Katz Fractal Dimension of Geoelectric Field during Severe Geomagnetic Storms
Abstract
:1. Introduction
1.1. Motivation and Mathematical Basis
1.2. Hausdorff Dimension
1.3. Fractal Time Series
2. Data and Methods
2.1. Data
2.2. Geoelectric Field
2.3. Katz Fractal Dimension
3. Results and Discussion
3.1. Katz Fractal Dimension of Geoelectric Field
3.2. Usefulness and Limitations of the Katz Fractal Dimension
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mandelbrot, B. The Fractal Geometry of Nature; W.H. Freeman: New York, NY, USA, 1983. [Google Scholar]
- Burlaga, L.F.; Klein, L.W. Fractal structure of the interplanetary magnetic field. J. Geophys. Res. 1986, 91, 347–350. [Google Scholar] [CrossRef]
- Potirakis, S.M.; Minadakis, G.; Eftaxias, K. Sudden drop of fractal dimension of electromagnetic emissions recorded prior to significant earthquake. Nat. Hazards 2012, 64, 641–650. [Google Scholar] [CrossRef] [Green Version]
- Falconer, K.J. Fractal Geometry: Mathematical Foundations and Applications; Wiley: Chichester, UK, 2003. [Google Scholar]
- Edgar, G. Measure, Topology, and Fractal Geometry; Springer: New York, NY, USA, 2008. [Google Scholar]
- Barnsley, M.F. Fractals Everywhere, 2nd ed.; Academic Press Professional: Boston, MA, USA, 1993. [Google Scholar]
- Harvey, A.C. Time Series Models, 2nd ed.; MIT Press: Cambridge, MA, USA, 1993. [Google Scholar]
- Li, M. Fractal time series-a tutorial review. Math. Probl. Eng. 2010, 2010, 157264. [Google Scholar] [CrossRef]
- Goodrich, C.; Peterson, A.C. Discrete Fractional Calculus; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Herrmann, R. Fractional Calculus. An Introduction for Physicists; World Scientific Publishing Co. Pte. Ltd.: Hackensack, NJ, USA, 2018. [Google Scholar]
- Watari, S. Fractal dimensions of solar activity. Sol. Phys. 1995, 158, 365–377. [Google Scholar]
- Vassiliadis, D.V.; Sharma, A.S.; Eastman, T.E.; Papadopoulos, K. Low-dimensional chaos in magnetospheric activity from AE time series. Geophys. Res. Lett. 1990, 17, 1841–1844. [Google Scholar] [CrossRef] [Green Version]
- Tsurutani, B.; Sugiura, M.; Iyemori, T.; Goldstein, B.; Gonzalez, W.; Akasofu, S.; Smith, E. The nonlinear response of AE to the IMF BS driver: A spectral break at 5 h. Geophys. Res. Lett. 1990, 17, 279–282. [Google Scholar] [CrossRef] [Green Version]
- Vassiliadis, D.V.; Sharma, A.S.; Papadopoulos, K. Lyapunov exponent of magnetospheric activity from AL time series. Geophys. Res. Lett. 1991, 18, 1643–1646. [Google Scholar] [CrossRef] [Green Version]
- Klimas, A.J.; Vassiliadis, D.; Baker, D.N.; Roberts, D.A. The organized nonlinear dynamics of the magnetosphere. J. Geophys. Res. 1996, 101, 13089–13113. [Google Scholar] [CrossRef]
- Bergamasco, L.; Serio, M.; Osborne, A.R. Correlation dimension of underground muon time series. J. Geophys. Res. 1992, 97, 17153–17163. [Google Scholar] [CrossRef]
- Burlaga, L.F. Multifractal structure of the magnetic field and plasma in recurrent streams at 1 AU. J. Geophys. Res. 1992, 97, 4283–4293. [Google Scholar] [CrossRef]
- Bruno, R.; Carbone, V. The solar wind as a turbulence laboratory. Living Rev. Sol. Phys. 2005, 10, 2. [Google Scholar] [CrossRef] [Green Version]
- Wanliss, J.A.; Anh, V.V.; Yu, Z.-G.; Watson, S. Multifractal modeling of magnetic storms via symbolic dynamics analysis. J. Geophys. Res. 2005, 110, A8. [Google Scholar] [CrossRef] [Green Version]
- Ouadfeul, S.-A.; Hamoudi, M. Fractal Analysis of InterMagnet Observatories Data. In Fractal Analysis and Chaos in Geosciences, Sid-Ali Ouadfeul; IntechOpen: London, UK, 2012; Available online: https://www.intechopen.com/chapters/40874 (accessed on 20 July 2021).
