Entropy Method for Decision-Making: Uncertainty Cycles in Tourism Demand
Abstract
:1. Introduction
1.1. Tourism Sector, Gross Domestic Product and Randomness in Decision-Making
1.2. Literature Review
2. Material and Methods
- All theoretical models must be verified through practical application, i.e., assessing the usability principle of the model.
- All modelling must be understandable and identifiable by subclasses following the criteria of parsimony.
- All data in the fitted model and its estimated parameters should be used for future iterations of the model parameters.
- Diagnostic checks. All models must be tested and verified. If inadequacies are found, the models must be re-applied to the identification cycle until an empirically adjustable representation of the data occurs.
2.1. Causality Testing: Linear and Nonlinear Relationships
2.1.1. Granger-Causality
2.1.2. Transfer Entropy
2.2. Information Theory: Shannon Entropy
- is a monotonic decrease in .
- information is a non-negative quantity (for two events ).
- The uncertainty of is zero, in other words, the event always occurs.
- . This property is crucial and is verified with the maximum entropy demonstrated above .
2.3. Correlogram in the Time Domain and Cycles in the Frequency Domain
2.4. Causality Modelling
3. Results
3.1. Causality Testing
3.2. Randomness Measurement
3.3. Random Cycles
3.4. Causality Model and Forecasting
4. Theoretical Implications
Theoretical Implications: Time and Frequency Domain
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Country of Origin | Periodogram | Correlogram |
---|---|---|
worldwide | 6, 12 | 6, 12 |
UK | 12 | 12 |
Germany | 12 | 12 |
France | 6, 12 | 6,12 |
The Netherlands | 6, 12 | 6, 12 |
Ireland | 4, 6, 12 | 4, 6, 12 |
References
- WTTC. World Travel & Tourism Council. 2021. Available online: https://wttc.org/ (accessed on 13 October 2021).
- Song, H.; Li, G.; Cao, Z. Tourism and Economic Globalization: An Emerging Research Agenda. J. Travel Res. 2018, 57, 999–1011. [Google Scholar] [CrossRef]
- Uysal, M. The determinants of tourism demand: A theoretical perspective. In The Economic Geography of the Tourist Industry: A Supply-Sideanalysis; Routledge: Abingdon-on-Thames, UK, 1998; pp. 75–79. [Google Scholar]
- Reina, M.Á.R. Spatio-temporal clustering: Neighbourhoods based on median seasonal entropy. Spat. Stat. 2021, 45, 100535. [Google Scholar] [CrossRef]
- Harvey, A.C. Explanatory variables. In Forecasting, Structural Time Series Models and the Kalman Filter; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar] [CrossRef]
- Goh, C. Exploring impact of climate on tourism demand. Ann. Tour. Res. 2012, 39, 1859–1883. [Google Scholar] [CrossRef]
- Tiago, F.; Couto, J.; Verissimo, D.; Faria, S.; Borges-Tiago, T. Impact of Seasonality on the Management of Tourist Accommodation Establishments in the Azores. In Strategic Innovative Marketing and Tourism; Springer: Berlin/Heidelberger, Germany, 2020; pp. 1043–1051. [Google Scholar] [CrossRef]
- Nova, A.C.; Ferreira, P.; Almeida, D.; Dionísio, A.; Quintino, D. Are Mobility and COVID-19 Related? A Dynamic Analysis for Portuguese Districts. Entropy 2021, 23, 786. [Google Scholar] [CrossRef]
