An Error Compensation Method for Improving the Properties of a Digital Henon Map Based on the Generalized Mean Value Theorem of Differentiation
Abstract
:1. Introduction
2. Dynamical Degradation of the Digital Henon Map
2.1. Henon Map
2.2. Dynamical Degradation of Digital Henon Map
3. A Novel Method for a Digital Henon Map
3.1. Method Description
3.2. Performance Analysis
4. Dynamical Performance Comparison
4.1. Performance Comparison of the Systems before and after Error Compensation
4.1.1. Trajectories and Period
4.1.2. Frequency Distribution and Phase Diagram
4.1.3. Correlation
4.1.4. Entropy
4.2. Comparison of the Proposed Error Compensation Scheme with Existing Methods
4.2.1. Trajectories
4.2.2. Frequency Distribution
4.2.3. Auto-Correlation
4.2.4. Entropy
4.2.5. Similarity Comparison with Real Chaotic System
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef] [Green Version]
- Matthews, R. On the derivation of a “Chaotic” encryption algorithm. Cryptologia 1989, 8, 29–41. [Google Scholar] [CrossRef]
- Liu, L.; Miao, S. Delay-introducing method to improve the dynamical degradation of a digital chaotic map. Inf. Sci. 2017, 396, 1–13. [Google Scholar] [CrossRef]
- Martínez-Ñonthe, J.; Castañeda-Solís, A.; Díaz-Méndez, A.; Cruz-Irisson, M.; Vazquez-Medina, R. Chaotic block cryptosystem using high precision approaches to tent map. Microelectron. Eng. 2012, 90, 168–172. [Google Scholar] [CrossRef]
- Wheeler, D.D.; Matthews, R.A.J. Supercomputer investigations of a chaotic encryption algorithm. Cryptologia 1991, 15, 140–152. [Google Scholar] [CrossRef]
- Hua, Z.; Zhou, Y.; Bao, B. Two-dimensional sine chaotification system with hardware implementation. IEEE Trans. Ind. Inform. 2019, 16, 887–897. [Google Scholar] [CrossRef]
- Hua, Z.; Zhou, B.; Zhou, Y. Sine-Transform-Based Chaotic System With FPGA Implementation. IEEE Trans. Ind. Electron. 2018, 65, 2557–2566. [Google Scholar] [CrossRef]
- Hua, Z.; Zhou, B.; Zhou, Y. Sine chaotification model for enhancing chaos and its hardware implementation. IEEE Trans. Ind. Electron. 2018, 66, 1273–1284. [Google Scholar] [CrossRef]
- Zhou, Y.; Hua, Z.; Pun, C.; Philip Chen, C.L. Cascade Chaotic System With Applications. IEEE Trans. Cybern. 2015, 45, 2001–2012. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Hu, H.; Xiong, N.; Xiong, W.; Liu, L. A general hybrid model for chaos robust synchronization and degradation reduction. Inf. Sci. 2015, 305, 146–164. [Google Scholar] [CrossRef]
- Lin, F.; Ying, H. State-feedback control of fuzzy discrete-event systems. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2009, 40, 951–956. [Google Scholar]
- Fan, C.; Ding, Q.; Tse, C.K. Counteracting the dynamical degradation of digital chaos by applying stochastic jump of chaotic orbits. Int. J. Bifurc. Chaos 2019, 29, 1930023. [Google Scholar] [CrossRef]
- Deng, Y.; Hu, H.; Xiong, W.; Xiong, N.N.; Liu, L. Analysis and design of digital chaotic systems with desirable performance via feedback control. IEEE Trans. Syst. Man Cybern. Syst. 2015, 45, 1187–1200. [Google Scholar] [CrossRef]
- Zhang, Y. The unified image encryption algorithm based on chaos and cubic S-Box. Inf. Sci. 2018, 450, 361–377. [Google Scholar] [CrossRef]
- Liu, L.; Liu, B.; Hu, H.; Miao, S. Reducing the dynamical degradation by bi-coupling digital chaotic maps. Int. J. Bifurc. Chaos 2018, 28, 1850059. [Google Scholar] [CrossRef]
- Shi, Y.; Deng, Y. Hybrid Control of Digital Baker Map with Application to Pseudo-Random Number Generator. Entropy 2021, 23, 578. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Sun, K.; Peng, Y.; Alamodi, A.O. A novel control method to counteract the dynamical degradation of a digital chaotic sequence. Eur. Phys. J. Plus 2019, 134, 1–16. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, Y.; Song, S.; Cao, L.; Liu, J.; Harkin, J. Counteracting Dynamical Degradation of Digital Chaotic Chebyshev Map via Perturbation. Int. J. Bifurc. Chaos 2017, 27, 1750033. [Google Scholar] [CrossRef]
- Liu, S.-B.; Sun, J.; Xu, Z.-Q.; Liu, J.-S. Digital chaotic sequence generator based on coupled chaotic systems. Chin. Phys. B 2009, 18, 5219. [Google Scholar]
- Alawida, M.; Samsudin, A.; Teh, J.S. Enhanced digital chaotic maps based on bit reversal with applications in random bit generators. Inf. Sci. 2020, 512, 1155–1169. [Google Scholar] [CrossRef]