- Alberti, T.; Consolini, G.; Ditlevsen, P.D.; Donner, R.V.; Quattrociocchi, V. Multiscale measures of phase-space trajectories. Chaos 2020, 30, 123116. [Google Scholar] [CrossRef]
- Domínguez, M.; Muñoz, V.; Valdivia, J.A. Temporal Evolution of Fractality in the Earth’s Magnetosphere and the Solar Photosphere. J. Geophys. Res. 2014, 119, 3585–3603. [Google Scholar] [CrossRef]
- Balasis, G.; Daglis, I.A.; Kapiris, P.; Mandea, M.; Vassiliadis, D.; Eftaxias, K. From pre-storm activity to magnetic storms: A transition described in terms of fractal dynamics. Ann. Geophys. 2006, 24, 3557–3567. [Google Scholar] [CrossRef] [Green Version]
- Ogunjo, S.T.; Rabiu, A.B.; Fuwape, I.A.; Obafaye, A.A. Evolution of dynamical complexities in geospace as captured by Dst over four solar cycles 1964–2008. J. Geophys. Res. 2021, 126, e2020JA027873. [Google Scholar] [CrossRef]
- Svanda, M.; Mourenas, D.; Zertova, K.; Vybostokova, T. Immediate and delayed responses of power lines and transformers in the Czech electric power grid to geomagnetic storms. J. Space Weather Space Clim. 2020, 10, 26. [Google Scholar] [CrossRef]
- Výbošt’oková, T.; Švanda, M. Statistical analysis of the correlation between anomalies in the Czech electric power grid and geomagnetic activity. Space Weather 2019, 17, 1208–1218. [Google Scholar] [CrossRef]
- Gil, A.; Berendt-Marchel, M.; Modzelewska, R.; Moskwa, S.; Siluszyk, A.; Siluszyk, M.; Tomasik, L.; Wawrzaszek, A.; Wawrzynczak, A. Evaluating the relationship between strong geomagnetic storms and electric grid failures in Poland using the geoelectric field as a gic proxy. J. Space Weather Space Clim. 2021, 11, 30. [Google Scholar] [CrossRef]
- Gil, A.; Modzelewska, R.; Moskwa, S.; Siluszyk, A.; Siluszyk, M.; Wawrzynczak, A.; Pozoga, M.; Domijanski, S. Transmission Lines in Poland and Space Weather Effects. Energies 2020, 13, 2359. [Google Scholar] [CrossRef]
- Gil, A.; Modzelewska, R.; Moskwa, S.; Siluszyk, A.; Siluszyk, M.; Wawrzynczak, A.; Zakrzewska, S. Does time series analysis confirms the relationship between space weather effects and the failures of electrical grids in South Poland? J. Math. Ind. 2019, 9, 7. [Google Scholar] [CrossRef]
- Tozzi, R.; De Michelis, P.; Coco, I.; Giannattasio, F. A preliminary risk assessment of geomagnetically induced currents over the Italian territory. Space Weather 2019, 17, 46. [Google Scholar] [CrossRef] [Green Version]
- Piersanti, M.; Michelis, P.D.; Moro, D.D.; Tozzi, R.; Pezzopane, M.; Consolini, G.; Marcucci, M.F.; Laurenza, M.; Matteo, S.D.; Pignalberi, A.; et al. From the Sun to Earth: Effects of the 25 August 2018 geomagnetic storm. Ann. Geophys. 2020, 38, 703–724. [Google Scholar] [CrossRef]
- Zois, J.P. Solar activity and transformer failures in the Greek national electric grid. J. Space Weather Space Clim. 2013, 3, A32. [Google Scholar] [CrossRef] [Green Version]
- Torta, J.M.; Serrano, L.; Regué, J.R.; Sánchez, A.M.; Roldán, E. Geomagnetically induced currents in a power grid of northeastern Spain. Space Weather 2012, 10, S06002. [Google Scholar] [CrossRef] [Green Version]