- Yang, M.; Han, C.; Cui, Y.; Zhao, Y. COVID-19 and mobility in tourism cities: A statistical change-point detection approach. J. Hosp. Tour. Manag. 2021, 47, 256–261. [Google Scholar] [CrossRef]
- Kaiser, R.; Maravall, A. Seasonal Outliers in Time Series. In Statistics and Econometrics Series 15; Universidad Carlos III de Madrid: Madrid, Spain, 1999. [Google Scholar] [CrossRef]
- Green, M.J.; Georgescu-Roegen, N. The Entropy Law and the Economic Process; Harvard University Press: Cambridge, MA, USA, 1973. [Google Scholar] [CrossRef]
- Kåberger, T.; Månsson, B. Entropy and economic processes—Physics perspectives. Ecol. Econ. 2001, 36, 165–179. [Google Scholar] [CrossRef]
- Piacentino, A. Application of advanced thermodynamics, thermoeconomics and exergy costing to a Multiple Effect Distillation plant: In-depth analysis of cost formation process. Desalination 2015, 371, 88–103. [Google Scholar] [CrossRef]
- Roche, M. Mega-Events and Micro-Modernization: On the Sociology of the New Urban Tourism. Br. J. Sociol. 1992, 43, 563–600. [Google Scholar] [CrossRef]
- Jiao, E.X.; Chen, J.L. Tourism forecasting: A review of methodological developments over the last decade. Tour. Econ. 2019, 25, 469–492. [Google Scholar] [CrossRef]
- Reina, M.Á.R. Bernoulli Time Series Modelling with Application to Accommodation Tourism Demand. Eng. Proc. 2021, 5, 17. [Google Scholar] [CrossRef]
- Li, J.; Xu, L.; Tang, L.; Wang, S.; Li, L. Big data in tourism research: A literature review. Tour. Manag. 2018, 68, 301–323. [Google Scholar] [CrossRef]
- Mariani, M.; Baggio, R.; Fuchs, M.; Höepken, W. Business intelligence and big data in hospitality and tourism: A systematic literature review. Int. J. Contemp. Hosp. Manag. 2018, 30. [Google Scholar] [CrossRef] [Green Version]
- Moldovan, A.; Caţaron, A.; Andonie, R. Learning in feedforward neural networks accelerated by transfer entropy. Entropy 2020, 22, 102. [Google Scholar] [CrossRef] [Green Version]
- Scott, D.; Rutty, M.; Amelung, B.; Tang, M. An inter-comparison of the Holiday Climate Index (HCI) and the Tourism Climate Index (TCI) in Europe. Atmosphere 2016, 7, 80. [Google Scholar] [CrossRef] [Green Version]
- Pi-Sunyer, O.; Pearce, P.L. The Social Psychology of Tourist Behaviour. Contemp. Sociol. 1983, 12. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, J.; Fujiwara, A. Representing tourists’ heterogeneous choices of destination and travel party with an integrated latent class and nested logit model. Tour. Manag. 2011, 32, 1407–1413. [Google Scholar] [CrossRef]
- Smallman, C.; Moore, K. Process studies of tourists’ decision-making. Ann. Tour. Res. 2010, 37, 397–422. [Google Scholar] [CrossRef]
- Kattiyapornpong, U.; Miller, K.E. Social structure and psychographic explanations of destination preference of Australians’ travel to South-East Asia. Asia Pac. J. Tour. Res. 2011, 16, 39–56. [Google Scholar] [CrossRef]
- Moore, K.; Smallman, C.; Wilson, J.; Simmons, D. Dynamic in-destination decision-making: An adjustment model. Tour. Manag. 2012, 33, 635–645. [Google Scholar] [CrossRef]
- Zweifel, B.; Haegeli, P. A qualitative analysis of group formation, leadership and decision making in recreation groups traveling in avalanche terrain. J. Outdoor Recreat. Tour. 2014, 5, 17–26. [Google Scholar] [CrossRef]
