An Information Theory Approach to Aesthetic Assessment of Visual Patterns
Abstract
:1. Introduction
2. Related Work
3. Proposed Approach
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chatterjee, A. Neuroaesthetics: A Coming of Age Story. J. Cogn. Neurosci. 2011, 23, 53–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leder, H.; Belke, B.; Oeberst, A.; Augustin, D. A model of aesthetic appreciation and aesthetic judgments. Br. J. Psychol. 2004, 95, 489–508. [Google Scholar] [CrossRef] [PubMed]
- Hammermeister, K. The German Aesthetic Tradition; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Gracyk, T. Hume’s aesthetics. In Stanford Encyclopedia of Philosophy; Stanford University: Stanford, CA, USA, 2011. [Google Scholar]
- Burnham, D. Kant’s aesthetics. In Internet Encyclopedia of Philosophy; IEP: Martin, TN, USA, 2001. [Google Scholar]
- Shelley, J. The concept of the aesthetic. In Stanford Encyclopedia of Philosophy; Stanford University: Stanford, CA, USA, 2012. [Google Scholar]
- Vessel, E.A.; Rubin, N. Beauty and the beholder: Highly individual taste for abstract but not real-world images. J. Vis. 2010, 10, 18. [Google Scholar] [CrossRef] [PubMed]
- McCormack, J. Facing the Future: Evolutionary Possibilities for Human-Machine Creativity; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2008; pp. 417–451. [Google Scholar]
- Latham, W.H.; Todd, S. Computer sculpture. IBM Syst. J. 1989, 28, 682–688. [Google Scholar] [CrossRef]
- Datta, R.; Joshi, D.; Li, J.; Wang, J.Z. Studying Aesthetics in Photographic Images Using a Computational Approach. In Lecture Notes in Computer Science; Springer: Springer, Berlin, Heidelberg, 2006; pp. 288–301. [Google Scholar]
- Ke, Y.; Tang, X.; Jing, F. The Design of High-Level Features for Photo Quality Assessment. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition—Volume 2 (CVPR’06), New York, NY, USA, 17–22 June 2006; pp. 288–301. [Google Scholar] [CrossRef] [Green Version]
- Aydin, T.O.; Smolic, A.; Gross, M. Automated Aesthetic Analysis of Photographic Images. IEEE Trans. Vis. Comput. Graph. 2015, 21, 31–42. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Sukthankar, R.; Shah, M. A framework for photo-quality assessment and enhancement based on visual aesthetics. In Proceedings of the International Conference on Big Data and Internet of Thing—BDIOT2017, Firenze, Italy, 25–29 October 2010; pp. 271–280. [Google Scholar]
- Liu, Y.-J.; Luo, X.; Xuan, Y.-M.; Chen, W.-F.; Fu, X.-L. Image Retargeting Quality Assessment. Comput. Graph. Forum 2011, 30, 583–592. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Jin, Y.; Wu, Q. Realtime aesthetic image retargeting. Comput. Aesthet. 2010, 10, 1–8. [Google Scholar]
- Liu, L.; Chen, R.; Wolf, L.; Cohen-Or, D. Optimizing Photo Composition. Comput. Graph. Forum 2010, 29, 469–478. [Google Scholar] [CrossRef]
- O’Donovan, P.; Agarwala, A.; Hertzmann, A. Color compatibility from large datasets. Acm Trans. Graph. 2011, 30, 1–12. [Google Scholar] [CrossRef]
- Cohen-Or, D.; Sorkine, O.; Gal, R.; Leyvand, T.; Xu, Y.-Q. Color harmonization. In Proceedings of the IGGRAPH06: Special Interest Group on Computer Graphics and Interactive Techniques Conference, Boston, MA, USA, 30–31 July 2006; pp. 624–630. [Google Scholar]
- Nishiyama, M.; Okabe, T.; Sato, I.; Sato, Y. Aesthetic quality classification of photographs based on color harmony. In Proceedings of the CVPR 2011, Providence, RI, USA, 20–25 June 2011; pp. 33–40. [Google Scholar]
- Dhar, S.; Ordonez, V.; Berg, T.L. High level describable attributes for predicting aesthetics and interestingness. In Proceedings of the CVPR 2011, Providence, RI, USA, 20–25 June 2011; pp. 1657–1664. [Google Scholar]
- Lu, X.; Lin, Z.; Jin, H.; Yang, J.; Wang, J.Z. Rapid: Rating pictorial aesthetics using deep learning. In Proceedings of the 22nd ACM international conference on Multimedia, Orlando, FL, USA, 7 November 2014; pp. 457–466. [Google Scholar]