- Bailey, R.L.; Halbedl, T.S.; Schattauer, I.; Achleitner, G.; Leonhardt, R. Validating GIC Models With Measurements in Austria: Evaluation of Accuracy and Sensitivity to Input Parameters. Space Weather 2018, 16, 887–902. [Google Scholar] [CrossRef] [Green Version]
- Hathaway, D.H. The solar cycle. Living Rev. Sol. Phys. 2015, 12, 4. [Google Scholar] [CrossRef] [PubMed]
- Feynman, J. Geomagnetic and solar wind cycles, 1900–1975. J. Geophys. Res. 1982, 87, 6153–6162. [Google Scholar] [CrossRef]
- Tsurutani, B.T.; Hajra, R. The Interplanetary and Magnetospheric causes of Geomagnetically Induced Currents (GICs) > 10 A in the Mäntsälä Finland Pipeline: 1999 through 2019. J. Space Weather Space Clim. 2021, 11, 23. [Google Scholar] [CrossRef]
- Akasofu, S.-I. A source of the energy for geomagnetic storms and auroras. Planet. Space Sci. 1964, 12, 801–808. [Google Scholar] [CrossRef]
- Knipp, D.J.; Bernstein, V.; Wahl, K.; Hayakawa, H. Timelines as a tool for learning about space weather storms. J. Space Weather Space Clim. 2021, 11, 29. [Google Scholar] [CrossRef]
- Denton, M.H.; Borovsky, J.E.; Skoug, R.M.; Thomsen, M.F.; Lavraud, B.; Henderson, M.G. Geomagnetic storms driven by ICME- and CIR-dominated solar wind. J. Geophys. Res. 2006, 111, A07S07. [Google Scholar] [CrossRef] [Green Version]
- Pulkkinen, A.; Lindahl, S.; Viljanen, A.; Pirjola, R. Geomagnetic storm of 29–31 October 2003: Geomagnetically induced currents and their relation to problems in the Swedish high-voltage power transmission system. Space Weather 2005, 3, S08C03. [Google Scholar] [CrossRef]
- Gaunt, C.T.; Coetzee, G. Transformer failures in regions incorrectly considered to have low GIC-risk. In Proceedings of the 2007 IEEE Lausanne Power Tech, Lausanne, Switzerland, 1–5 July 2007; pp. 807–812. [Google Scholar]
- Cannon, P.S. Extreme Space Weather: Impacts on Engineered Systems and Infrastructure; Royal Academy of Engineering: London, UK, 2013; Available online: http://www.raeng.org.uk/publications/reports/space-weather-full-report (accessed on 29 June 2021).
- Schrijver, C.J.; Dobbins, R.; Murtagh, W.; Petrinec, S.M. Assessing the impact of space weather on the electric power grid based on insurance claims for industrial electrical equipment. Space Weather 2014, 12, 487–498. [Google Scholar] [CrossRef] [Green Version]
- Rodger, C.J.; Clilverd, M.A.; Manus, D.H.M.; Martin, I.; Dalzell, M.; Brundell, J.B. Geomagnetically induced currents and harmonic distortion: Storm time observations from New Zealand. Space Weather 2020, 18, e2019SW002387. [Google Scholar] [CrossRef] [Green Version]
- Lakhina, G.S.; Tsurutani, B.T. Geomagnetic storms: Historical perspective to modern view. Geosci. Lett. 2016, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- Matzka, J.; Stolle, C.; Yamazaki, Y.; Bronkalla, O.; Morschhauser, A. The geomagnetic Kp index and derived indices of geomagnetic activity. Space Weather 2021, 19, e2020SW002641. [Google Scholar] [CrossRef]
- Available online: https://www.swpc.noaa.gov/noaa-scales-explanation (accessed on 31 July 2021).
