Complexity in Economic and Social Systems
Funding
Conflicts of Interest
References
- Kwapień, J.; Drożdż, S. Physical approach to complex systems. Phys. Rep. 2012, 515, 115. [Google Scholar] [CrossRef]
- Klamut, J.; Kutner, R.; Struzik, Z.R. Towards a Universal Measure of Complexity. Entropy 2020, 22, 866. [Google Scholar] [CrossRef] [PubMed]
- García-Medina, A.; Hernandéz, C.J.B. Network Analysis of Multivariate Transfer Entropy of Cryptocurrencies in Times of Turbulence. Entropy 2020, 22, 760. [Google Scholar] [CrossRef] [PubMed]
- Tsallis, C. Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World; Springer: New York, NY, USA, 2009. [Google Scholar]
- Cerqueti, R.; Rotundo, G.; Ausloos, M. Tsallis Entropy for Cross-Shareholding Network Configurations. Entropy 2020, 22, 676. [Google Scholar] [CrossRef] [PubMed]
- Murialdo, P.; Ponta, L.; Carbone, A. Long-Range Dependence in Financial Markets: A Moving Average Cluster Entropy Approach. Entropy 2020, 22, 634. [Google Scholar] [CrossRef] [PubMed]
- Sornette, D. Why Stock Market Crash: Critical Events in Complex Financial Systems; Princeton University Press: Princeton, NJ, USA, 2003. [Google Scholar]
- Shi, Y.; Zheng, Y.; Guo, K.; Jin, Z.; Huang, Z. The Evolution Characteristics of Systemic Risk in China’s Stock Market Based on a Dynamic Complex Network. Entropy 2020, 22, 614. [Google Scholar] [CrossRef]
- Peng, Z.; Hu, C. The Threshold Effect of Leveraged Trading on the Stock Price Crash Risk: Evidence from China. Entropy 2020, 22, 268. [Google Scholar] [CrossRef] [Green Version]
- Bień-Barkowska, K. Looking at Extremes without Going to Extremes: A New Self-Exciting Probability Model for Extreme Losses in Financial Markets. Entropy 2020, 22, 789. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, X.; Gong, X.; Yang, X.; Huang, C. Systemic Importance of China’s Financial Institutions: A Jump Volatility Spillover Network Review. Entropy 2020, 22, 588. [Google Scholar] [CrossRef]
- Yue, P.; Fan, Y.; Batten, J.A.; Zhou, W.-X. Information Transfer between Stock Market Sectors: A Comparison between the USA and China. Entropy 2020, 22, 194. [Google Scholar] [CrossRef] [Green Version]
- Chu, G.; Li, X.; Shen, D.; Zhan, Y. Unexpected Information Demand and Volatility Clustering of Chinese Stock Returns: Evidence from Baidu Index. Entropy 2020, 22, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Z.; Hu, Y.; Jiang, Y.; Peng, Z. Pricing Constraint and the Complexity of IPO Timing in the Stock Market: A Dynamic Game Analysis. Entropy 2020, 22, 546. [Google Scholar] [CrossRef] [PubMed]
- Inglada-Perez, L. A Comprehensive Framework for Uncovering Non-Linearity and Chaos in Financial Markets: Empirical Evidence for Four Major Stock Market Indices. Entropy 2020, 22, 1435. [Google Scholar] [CrossRef] [PubMed]
- Będowska-Sójka, B.; Echaust, K. Do Liquidity Proxies Based on Daily Prices and Quotes Really Measure Liquidity? Entropy 2020, 22, 783. [Google Scholar] [CrossRef] [PubMed]
- Wątorek, M.; Drożdż, S.; Kwapień, J.; Oświęcimka, P.; Stanuszek, M. Multiscale characteristics of the emerging global cryptocurrency market. Phys. Rep. 2020. [Google Scholar] [CrossRef]
- Drożdż, S.; Kwapień, J.; Oświęcimka, P.; Stanisz, T.; Wątorek, M. Complexity in Economic and Social Systems: Cryptocurrency Market at around COVID-19. Entropy 2020, 22, 1043. [Google Scholar] [CrossRef]
- Cieśla, M.; Snarska, M. A Simple Mechanism Causing Wealth Concentration. Entropy 2020, 22, 1148. [Google Scholar] [CrossRef]
- Jakimowicz, A.; Rzeczkowski, D. Innovativeness of Industrial Processing Enterprises and Conjunctural Movement. Entropy 2020, 22, 1177. [Google Scholar] [CrossRef]
- Kaszowska-Mojsa, J.; Pipień, M. Macroprudential Policy in a Heterogeneous Environment—An Application of Agent-Based Approach in Systemic Risk Modelling. Entropy 2020, 22, 129. [Google Scholar] [CrossRef] [Green Version]
- Jakimowicz, A.; Rzeczkowski, D. New Measure of Economic Development Based on the Four-Colour Theorem. Entropy 2020, 22, 61. [Google Scholar] [CrossRef]
- Viegas, E.; Goto, H.; Kobayashi, Y.; Takayasu, M.; Takayasu, H.; Jensen, H.J. Allometric Scaling of Mutual Information in Complex Networks: A Conceptual Framework and Empirical Approach. Entropy 2020, 22, 206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gemeda, B.S.; Abebe, B.G.; Paczoski, A.; Xie, Y.; Cirella, G.T. What Motivates Speculators to Speculate? Entropy 2020, 22, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, J.; Pinto, A. The Value of Information Searching against Fake News. Entropy 2020, 22, 1368. [Google Scholar] [CrossRef]
- Wild, D.; Jurcic, M.; Podobnik, B. The Gender Productivity Gap in Croatian Science: Women Are Catching up with Males and Becoming Even Better. Entropy 2020, 22, 1217. [Google Scholar] [CrossRef] [PubMed]
- Jakimowicz, A. The Role of Entropy in the Development of Economics. Entropy 2020, 22, 452. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drożdż, S.; Kwapień, J.; Oświęcimka, P. Complexity in Economic and Social Systems. Entropy 2021, 23, 133. https://doi.org/10.3390/e23020133
Drożdż S, Kwapień J, Oświęcimka P. Complexity in Economic and Social Systems. Entropy. 2021; 23(2):133. https://doi.org/10.3390/e23020133
Chicago/Turabian StyleDrożdż, Stanisław, Jarosław Kwapień, and Paweł Oświęcimka. 2021. "Complexity in Economic and Social Systems" Entropy 23, no. 2: 133. https://doi.org/10.3390/e23020133
APA StyleDrożdż, S., Kwapień, J., & Oświęcimka, P. (2021). Complexity in Economic and Social Systems. Entropy, 23(2), 133. https://doi.org/10.3390/e23020133