- Kao, Y.; Wang, C.; Huang, K. Visual aesthetic quality assessment with a regression model. In Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), Institute of Electrical and Electronics Engineers (IEEE), Quebec City, QC, Canada, 27–30 September 2015; pp. 1583–1587. [Google Scholar]
- Lu, X.; Lin, Z.; Shen, X.; Mech, R.; Wang, J.Z. Deep Multi-patch Aggregation Network for Image Style, Aesthetics, and Quality Estimation. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 990–998. [Google Scholar]
- Mai, L.; Jin, H.; Liu, F. Composition-preserving deep photo aesthetics assessment. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 497–506. [Google Scholar]
- Birkhoff, G.D. Aesthetic Measure; Harvard University Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Eysenck, H.J. An Experimental Study of Aesthetic Preference for Polygonal Figures. J. Gen. Psychol. 1968, 79, 3–17. [Google Scholar] [CrossRef]
- Eysenck, H.J. The empirical determination of an aesthetic formula. Psychol. Rev. 1941, 48, 83. [Google Scholar] [CrossRef]
- Eysenck, H.J. The experimental study of the ’good Gestalt’—A new approach. Psychol. Rev. 1942, 49, 344–364. [Google Scholar] [CrossRef]
- Javid, M.A.J.; Blackwell, T.; Zimmer, R.; Al-Rifaie, M.M. Correlation between Human Aesthetic Judgement and Spatial Complexity Measure. In Proceedings of the Evolutionary and Biologically Inspired Music, Sound, Art and Design, Porto, Portugal, 30 March 30–1 April 2016; Volume 9596, pp. 79–91. [Google Scholar]
- Franke, H.W. A Cybernetic Approach to Aesthetics. Leonardo 1977, 10, 203. [Google Scholar] [CrossRef]
- Martín, F.M.D.P. The thermodynamics of human reaction times. arXiv 2009, arXiv:0908.3170. [Google Scholar]
- Al-Rifaie, M.M.; Ursyn, A.; Zimmer, R.; Javid, M.A.J.; Correia, J.; Ciesielski, V.; Liapis, A. On Symmetry, Aesthetics and Quantifying Symmetrical Complexity. In Proceedings of the Lecture Notes in Computer Science, Amsterdam, Netherlands, 19–21 April 2017; Volume 10198, pp. 17–32. [Google Scholar]
- Ali Javaheri Javid, M.; Blackwell, T.; Zimmer, R.; Majid al-Rifaie, M. Analysis of information gain and Kolmogorov complexity for structural evaluation of cellular automata configurations. Connect. Sci. 2016, 28, 155–170. [Google Scholar] [CrossRef]
- Murray, N.; Marchesotti, L.; Perronnin, F. AVA: A large-scale database for aesthetic visual analysis. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 16–21 June 2012; pp. 2408–2415. [Google Scholar]
- Jin, X.; Wu, L.; Zhao, G.; Zhou, X.; Zhang, X.; Li, X. IDEA: A new dataset for image aesthetic scoring. Multimed. Tool Appl. 2020, 79, 14341–14355. [Google Scholar] [CrossRef]
- Muller, T.D.; Clough, P.; Caput, B. Experimental Evaluation in Visual Information Retrieval; The Information Retrieval Series; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Tang, X.; Luo, W.; Wang, X. Content-Based Photo Quality Assessment. IEEE Trans. Multimed. 2013, 15, 1930–1943. [Google Scholar] [CrossRef] [Green Version]
- Khalili, A.M. On the mathematics of beauty: Beautiful images. arXiv 2017, arXiv:1705.08244v5. [Google Scholar]
- Jacobsen, T. Beauty and the brain: Culture, history and individual differences in aesthetic appreciation. J. Anat. 2010, 216, 184–191. [Google Scholar] [CrossRef]
- Manaris, B.; Romero, J.; Machado, P.; Krehbiel, D.; Hirzel, T.; Pharr, W.; Davis, R.B. Zipf’s law, music classification, and aesthetics. Comput. Music J. 2005, 29, 55–69. [Google Scholar] [CrossRef]
- Arnheim, R. Art and Visual Perception: A Psychology of the Creative Eye; University of California Press: Berkeley, CA, USA, 1954. [Google Scholar]
- Arnheim, R. Towards a Psychology of Art/Entropy and Art an Essay on Disorder and Order; The Regents of the University of California: Oakland, CA, USA, 1966. [Google Scholar]