- Nakamura, H.; Abe, N. Tourist decisions in renting various personal travel modes: A case study in Kitakyushu City, Japan. Tour. Manag. 2016, 55, 85–93. [Google Scholar] [CrossRef]
- Travesi, C. The politics of knowledge as a tourist attraction. Ann. Tour. Res. 2017, 66, 130–139. [Google Scholar] [CrossRef] [Green Version]
- Cheng, M.; Wong, A.I.K.; Prideaux, B. Political travel constraint: The role of Chinese popular nationalism. J. Travel Tour. Mark. 2017, 34, 383–397. [Google Scholar] [CrossRef]
- Pezeshki, F.; Ardekani, S.S.; Khodadadi, M.; Almodarresi, S.M.A.; Hosseini, F.S. Cognitive structures of Iranian senior tourists towards domestic tourism destinations: A means-end chain approach. J. Hosp. Tour. Manag. 2019, 39, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Jamal, S.A.; Aminudin, N.; Kausar, D.R. Family adventure tourism motives and decision-making: A case of whitewater rafting. J. Outdoor Recreat. Tour. 2019, 25, 10–15. [Google Scholar] [CrossRef]
- Jang, Y.; Chen, C.C.; Miao, L. Last-minute hotel-booking behavior: The impact of time on decision-making. J. Hosp. Tour. Manag. 2019, 38, 49–57. [Google Scholar] [CrossRef]
- Yong-Jin, A.L.J.; Jang, S.; Jinwon, K. Impacts of Peer-to-Peer Accommodation Use on Travel Patterns. Ann. Tour. Res. 2020, 83, 102960. [Google Scholar] [CrossRef]
- Herrnkind, B.; Leembcke, T.-B.; Diederich, S.; Trang, S.; Kolbe, L.M. Let’s Travel the World Together: Toward an Understanding of Motivational Antecedents in Business Trip Ridesharing Services. In Proceedings of the WI2020 Zentrale Tracks, Potsdam, Germany, 8–11 March 2020. [Google Scholar] [CrossRef]
- Aznar, P.; Sayeras, J.M.; Segarra, G.; Claveria, J. AirBnB Competition and Hotels’ Response: The Importance of Online Reputation. Athens J. Tour. 2018, 5, 7–20. [Google Scholar] [CrossRef]
- Gutiérrez, J.; García-Palomares, J.C.; Romanillos, G.; Salas-Olmedo, M.H. The eruption of Airbnb in tourist cities: Comparing spatial patterns of hotels and peer-to-peer accommodation in Barcelona. Tour. Manag. 2017, 62, 278–291. [Google Scholar] [CrossRef] [Green Version]
- Juaneda, C.; Raya, J.M.; Sastre, F. Pricing the time and location of a stay at a hotel or apartment. Tour. Econ. 2011, 17, 321–338. [Google Scholar] [CrossRef]
- Bakker, M.; Twining-Ward, L. Tourism and the Sharing Economy: Policy and Potential of Sustainable Peer-to-Peer Accommodation; World Bank: Washington, DC, USA, 2018. [Google Scholar] [CrossRef]
- Cohen, S.A.; Prayag, G.; Moital, M. Consumer behaviour in tourism: Concepts, influences and opportunities. Curr. Issues Tour. 2014, 26, 872–909. [Google Scholar] [CrossRef] [Green Version]
- Golan, A.; Maasoumi, E. Information Theoretic and Entropy Methods: An overview. Econom. Rev. 2008, 27, 317–328. [Google Scholar] [CrossRef]
- Ebrahimi, N.; Jalali, N.Y.; Soofi, E.S.; Soyer, R. Importance of Components for a System. Econom. Rev. 2014, 33, 395–420. [Google Scholar] [CrossRef]
- Maasoumi, E.; Medeiros, M.C. The link between statistical learning theory and econometrics: Applications in economics, finance, and marketing. Econom. Rev. 2010, 29, 470–475. [Google Scholar] [CrossRef]
- Corluka, G. Tourism Seasonality—An Overview. J. Bus. Paradig. 2019, 4, 21–43. [Google Scholar]
