | 0.52 | |||
N2 | 13 | 4 | 156 | 21 | 10 | 0.68 | 0.76 | 0.72 | |||
N3 | 12 | 1 | 39 | 156 | 13 | 0.68 | 0.71 | 0.69 | |||
REM | 18 | 7 | 17 | 23 | 160 | 0.74 | 0.71 | 0.73 | |||
Accuracy: 0.7217 | Cohen’s kappa statistic k: 0.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Sun, G. A Multi-Class Automatic Sleep Staging Method Based on Photoplethysmography Signals. Entropy 2021, 23, 116. https://doi.org/10.3390/e23010116
Zhao X, Sun G. A Multi-Class Automatic Sleep Staging Method Based on Photoplethysmography Signals. Entropy. 2021; 23(1):116. https://doi.org/10.3390/e23010116
Chicago/Turabian StyleZhao, Xiangfa, and Guobing Sun. 2021. "A Multi-Class Automatic Sleep Staging Method Based on Photoplethysmography Signals" Entropy 23, no. 1: 116. https://doi.org/10.3390/e23010116
APA StyleZhao, X., & Sun, G. (2021). A Multi-Class Automatic Sleep Staging Method Based on Photoplethysmography Signals. Entropy, 23(1), 116. https://doi.org/10.3390/e23010116