Statistical Inference of Truncated Normal Distribution Based on the Generalized Progressive Hybrid Censoring
Abstract
:1. Introduction
1.1. Truncated Normal Distribution
1.2. Generalized Progressive Hybrid Censoring Scheme
2. Maximum Likelihood Estimation
- Case I:
- Case II:
- Case III:
2.1. Newton–Raphson Algorithm
2.2. Expectation Maximization Algorithm
3. Confidence Interval Estimation
3.1. Asymptotic Confidence Intervals for Mles
3.2. Asymptotic Confidence Intervals for Log-Transformed Mles
3.3. Percentile Bootstrap Approach
- Step 1:
- Calculate the MLEs of two parameters and from the original generalized progressive hybrid censored sample.
- Step 2:
- Utilize the same censoring scheme and and to generate a generalized progressive hybrid censored bootstrap sample.
- Step 3:
- Calculate the bootstrap estimators of and , denote as and , from the bootstrap sample of truncated normal distribution.
- Step 4:
- Perform Step 2 and Step 3, N times to obtain a sequence of bootstrap estimators.
- Step 5:
- Sort and in ascending order respectively. Then we get and .
- Step 6:
- The 100 Boot-p CIs of and are and respectively.
4. Bayes Estimation
4.1. Prior and Posterior Distribution
4.2. Loss Functions
- Squared error loss function
- General entropy loss function
- Linex loss function
4.3. Tierney and Kadane Method
4.4. Importance Sampling Procedure
- Step 1:
- Generate from ;
- Step 2:
- Sample randomly from ;
- Step 3:
- Perform Step 1 and Step 2, k times to obtain , , ⋯,
- Step 4:
- Now the Bayes estimation of can be derived as follows.
5. Simulation Study
5.1. Simulation
Algorithm 1 Generate a generalized progressive hybrid censoring sample from truncated normal distribution. |
|
- (1)
- There is no significant difference between the EM algorithm and N-R algorithm in terms of ABs and MSEs.
- (2)
- The N-R method takes fewer steps until convergence than the EM.
- (3)
- The results of show a bit more precise than those of for the linex loss function.
- (4)
- is a wiser choice than when the general entropy loss function is under consideration.
- (5)
- Set T, n, m and k invariant, Scheme II in which the censored units happen when the first failure is observed shows a more precise estimate than Scheme I for most cases.
- (6)
- Between Bayes estimation methods, neither the TK method nor the importance sampling technique performs consistently better since in some cases T-K estimates behave better and in some cases important sampling estimates perform better.
- (7)
- When the sample size n increases, the ABs of all estimates show downward trends.
- (8)
- When T, n and m keep invariable, the behaviors of both MLEs and Bayes estimates become better concerning the values of MSEs and ABs with the larger values of k.
- (9)
- When k, n and m keep invariable, the ABs and MSEs of all estimates fluctuate slightly, and the tendency is not significant with the growth of T.
- (10)
- When T, n and k keep invariable, both MLEs and Bayes estimates tend to have smaller MSEs with the larger values of m.
- (11)
- Overall, the Bayes estimates seem to be marginally better compared to the MLEs.
- (1)
- For confidence intervals, the Log-CIs perform much better than the ACIs in the sense of having higher coverage probabilities.
- (2)
- When the sample size n gets larger, the CPs of all interval estimates tend to decrease.
- (3)
- Boot-p CIs show higher coverage probabilities and narrower interval lengths than the ACIs and Log-CIs when the sample size is small.
- (4)
- With n, m, and k keeping invariant, the CPs and ALs of all estimates fluctuate slightly and the tendency is not significant with an increase of T.
- (5)
- The HPD intervals are slightly better than other interval estimates based on the CPs.
- (6)
- Scheme II usually performs better than Scheme I with regard to the CPs.