- Sauran, A. Economic determinants of tourist demand: A survey. Ann. Tour. Res. 1978, 33, 2–4. [Google Scholar] [CrossRef]
- Um, S.; Crompton, J.L. Attitude determinants in tourism destination choice. Ann. Tour. Res. 1990, 17, 432–448. [Google Scholar] [CrossRef]
- Eusébio, C.; Carneiro, M.J.; Kastenholz, E. The economic value of cultural tourism: Determinants of cultural tourists’ expenditures. In The Routledge Handbook of Cultural Tourism; Routledge: Abingdon-on-Thames, UK, 2013. [Google Scholar] [CrossRef]
- Żbikowski, J.; Siedlecka, A.; Kuźmicki, M. Determinants of Tourist Activity of People with Disabilities Living in Rural Areas. Econ. Reg. Stud. 2019, 12, 401–417. [Google Scholar] [CrossRef] [Green Version]
- Mitra, J.; Wilson, C.; Managi, S.; Kler, P.; Prayaga, P.; Khanal, U. What determines whale watching tourists’ expenditure? A study from Hervey Bay, Australia. Tour. Econ. 2019, 25, 1134–1141. [Google Scholar] [CrossRef] [Green Version]
- Ruppert, D. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. J. Am. Stat. Assoc. 2004, 99, 567. [Google Scholar] [CrossRef]
- Yang, Y. Information Theory, Inference, and Learning Algorithms. J. Am. Stat. Assoc. 2005. [Google Scholar] [CrossRef]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef]
- Brownlee, J. Supervised and Unsupervised Machine Learning Algorithms. In Understand Machine Learning Algorithms; Machine Learning Mastery: San Juan, PR, USA, 2016. [Google Scholar]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Maasoumi, E.; Racine, J.S. A robust entropy-based test of asymmetry for discrete and continuous processes. Econom. Rev. 2009, 28, 246–261. [Google Scholar] [CrossRef]
- Scott, D.; Lemieux, C. Weather and climate information for tourism. Procedia Environ. Sci. 2010, 1, 146–183. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Bonal, A.; Marshak, A. Approximate entropy and sample entropy: A comprehensive tutorial. Entropy 2019, 21, 541. [Google Scholar] [CrossRef] [Green Version]
- Maasoumi, E. A compendium to information theory in economics and econometrics. Econom. Rev. 1993, 12, 137–181. [Google Scholar] [CrossRef]
- Golan, A.; Ullah, A. Interval estimation: An information theoretic approach. Econom. Rev. 2017, 36, 781–795. [Google Scholar] [CrossRef]
- Granger, C.W.J. Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica 1969, 37, 424–438. [Google Scholar] [CrossRef]
- Buse, A. The Likelihood Ratio, Wald, and Lagrange Multiplier Tests: An Expository Note. Am. Stat. 1982, 36, 153–157. [Google Scholar] [CrossRef]
- Schreiber, T. Measuring information transfer. Phys. Rev. Lett. 2000, 85, 461–464. [Google Scholar] [CrossRef] [Green Version]
- Gençağa, D. Transfer entropy. Entropy 2018, 20, 288. [Google Scholar] [CrossRef] [Green Version]
- Behrendt, S.; Dimpfl, T.; Peter, F.J.; Zimmermann, D.J. RTransferEntropy—Quantifying information flow between different time series using effective transfer entropy. SoftwareX 2019, 10, 100265. [Google Scholar] [CrossRef]
- Pincus, S. Approximate entropy as an irregularity measure for financial data. Econom. Rev. 2008, 27, 329–362. [Google Scholar] [CrossRef]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory; John Wiley & Sons: Chichester, UK, 2005. [Google Scholar] [CrossRef]