- Bolduc, L. GIC observations and studies in the Hydro Qubec power system. J. Atmos. Sol.-Terr. Phys. 2002, 64, 1793–1802. [Google Scholar] [CrossRef]
- Tsurutani, B.T.; Gonzalez, W.D.; Lakhina, G.S.; Alex, S. The extreme magnetic storm of 1–2 September 1859. J. Geophys. Res. 2003, 108, 1268. [Google Scholar] [CrossRef] [Green Version]
- Frey, H.U.; Mende, S.B.; Angelopoulos, V.; Donovan, E.F. Substorm onset observations by IMAGE-FUV. J. Geophys. Res. 2004, 109, A10304. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, W.D.; Joselyn, J.A.; Kamide, Y.; Kroehl, H.W.; Rostoker, G.; Tsurutani, B.T.; Vasyliunas, V.M. What is a geomagnetic storm? J. Geophys. Res. 1994, 99, 5771–5792. [Google Scholar] [CrossRef]
- Gonzalez, W.D.; Tsurutani, B.T. Criteria of interplanetary parameters causing intense magnetic storms (Dst < −100 nT). Planet. Space Sci. 1987, 35, 1101–1109. [Google Scholar] [CrossRef]
- Boteler, D.H.; Pirjola, R.J. Numerical calculation of geoelectric fields that affect critical infrastructure. Int. J. Geosci. 2019, 10, 930. [Google Scholar] [CrossRef] [Green Version]
- Boteler, D.H.; Pirjola, R.J.; Marti, L. Analytic calculation of geoelectric fields due to geomagnetic disturbances: A test case. IEEE Access 2019, 7, 147029. [Google Scholar] [CrossRef]
- Weaver, J.T. Mathematical Methods for Geo-Electromagnetic Induction; Wiley: New York, NY, USA, 1994. [Google Scholar]
- Trichtchenko, L.; Boteler, D.H. Modelling of geomagnetic induction in pipelines. Ann. Geophys. 2002, 20, 1063. [Google Scholar] [CrossRef]
- Beggan, C.D.; Richardson, G.S.; Baillie, O.; Hübert, J.; Thomson, A.W.P. Geolectric field measurement, modelling and validation during geomagnetic storms in the UK. J. Space Weather Space Clim. 2021, 11, 37. [Google Scholar] [CrossRef]
- Ádám, A.; Prácser, E.; Wesztergom, V. Estimation of the electric resistivity distribution (eurhom) in the european lithosphere in the frame of the eurisgic wp2 project. Acta Geod. Geophys. Hung. 2012, 47, 377–387. [Google Scholar] [CrossRef]
- Viljanen, A.; Pirjola, R.; Prácser, E.; Ahmadzai, S.; Singh, V. Geomagnetically induced currents in Europe: Characteristics based on a local power grid model. Space Weather 2013, 11, 575. [Google Scholar] [CrossRef]
- Viljanen, A.; Pirjola, R.; Prácser, E.; Katkalov, J.; Wik, M. Geomagnetically induced currents in Europe-modelled occurrence in a continent-wide power grid. J. Space Weather Space Clim. 2014, 4, A09. [Google Scholar] [CrossRef]
- Boteler, D.H. On choosing Fourier transforms for practical geoscience applications. Int. J. Geosc. 2019, 3, 952. [Google Scholar] [CrossRef] [Green Version]
- Klinkenberg, B. A review of methods used to determine the fractal dimension of linear features. Math. Geol. 1994, 26, 23–46. [Google Scholar] [CrossRef]
- Borodich, F.M. Fractals and fractal scaling in fracture mechanics. Int. J. Fract. 1999, 95, 239–259. [Google Scholar] [CrossRef]
- Demichel, Y. Lp-norms and fractal dimensions of continuous function graphs. In Recent Developments in Fractals and Related Fields; Barral, J., Seuret, S., Eds.; Springer Science+Business Media: Berlin/Heidelberg, Germany, 2010; pp. 145–164. [Google Scholar]
- Katz, M.J. Fractals and the analysis of waveforms. Comput. Biol. Med. 1988, 18, 145–156. [Google Scholar] [CrossRef]
- Hadjileontiadis, L.J.; Douka, E.; Trochidis, A. Fractal dimension analysis for crack identification in beam structures. Mech. Syst. Signal Process. 2005, 19, 659–674. [Google Scholar] [CrossRef]
- Shi, C. Signal Pattern Recognition Based on Fractal Features and Machine Learning. Appl. Sci. 2018, 8, 1327. [Google Scholar] [CrossRef] [Green Version]
- Garner, D.M.; de Souza, N.M.; Vanderlei, L.C.M. Heart rate variability analysis: Higuchi and Katz’s fractal dimensions in subjects with type 1 diabetes mellitus. Rom. J. Diabetes Nutr. Metab. Dis. 2018, 5, 289–295. [Google Scholar] [CrossRef] [Green Version]
- Esteller, R.; Vachtsevanos, G.; Echauz, J.; Litt, B. A Comparison of Waveform Fractal Dimension Algorithms. IEEE Trans. Circuits Syst. 2001, 48, 177–183. [Google Scholar] [CrossRef] [Green Version]