5.2. Real Data Analysis
6. Conclusive Remarks
Author Contributions
Funding
Conflicts of Interest
Appendix A. Simulation Results
n | m | k | Sch | Method | ABs() | ABs() | MSEs() | MSEs() | AIs |
---|---|---|---|---|---|---|---|---|---|
30 | 20 | 16 | I | EM | 0.1766 | 0.3179 | 0.0503 | 0.1563 | 21.35 |
N-R | 0.1708 | 0.3003 | 0.0455 | 0.1385 | 7.39 | ||||
II | EM | 0.1737 | 0.3053 | 0.0473 | 0.1459 | 21.03 | |||
N-R | 0.1814 | 0.2723 | 0.0530 | 0.1168 | 6.73 | ||||
18 | I | EM | 0.1641 | 0.2802 | 0.0423 | 0.1254 | 20.30 | ||
N-R | 0.1644 | 0.2957 | 0.0421 | 0.1349 | 7.11 | ||||
II | EM | 0.1642 | 0.2957 | 0.0434 | 0.1298 | 20.57 | |||
N-R | 0.1786 | 0.2654 | 0.0508 | 0.1099 | 6.43 | ||||
30 | 25 | 16 | I | EM | 0.1717 | 0.2992 | 0.0458 | 0.1312 | 21.35 |
N-R | 0.1732 | 0.3073 | 0.0477 | 0.1459 | 7.43 | ||||
II | EM | 0.1696 | 0.3160 | 0.0453 | 0.1520 | 21.37 | |||
N-R | 0.1718 | 0.2790 | 0.0466 | 0.1220 | 6.96 | ||||
18 | I | EM | 0.1672 | 0.2885 | 0.0438 | 0.1253 | 20.68 | ||
N-R | 0.1627 | 0.2957 | 0.0420 | 0.1349 | 7.13 | ||||
II | EM | 0.1614 | 0.2929 | 0.0417 | 0.1324 | 20.81 | |||
N-R | 0.1713 | 0.2779 | 0.0453 | 0.1168 | 6.79 | ||||
60 | 50 | 38 | I | EM | 0.1151 | 0.2035 | 0.0205 | 0.0649 | 19.08 |
N-R | 0.1152 | 0.1991 | 0.0203 | 0.0614 | 6.58 | ||||
II | EM | 0.1159 | 0.2004 | 0.0213 | 0.0616 | 18.85 | |||
N-R | 0.1220 | 0.1856 | 0.0230 | 0.0552 | 6.27 | ||||
42 | I | EM | 0.1129 | 0.1854 | 0.0196 | 0.0538 | 18.58 | ||
N-R | 0.1092 | 0.1809 | 0.0189 | 0.0529 | 6.30 | ||||
II | EM | 0.1090 | 0.1862 | 0.0184 | 0.0534 | 18.73 | |||
N-R | 0.1228 | 0.1847 | 0.0234 | 0.0531 | 6.12 | ||||
60 | 55 | 38 | I | EM | 0.1138 | 0.1945 | 0.0207 | 0.0595 | 18.99 |
N-R | 0.1168 | 0.1964 | 0.0218 | 0.0597 | 6.54 | ||||
II | EM | 0.1182 | 0.2081 | 0.0220 | 0.0666 | 19.14 | |||
N-R | 0.1080 | 0.1779 | 0.0185 | 0.0497 | 6.17 | ||||
42 | I | EM | 0.1089 | 0.1867 | 0.0185 | 0.0539 | 18.63 | ||
N-R | 0.1095 | 0.1864 | 0.0192 | 0.0552 | 6.35 | ||||
II | EM | 0.1043 | 0.1820 | 0.0173 | 0.0502 | 18.62 | |||
N-R | 0.1099 | 0.1802 | 0.0195 | 0.0502 | 6.17 | ||||
100 | 80 | 62 | I | EM | 0.0893 | 0.1575 | 0.0123 | 0.0384 | 18.21 |
N-R | 0.0893 | 0.1549 | 0.0126 | 0.0374 | 6.25 | ||||
II | EM | 0.0889 | 0.1536 | 0.0125 | 0.0367 | 18.14 | |||
N-R | 0.0978 | 0.1505 | 0.0148 | 0.0349 | 5.99 | ||||
70 | I | EM | 0.0837 | 0.1463 | 0.0109 | 0.0338 | 17.87 | ||