- Huang, C.; Ding, Q. Performance of Finite Precision on Discrete Chaotic Map Based on a Feedback Shift Register. Complexity 2020, 2020, 4676578. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Chen, G.; Mou, X. On the dynamical degradation of digital piecewise linear chaotic maps. Int. J. Bifurc. Chaos 2005, 15, 3119–3151. [Google Scholar] [CrossRef] [Green Version]
- Sang, T.; Wang, R.; Yan, Y. Perturbance-based algorithm to expand cycle length of chaotic key stream. Electron. Lett. 1998, 34, 873–874. [Google Scholar] [CrossRef]
- Wang, C.; Ding, Q. Theoretical design of controlled digitized chaotic systems with periodic orbit of upper limit length in digital circuit. Nonlinear Dyn. 2019, 98, 257–268. [Google Scholar] [CrossRef]
- Hu, H.; Xu, Y.; Zhu, Z. A method of improving the properties of digital chaotic system. Chaos Solitons Fractals 2008, 38, 439–446. [Google Scholar] [CrossRef]
- Wang, Y.; Wong, K.W.; Liao, X.; Xiang, T.; Chen, G. A chaos-based image encryption algorithm with variable control parameters. Chaos Solitons Fractals 2009, 41, 1773–1783. [Google Scholar] [CrossRef]
- Gábor Domokos, D.S. Ulam’s scheme revisited: Digital modeling of chaotic attractors via micro-perturbations. Discret. Contin. Dyn. Syst. 2003, 9, 859–876. [Google Scholar] [CrossRef]
- Liu, L.; Lin, J.; Miao, S.; Liu, B. A Double Perturbation Method for Reducing Dynamical Degradation of the Digital Baker Map. Int. J. Bifurc. Chaos 2017, 27, 1750103. [Google Scholar] [CrossRef]
- Hu, H.; Deng, Y.; Liu, L. Counteracting the dynamical degradation of digital chaos via hybrid control. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 1970–1984. [Google Scholar] [CrossRef]
- Liu, L.; Xiang, H.; Li, X. A novel perturbation method to reduce the dynamical degradation of digital chaotic maps. Nonlinear Dyn. 2021, 103, 1099–1115. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, L. An Iteration-Time Combination Method to Reduce the Dynamic Degradation of Digital Chaotic Maps. Complexity 2020, 2020, 5707983. [Google Scholar] [CrossRef]
- Huang, T. The Mean Value Theorems for Differentials in a Multi-Dimensional Space. J. Ningbo Univ. Nat. Sci. Eng. Ed. 2003, 320–322. (In Chinese) [Google Scholar]
- Tang, J.; Yu, Z.; Liu, L. A delay coupling method to reduce the dynamical degradation of digital chaotic maps and its application for image encryption. Multimed. Tools Appl. 2019, 78, 24765–24788. [Google Scholar] [CrossRef]
Precision | Period (Digital) | Period (ECMHD) | The Place It Fell into Cycle (Digital) | The Place It Fell into Cycle (ECMHD) |
---|---|---|---|---|
8 | 2323 | 83,690 | 54 | 196,964 |
9 | 252 | 217,763 | 26 | 6179 |
10 | 193 | U | 51 | U |
11 | 194 | U | 209 | U |
12 | 233 | U | 507 | U |
13 | 1295 | U | 234 | U |
14 | 891 | U | 88 | U |
15 | 1849 | U | 540 | U |
16 | 1364 | U | 732 | U |
17 | 2134 | U | 857 | U |
18 | 3914 | U | 4721 | U |
19 | 3359 | U | 6551 | U |
20 | 10,747 | U | 10,945 | U |
21 | 13,885 | U | 9344 | U |
22 | 754 | U | 17,357 | U |
23 | 10,031 | U | 72,207 | U |
24 | 32,513 | U | 59,022 | U |
Method | Distance |
---|---|
Liu’s method | 455.9403 |
Wu’s method | 459.8772 |
Tang’s method | 636.9570 |
ECMHD | 252.1862 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Y.; Shi, Y. An Error Compensation Method for Improving the Properties of a Digital Henon Map Based on the Generalized Mean Value Theorem of Differentiation. Entropy 2021, 23, 1628. https://doi.org/10.3390/e23121628
Deng Y, Shi Y. An Error Compensation Method for Improving the Properties of a Digital Henon Map Based on the Generalized Mean Value Theorem of Differentiation. Entropy. 2021; 23(12):1628. https://doi.org/10.3390/e23121628
Chicago/Turabian StyleDeng, Yashuang, and Yuhui Shi. 2021. "An Error Compensation Method for Improving the Properties of a Digital Henon Map Based on the Generalized Mean Value Theorem of Differentiation" Entropy 23, no. 12: 1628. https://doi.org/10.3390/e23121628
APA StyleDeng, Y., & Shi, Y. (2021). An Error Compensation Method for Improving the Properties of a Digital Henon Map Based on the Generalized Mean Value Theorem of Differentiation. Entropy, 23(12), 1628. https://doi.org/10.3390/e23121628