- Castiglioni, P. What is wrong in Katz’s method? Comments on: A note on fractal dimensions of biomedical waveforms. Comput. Biol. Med. 2010, 40, 950–952. [Google Scholar] [CrossRef]
- Sevcik, C. On fractal dimension of waveforms. Chaos Solitons Fractals 2006, 28, 579–580. [Google Scholar] [CrossRef]
- Fujii, I.; Ookawa, T.; Nagamachi, S.; Owada, T. The characteristics of geoelectric fields at Kakioka, Kanoya, and Memambetsu inferred from voltage measurements during 2000 to 2011. Earth Planet Space 2015, 67, 62. [Google Scholar] [CrossRef] [Green Version]
- Oludehinwa, I.A.; Olusola, O.I.; Bolaji, O.S.; Odeyemi, O.O.; Njah, A.N. Magnetospheric chaos and dynamical complexity response during storm time disturbance. Nonlin. Process. Geophys. 2021, 28, 257–270. [Google Scholar] [CrossRef]
- Zhao, M.X.; Le, G.M.; Li, Q. Dependence of great geomagnetic storm (ΔSYM-H≤ −200 nT) on associated solar wind parameters. Solar Phys. 2021, 296, 1–14. [Google Scholar] [CrossRef]
- Hajra, R.; Tsurutani, B.T.; Lakhina, G.S. The complex space weather events of 2017 September. Astrophys. J. 2020, 899, 3. [Google Scholar] [CrossRef]
- Dremukhina, L.A.; Yermolaev, Y.; Lodkina, I.G. Dynamics of interplanetary parameters and geomagnetic indices during magnetic storms induced by different types of solar wind. Geomagn. Aeron. 2019, 59, 639–650. [Google Scholar] [CrossRef]
- Raghavendra, B.S.; Dutt, N.D. Computing fractal dimension of signals using multiresolution box-counting method. Int. J. Inf. Math. Sci. 2010, 6, 50–65. [Google Scholar]
- Higuchi, T. Approach to an irregular time series on the basis of the fractal theory. Phys. D Nonlinear Phenom. 1988, 31, 277–283. [Google Scholar] [CrossRef]
- Sevcik, C.A. Procedure to estimate the fractal dimension of waveforms. Complex. Int. 1998, 5, 1–19. [Google Scholar]
- Alberti, T.; Lekscha, J.; Consolini, G.; De Michelis, P.; Donner, R.V. Disentangling nonlinear geomagnetic variability during magnetic storms and quiescence by timescale dependent recurrence properties. J. Space Weather Space Clim. 2020, 10, 25. [Google Scholar] [CrossRef]
- Donner, R.V.; Stolbova, V.; Balasis, G.; Donges, J.F.; Georgiou, M.; Potirakis, S.M.; Kurths, J. Temporal organization of magnetospheric fluctuations unveiled by recurrent patterns in the Dst index. Chaos 2018, 28, 085716. [Google Scholar] [CrossRef] [PubMed]
- Liehr, L.; Massopust, P. On the mathematical validity of the Higuchi method. Phys. D Nonlinear Phenom. 2020, 402, 132265. [Google Scholar] [CrossRef] [Green Version]
- Doyle, T.L.; Dugan, E.L.; Humphries, B.; Newton, R.U. Discriminating between elderly and young using a fractal dimension analysis of centre of pressure. Int. J. Med. Sci. 2004, 1, 11–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marti, L.; Yiu, C.; Rezaei-Zare, A.; Boteler, D. Simulation of geomagnetically induced currents with piecewise layered-Earth models. IEEE Trans. Power Deliv. 2014, 29, 1886–1893. [Google Scholar] [CrossRef]
- Boteler, D.H.; Pirjola, R.J. Modeling geomagnetically induced currents. Space Weather 2017, 15, 258–276. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gil, A.; Glavan, V.; Wawrzaszek, A.; Modzelewska, R.; Tomasik, L. Katz Fractal Dimension of Geoelectric Field during Severe Geomagnetic Storms. Entropy 2021, 23, 1531. https://doi.org/10.3390/e23111531
Gil A, Glavan V, Wawrzaszek A, Modzelewska R, Tomasik L. Katz Fractal Dimension of Geoelectric Field during Severe Geomagnetic Storms. Entropy. 2021; 23(11):1531. https://doi.org/10.3390/e23111531
Chicago/Turabian StyleGil, Agnieszka, Vasile Glavan, Anna Wawrzaszek, Renata Modzelewska, and Lukasz Tomasik. 2021. "Katz Fractal Dimension of Geoelectric Field during Severe Geomagnetic Storms" Entropy 23, no. 11: 1531. https://doi.org/10.3390/e23111531
APA StyleGil, A., Glavan, V., Wawrzaszek, A., Modzelewska, R., & Tomasik, L. (2021). Katz Fractal Dimension of Geoelectric Field during Severe Geomagnetic Storms. Entropy, 23(11), 1531. https://doi.org/10.3390/e23111531