N-R | 0.0852 | 0.1452 | 0.0115 | 0.0332 | 6.11 | ||||
II | EM | 0.0851 | 0.1456 | 0.0114 | 0.0329 | 18.05 | |||
N-R | 0.0911 | 0.1399 | 0.0128 | 0.0313 | 5.84 | ||||
100 | 90 | 62 | I | EM | 0.0911 | 0.1547 | 0.0132 | 0.3666 | 18.29 |
N-R | 0.0883 | 0.1547 | 0.0124 | 0.0367 | 6.27 | ||||
II | EM | 0.0851 | 0.1563 | 0.0112 | 0.0386 | 18.17 | |||
N-R | 0.0902 | 0.1504 | 0.0126 | 0.036 | 6.07 | ||||
70 | I | EM | 0.0872 | 0.1435 | 0.0118 | 0.0315 | 17.92 | ||
N-R | 0.0834 | 0.1424 | 0.0108 | 0.0316 | 6.1 | ||||
II | EM | 0.0818 | 0.1462 | 0.0109 | 0.0334 | 17.83 | |||
N-R | 0.0869 | 0.1373 | 0.0119 | 0.0303 | 5.95 |
n | m | k | Sch | Method | ABs() | ABs() | MSEs() | MSEs() | AIs |
---|---|---|---|---|---|---|---|---|---|
30 | 20 | 16 | I | EM | 0.1744 | 0.3039 | 0.0478 | 0.1360 | 21.60 |
N-R | 0.1719 | 0.3043 | 0.0459 | 0.1435 | 7.37 | ||||
II | EM | 0.1739 | 0.3064 | 0.0476 | 0.1440 | 20.76 | |||
N-R | 0.1857 | 0.2737 | 0.0552 | 0.1174 | 6.75 | ||||
18 | I | EM | 0.1648 | 0.2685 | 0.0432 | 0.1102 | 20.25 | ||
N-R | 0.1671 | 0.3006 | 0.0436 | 0.1402 | 7.18 | ||||
II | EM | 0.1698 | 0.2952 | 0.0445 | 0.1367 | 20.79 | |||
N-R | 0.1828 | 0.2553 | 0.0522 | 0.1001 | 6.44 | ||||
30 | 25 | 16 | I | EM | 0.1748 | 0.3159 | 0.0487 | 0.1516 | 21.17 |
N-R | 0.1639 | 0.3088 | 0.0427 | 0.1442 | 7.41 | ||||
II | EM | 0.1796 | 0.3119 | 0.0513 | 0.1538 | 21.24 | |||
N-R | 0.1678 | 0.2768 | 0.0438 | 0.1175 | 6.76 | ||||
18 | I | EM | 0.1678 | 0.2854 | 0.0432 | 0.1288 | 20.42 | ||
N-R | 0.1687 | 0.2865 | 0.0436 | 0.1294 | 6.78 | ||||
II | EM | 0.1614 | 0.2929 | 0.0417 | 0.1324 | 20.81 | |||
N-R | 0.1713 | 0.2779 | 0.0453 | 0.1168 | 6.79 | ||||
60 | 50 | 38 | I | EM | 0.1119 | 0.1979 | 0.0199 | 0.0601 | 18.95 |
N-R | 0.1125 | 0.2035 | 0.0199 | 0.0633 | 6.61 | ||||
II | EM | 0.1127 | 0.1925 | 0.0201 | 0.0570 | 18.72 | |||
N-R | 0.1219 | 0.1864 | 0.0231 | 0.0553 | 6.30 | ||||
42 | I | EM | 0.1088 | 0.1866 | 0.0187 | 0.0548 | 18.46 | ||
N-R | 0.1101 | 0.1833 | 0.0186 | 0.0521 | 6.32 | ||||
II | EM | 0.1098 | 0.1846 | 0.0184 | 0.0545 | 18.53 | |||
N-R | 0.1227 | 0.1756 | 0.0229 | 0.0493 | 6.06 | ||||
60 | 55 | 38 | I | EM | 0.1127 | 0.1922 | 0.0196 | 0.0562 | 18.76 |
N-R | 0.1173 | 0.2017 | 0.0217 | 0.0628 | 6.59 | ||||
II | EM | 0.1152 | 0.1999 | 0.0205 | 0.0624 | 18.99 | |||
N-R | 0.1187 | 0.1869 | 0.0220 | 0.0544 | 6.44 | ||||