- Golan, A. Information and entropy econometrics—A review and synthesis. Found. Trends Econom. 2006, 2, 1–14. [Google Scholar] [CrossRef]
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C. Time Series Analysis: Forecasting and Control, 4th ed.; John Wiley & Sons: Chichester, UK, 2013. [Google Scholar] [CrossRef]
- Harvey, A. Chapter 7 Forecasting with Unobserved Components Time Series Models. Handb. Econ. Forecast. 2006, 1, 327–412. [Google Scholar] [CrossRef]
- Alegre, J.; Mateo, S.; Pou, L. An analysis of households’ appraisal of their budget constraints for potential participation in tourism. Tour. Manag. 2010, 31, 45–56. [Google Scholar] [CrossRef]
- Reina, M.Á.R. Big Data: Forecasting and Control for Tourism Demand. In Theory and Applications of Time Series Analysis. ITISE 2019; Valenzuela, O.R.I., Rojas, F., Herrera, L.J., Pomares, H., Eds.; Springer: Cham, Switzerland, 2020; pp. 273–286. [Google Scholar] [CrossRef]
Direction | Granger-Causality Test | Transfer-Entropy |
---|---|---|
Spanish Hotels to Spanish apartments | 0.000 | 0.0467 |
Spanish apartments to Spanish Hotels | 3 × 10−9 | 0.5833 |
UK Hotels to UK apartments | 0.0017 | 0.0000 |
UK apartments to UK Hotels | 8 × 10−5 | 0.1200 |
German Hotels to German apartments | 8 × 10−5 | 0.8533 |
German apartments to German Hotels | 0.1687 | 0.3567 |
French Hotels to French apartments | 0.0003 | 0.4400 |
French apartments to French Hotels | 0.1690 | 0.2000 |
Netherlands Hotels to Netherlands apartments | 0.0065 | 0.6900 |
Netherlands apartments to Netherlands Hotels | 0.4324 | 0.1767 |
Ireland Hotels to Ireland apartments | 0.0111 | 0.0867 |
Ireland apartments to Ireland Hotels | 0.1229 | 0.5100 |
log(Spain) | log(UK) | log(Germany) | log(France) | log(Ireland) | log(The Netherlands) | |
---|---|---|---|---|---|---|
Variable | Coeffi. | Coeffi. | Coeffi. | Coeffi. | Coeffi. | Coeffi. |
C | 0.49 *** | 0.06 | 0.25 | 0.75 *** | 0.40 | −0.01 |
LOG(hotel) | 1.01 *** | 1.03 *** | 1.04 *** | 1.01 *** | 0.98 *** | 1.03 *** |
LOG(entropy) | 2.12 *** | 3.05 *** | 1.91 *** | 1.78 *** | 7.21 *** | 3.61 *** |
AR(12) | 0.92 *** | 0.83 *** | 0.88 *** | 0.99 *** | 0.61 *** | 0.69 *** |
MA(1) | 0.63 *** | 0.45 *** | 0.53 *** | - | - | - |
R-Squared | 0.9999 | 0.9998 | 0.9998 | 0.9995 | 0.9962 | 0.9976 |
Q-Stat (up to 12) | 17.91 | 6.91 | 13.96 | 19.53 | 6.92 | 16.18 |
ARCH (12) Chi-square | 10.98 | 9.97 | 12.30 | 12.01 | 0.51 | 12.85 |
Theil ineq. (Jan–Dec 2018) | 0.001082 | 0.005918 | 0.002169 | 0.002169 | 0.003337 | 0.017742 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz Reina, M.Á. Entropy Method for Decision-Making: Uncertainty Cycles in Tourism Demand. Entropy 2021, 23, 1370. https://doi.org/10.3390/e23111370
Ruiz Reina MÁ. Entropy Method for Decision-Making: Uncertainty Cycles in Tourism Demand. Entropy. 2021; 23(11):1370. https://doi.org/10.3390/e23111370
Chicago/Turabian StyleRuiz Reina, Miguel Ángel. 2021. "Entropy Method for Decision-Making: Uncertainty Cycles in Tourism Demand" Entropy 23, no. 11: 1370. https://doi.org/10.3390/e23111370
APA StyleRuiz Reina, M. Á. (2021). Entropy Method for Decision-Making: Uncertainty Cycles in Tourism Demand. Entropy, 23(11), 1370. https://doi.org/10.3390/e23111370