- Arnheim, R. Visual Thinking; University of California Press: Berkeley, CA, USA, 1969. [Google Scholar]
- Boltzmann, L. Über die Beziehung zwischen dem zweiten Hauptsatz der mechanischen Wärmetheorie und der Wahr-scheinlichkeitsrechnung respektive den Sätzen über das Wärmegleichgewicht. Sitz. Kaiserlichen Akad. Wiss. Wien Math.-Nat. Cl. 1909, 76, 373–435, Reprinted in Wiss. Abh. 1909, II, 164–223. [Google Scholar]
- Maxwell, J.C.V. Illustrations of the dynamical theory of gases.—Part I. On the motions and collisions of perfectly elastic spheres. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1860, 19, 19–32. [Google Scholar] [CrossRef]
- Maxwell, J.C. Illustrations of the dynamical theory of gases. Part II. On the process of diffusion of two or more kinds of moving particles among one another. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1860, 20, 21–37. [Google Scholar] [CrossRef]
- Talebi, H.; Milanfar, P. NIMA: Neural Image Assessment. IEEE Trans. Image Process. 2018, 27, 3998–4011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodini, M. Will the Machine Like Your Image? Automatic Assessment of Beauty in Images with Machine Learning Techniques. Inventions 2019, 4, 34. [Google Scholar] [CrossRef] [Green Version]
- Chong, N.; Wong, L.K.; See, J. GANmera: Reproducing Aesthetically Pleasing Photographs Using Deep Adver-sarial Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 16–17 June 2019. [Google Scholar]
- Sandoval, C.; Pirogova, E.; Lech, M. Two-Stage Deep Learning Approach to the Classification of Fine-Art Paintings. IEEE Access 2019, 7, 41770–41781. [Google Scholar] [CrossRef]
- Cetinic, E.; Lipic, T.; Grgic, S. Fine-tuning Convolutional Neural Networks for fine art classification. Expert Syst. Appl. 2018, 114, 107–118. [Google Scholar] [CrossRef]
- Rigau, J.; Feixas, M.F.; Sbert, M. Informational Aesthetics Measures. IEEE Eng. Med. Boil. Mag. 2008, 28, 24–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahyun, M.R.V. Aesthetics and entropy III. Aesthetic measures. Preprints 2018. [Google Scholar] [CrossRef]
- Heijer, E.D.; Eiben, A.E. Using aesthetic measures to evolve art. In Proceedings of the IEEE Congress on Evolutionary Computation, Barcelona, Spain, 18–23 July 2010. [Google Scholar] [CrossRef]
- Gartus, A.; Leder, H. The Small Step toward Asymmetry: Aesthetic Judgment of Broken Symmetries. i-Perception 2013, 4, 361–364. [Google Scholar] [CrossRef] [PubMed]
- Hofel, L.; Jacobsen, T. Electrophysiological indices of processing symmetry and aesthetics: A result of judgment categori-zation or judgment report? J. Psychophysiol. 2007, 21, 9–21. [Google Scholar] [CrossRef]
- Tinio, P.P.L.; Leder, H. Just how stable are aesthetic features? Symmetry, complexity and the jaws of massive familiariza-tion. Acta Psychol. 2009, 130, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Tinio, P.P.; Gerger, G.; Leder, H. Birds of a feather… Generalization of facial structures following massive familiarization. Acta Psychol. 2013, 144, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Delahaye, J.-P.; Zenil, H. Numerical evaluation of algorithmic complexity for short strings: A glance into the innermost structure of randomness. Appl. Math. Comput. 2012, 219, 63–77. [Google Scholar] [CrossRef] [Green Version]
- Soler-Toscano, F.; Zenil, H.; Delahaye, J.-P.; Gauvrit, N. Calculating Kolmogorov Complexity from the Output Frequency Distributions of Small Turing Machines. PLoS ONE 2014, 9, e96223. [Google Scholar] [CrossRef] [Green Version]
- Simplicity, Stanford Encyclopedia of Philosophy. Available online: https://plato.stanford.edu/entries/simplicity/ (accessed on 7 January 2021).
- Simplicity in the Philosophy of Science, Internet Encyclopedia of Philosophy. Available online: https://iep.utm.edu/simplici/ (accessed on 7 January 2021).