42 | I | EM | 0.1094 | 0.1857 | 0.0183 | 0.0541 | 18.50 | ||
N-R | 0.1115 | 0.1832 | 0.0199 | 0.0516 | 6.30 | ||||
II | EM | 0.1127 | 0.1872 | 0.0197 | 0.0562 | 19.01 | |||
N-R | 0.1129 | 0.1842 | 0.0198 | 0.0542 | 6.21 | ||||
100 | 80 | 62 | I | EM | 0.0903 | 0.1557 | 0.0131 | 0.0379 | 18.12 |
N-R | 0.0873 | 0.1582 | 0.0122 | 0.0382 | 6.28 | ||||
II | EM | 0.0876 | 0.1603 | 0.0121 | 0.0401 | 18.36 | |||
N-R | 0.0950 | 0.1540 | 0.0141 | 0.0374 | 6.06 | ||||
70 | I | EM | 0.0864 | 0.1454 | 0.0116 | 0.0325 | 17.88 | ||
N-R | 0.0857 | 0.1396 | 0.0118 | 0.0309 | 6.10 | ||||
II | EM | 0.0898 | 0.1416 | 0.0125 | 0.0317 | 17.80 | |||
N-R | 0.0900 | 0.1331 | 0.0128 | 0.0280 | 5.81 | ||||
100 | 90 | 62 | I | EM | 0.0934 | 0.1513 | 0.0135 | 0.0362 | 17.99 |
N-R | 0.0885 | 0.1581 | 0.0124 | 0.0398 | 6.26 | ||||
II | EM | 0.0839 | 0.1527 | 0.0110 | 0.0370 | 18.09 | |||
N-R | 0.0930 | 0.1496 | 0.0136 | 0.0347 | 6.14 | ||||
70 | I | EM | 0.0871 | 0.1421 | 0.0118 | 0.0313 | 17.67 | ||
N-R | 0.0861 | 0.1472 | 0.0163 | 0.0335 | 6.12 | ||||
II | EM | 0.0826 | 0.1393 | 0.0108 | 0.0308 | 17.81 | |||
N-R | 0.0836 | 0.1404 | 0.0111 | 0.0312 | 5.95 |
n | m | k | Sch | Par | SEL | LL | GEL | IS | ||
---|---|---|---|---|---|---|---|---|---|---|
ℏ = 0.35 | ℏ = 0.45 | q = 0.8 | q = 1.1 | |||||||
30 | 20 | 16 | I | 0.7893 | 0.1661 | 0.3953 | 0.1674 | 0.1782 | 0.0951 | |
(0.6679) | (0.0398) | (0.2963) | (0.0646) | (0.0775) | (0.0028) | |||||
0.1953 | 0.1530 | 0.1961 | 0.0811 | 0.3620 | 0.1523 | |||||
(0.0496) | (0.0530) | (0.0403) | (0.0127) | (0.1515) | (0.0157) | |||||
II | 0.7730 | 0.1647 | 0.3324 | 0.1504 | 0.1873 | 0.0947 | ||||
(0.6410) | (0.0365) | (0.0915) | (0.0533) | (0.0802) | (0.0072) | |||||
0.1677 | 0.1529 | 0.1961 | 0.0984 | 0.2404 | 0.1505 | |||||
(0.0553) | (0.0328) | (0.0402) | (0.0191) | (0.0718) | (0.0153) | |||||
18 | I | 0.7662 | 0.1627 | 0.3800 | 0.1423 | 0.1709 | 0.0942 | |||
(0.6308) | (0.0856) | (0.2318) | (0.0275) | (0.0350) | 0.0029 | |||||
0.1710 | 0.1719 | 0.1848 | 0.0730 | 0.0906 | 0.1570 | |||||
(0.0398) | (0.0237) | (0.0357) | (0.0144) | (0.0158) | (0.0126) | |||||
II | 0.6588 | 0.1476 | 0.2354 | 0.1422 | 0.1705 | 0.0891 | ||||
(0.4745) | (0.0304) | (0.1213) | (0.0271) | (0.0339) | (0.0022) | |||||
0.1563 | 0.1449 | 0.1838 | 0.0698 | 0.0412 | 0.1525 | |||||
(0.0384) | (0.0283) | (0.0322) | (0.0138) | (0.0112) | (0.0163) | |||||
30 | 25 | 16 | I | 0.7470 | 0.1170 | 0.3326 | 0.1432 | 0.1674 | 0.0812 | |
(0.5952) | (0.0175) | (0.2722) | (0.0441) | (0.0646) | (0.0037) | |||||
0.1980 | 0.1552 | 0.1945 | 0.0730 | 0.0906 | 0.1661 | |||||
(0.0538) | (0.0483) | (0.0396) | (0.0144) | (0.0158) | (0.0155) | |||||
II | 0.6277 | 0.1008 | 0.2710 | 0.1415 | 0.1643 | 0.0638 | ||||
(0.4396) | (0.0167) | (0.2059) | (0.0413) | (0.0636) | (0.0031) | |||||
0.1675 | 0.1520 | 0.1761 | 0.0731 | 0.1167 | 0.1545 | |||||
(0.0383) | (0.0472) | (0.0240) | (0.0119) | (0.0246) | (0.0049) | |||||
18 | I | 0.5822 | 0.0538 | 0.2258 | 0.1408 | 0.1664 | 0.0576 | |||
(0.3814) | (0.0042) | (0.1235) | (0.0256) | (0.0337) | (0.0028) | |||||
0.1815 | 0.1405 | 0.1837 | 0.0712 | 0.0482 | 0.1583 | |||||
(0.0445) | (0.0284) | (0.0352) | (0.0117) | (0.0131) | (0.0130) | |||||
II | 0.5082 | 0.0557 | 0.1992 | 0.1402 | 0.1658 | 0.0529 | ||||
(0.3019) | (0.0040) | (0.2391) | (0.0250) | (0.0333) | (0.0082) | |||||
0.1504 | 0.1403 | 0.1473 | 0.0709 | 0.0434 | 0.1437 | |||||
(0.0372) | (0.0306) | (0.0309) | (0.0111) | (0.0124) | (0.0099) | |||||
60 | 50 | 38 | I | 0.7215 | 0.1208 | 0.3517 | 0.0958 | 0.1689 | 0.0911 | |
(0.5395) | (0.0184) | (0.1457) | (0.0232) | (0.0457) | (0.0419) | |||||
0.0987 | 0.0940 | 0.2446 | 0.0212 | 0.0388 | 0.0989 | |||||
(0.0146) | (0.0121) | (0.0643) | (0.0070) | (0.0139) | (0.0752) | |||||
II | 0.7119 | 0.1192 | 0.3503 | 0.0903 | 0.1567 | 0.0853 | ||||
(0.5248) | 0.0204 | (0.1447) | (0.0145) | (0.0443) | (0.0420) | |||||
0.0901 | 0.0860 | 0.1620 | 0.0210 | 0.0382 | 0.1423 | |||||
(0.0221) | (0.0111) | (0.0312) | (0.0072) | (0.0133) | (0.0704) | |||||
42 | I | 0.6014 | 0.1207 | 0.2842 | 0.0891 | 0.1095 | 0.0650 | |||
(0.3794) | (0.0196) | (0.1041) | (0.0226) | (0.0244) | (0.0371) | |||||
0.0979 | 0.0994 | 0.1992 | 0.0114 | 0.0361 | 0.0600 | |||||
(0.0147) | (0.0025) | (0.0444) | (0.0067) | (0.0149) | (0.0599) | |||||
II | 0.5698 | 0.1121 | 0.2793 | 0.0857 | 0.0901 | 0.0623 | ||||
(0.3432) | (0.0278) | (0.1003) | (0.0257) | (0.0294) | (0.0291) | |||||
0.0906 | 0.0886 | 0.1072 | 0.0111 | 0.0359 | 0.0344 | |||||
(0.0233) | (0.0050) | (0.0176) | (0.0065) | (0.0147) | (0.0658) | |||||
60 | 55 | 38 | I | 0.7191 | 0.1048 | 0.3474 | 0.0750 | 0.0958 | 0.0835 | |
(0.5353) | (0.0361) | (0.1427) | (0.0190) | (0.0230) | (0.0219) | |||||