- Miniukovich, A.; De Angeli, A. Quantification of interface visual complexity. In Proceedings of the 2014 International Working Conference on Advanced Visual Interfaces—AVI’14, Como, Italy, 27–30 May 2014; pp. 153–160. [Google Scholar]
- Brachmann, A.; Redies, C. Computational and Experimental Approaches to Visual Aesthetics. Front. Comput. Neurosci. 2017, 11, 102. [Google Scholar] [CrossRef]
- Ahmed, S.U.; Al Mahmud, A.; Bergaust, K. Aesthetics in Human-Computer Interaction: Views and Reviews. In Human-Computer Interaction; Jacko, J.A., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5610. [Google Scholar]
- Maity, R.; Bhattacharya, S. Is My Interface Beautiful?—A Computational Model-Based Approach. IEEE Trans. Comput. Soc. Syst. 2019, 6, 149–161. [Google Scholar] [CrossRef]
- Maity, R.; Bhattacharya, S. A Quantitative Approach to Measure Webpage Aesthetics. Int. J. Technol. Hum. Interact. 2020, 16, 53–68. [Google Scholar] [CrossRef]
- Miniukovich, A.; Marchese, M. Relationship between Visual Complexity and Aesthetics of Webpages. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25 April 2020; pp. 1–13. [Google Scholar]
- Cetinic, E.; Lipic, T.; Grgic, S. A deep learning perspective on beauty, sentiment, and remembrance of art. IEEE Access. 2019, 7, 73694–73710. [Google Scholar] [CrossRef]
- Santos, I.; Castro, L.; Rodriguez-Fernandez, N.; Torrente-Patiño, Á.; Carballal, A. Artificial Neural Networks and Deep Learning in the Visual Arts: A review. Neural Comput. Appl. 2021, 1–37. [Google Scholar] [CrossRef]
- Yue, L.; Chao, G.; Yi-Lun, L.; Fan, Z.; Fei-Yue, W. Computational aesthetics of fine art paintings: The state of the art and outlook. Acta Automatica Sinica. 2020, 46, 2239–2259. [Google Scholar]
- Takimoto, H.; Omori, F.; Kanagawa, A. Image Aesthetics Assessment Based on Multi-stream CNN Architecture and Saliency Features. Appl. Artif. Intell. 2021, 35, 25–40. [Google Scholar] [CrossRef]
- Deng, Y.; Loy, C.C.; Tang, X. Image aesthetic assessment: An experimental survey. IEEE Signal Process. Mag. 2017, 34, 80–106. [Google Scholar] [CrossRef]
- Debnath, S.; Changder, S. Computational Approaches to Aesthetic Quality Assessment of Digital Photographs: State of the Art and Future Research Directives. Pattern Recognit. Image Anal. 2020, 30, 593–606. [Google Scholar] [CrossRef]
- Deng, Y.; Loy, C.C.; Tang, X. Aesthetic-driven image enhancement by adversarial learning. In Proceedings of the 26th ACM international conference on Multimedia, Seoul, Korea, 22–26 October 2018; pp. 870–878. [Google Scholar]
- Wang, W.; Shen, J.; Ling, H. A deep network solution for attention and aesthetics aware photo cropping. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 41, 1531–1544. [Google Scholar] [CrossRef] [PubMed]
- Zhai, G.; Min, X. Perceptual image quality assessment: a survey. Sci. China Inf. Sci. 2020, 63, 1–52. [Google Scholar] [CrossRef]
- Jin, X.; Wu, L.; Li, X.; Chen, S.; Peng, S.; Chi, J.; Ge, S.; Song, C.; Zhao, G. Predicting aesthetic score distribution through cumulative jensen-shannon divergence. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018. [Google Scholar]
- Niu, Y.; Zhong, Y.; Guo, W.; Shi, Y.; Chen, P. 2D and 3D image quality assessment: A survey of metrics and challenges. IEEE Access. 2018, 7, 782–801. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalili, A.; Bouchachia, H. An Information Theory Approach to Aesthetic Assessment of Visual Patterns. Entropy 2021, 23, 153. https://doi.org/10.3390/e23020153
Khalili A, Bouchachia H. An Information Theory Approach to Aesthetic Assessment of Visual Patterns. Entropy. 2021; 23(2):153. https://doi.org/10.3390/e23020153
Chicago/Turabian StyleKhalili, Abdullah, and Hamid Bouchachia. 2021. "An Information Theory Approach to Aesthetic Assessment of Visual Patterns" Entropy 23, no. 2: 153. https://doi.org/10.3390/e23020153
APA StyleKhalili, A., & Bouchachia, H. (2021). An Information Theory Approach to Aesthetic Assessment of Visual Patterns. Entropy, 23(2), 153. https://doi.org/10.3390/e23020153