0.0982 | 0.0892 | 0.2418 | 0.0195 | 0.0321 | 0.0929 | |||||
(0.0151) | (0.0104) | (0.0628) | (0.0067) | (0.0143) | (0.0731) | |||||
II | 0.6193 | 0.0936 | 0.3391 | 0.0670 | 0.0678 | 0.0761 | ||||
(0.4036) | (0.0347) | (0.1357) | (0.0196) | (0.0196) | (0.0216) | |||||
0.0978 | 0.0854 | 0.1627 | 0.0205 | 0.0359 | 0.0284 | |||||
(0.0178) | (0.0074) | (0.0317) | (0.0068) | (0.0211) | (0.0616) | |||||
42 | I | 0.6007 | 0.0961 | 0.1976 | 0.0357 | 0.0839 | 0.0726 | |||
(0.3786) | (0.0124) | (0.0639) | (0.0185) | (0.0217) | (0.0458) | |||||
0.0933 | 0.0929 | 0.1970 | 0.0107 | 0.0314 | 0.0569 | |||||
(0.0135) | (0.0013) | (0.0433) | (0.0062) | (0.0138) | (0.0594) | |||||
II | 0.4617 | 0.1122 | 0.1879 | 0.0390 | 0.0820 | 0.0582 | ||||
(0.2329) | (0.0287) | (0.0597) | (0.0145) | (0.0215) | (0.0280) | |||||
0.0922 | 0.0885 | 0.1072 | 0.0195 | 0.0322 | 0.0649 | |||||
(0.0130) | (0.0019) | (0.0176) | (0.0066) | (0.0211) | (0.0142) | |||||
100 | 80 | 62 | I | 0.6573 | 0.0914 | 0.2592 | 0.0942 | 0.1374 | 0.0889 | |
(0.4440) | (0.0158) | (0.0635) | (0.0237) | (0.0370) | (0.0128) | |||||
0.0980 | 0.0719 | 0.3620 | 0.1224 | 0.1762 | 0.0783 | |||||
(0.0129) | (0.0068) | (0.1515) | (0.0673) | (0.0394) | (0.0232) | |||||
II | 0.5449 | 0.0903 | 0.1854 | 0.0933 | 0.1131 | 0.0790 | ||||
(0.3092) | (0.0158) | (0.0371) | (0.0227) | (0.0328) | (0.0198) | |||||
0.3153 | 0.0586 | 0.2404 | 0.1223 | 0.1400 | 0.0693 | |||||
(0.1125) | (0.0030) | (0.0718) | (0.0626) | (0.0398) | (0.0102) | |||||
70 | I | 0.5270 | 0.0606 | 0.2337 | 0.0866 | 0.1274 | 0.0680 | |||
(0.2887) | (0.0113) | (0.0771) | (0.0172) | (0.0399) | (0.0135) | |||||
0.0766 | 0.0452 | 0.0906 | 0.1219 | 0.1624 | 0.0780 | |||||
(0.0089) | (0.0029) | (0.0158) | (0.0673) | (0.0396) | (0.0235) | |||||
II | 0.4108 | 0.0604 | 0.1592 | 0.0741 | 0.1244 | 0.0675 | ||||
(0.1809) | (0.0117) | (0.0763) | (0.0160) | (0.0350) | (0.0159) | |||||
0.2102 | 0.0438 | 0.0412 | 0.0972 | 0.1377 | 0.0686 | |||||
(0.0540) | (0.0008) | (0.0112) | (0.0169) | (0.0369) | (0.0235) | |||||
100 | 90 | 62 | I | 0.6531 | 0.0873 | 0.2393 | 0.0980 | 0.1303 | 0.0897 | |
(0.4416) | (0.0151) | (0.0797) | (0.0169) | (0.0359) | (0.0118) | |||||
0.0949 | 0.0610 | 0.1167 | 0.6563 | 0.1721 | 0.0789 | |||||
(0.0125) | (0.0029) | (0.0246) | (0.4456) | (0.0395) | (0.0227) | |||||
II | 0.4123 | 0.0758 | 0.2012 | 0.2125 | 0.1255 | 0.0716 | ||||
(0.1837) | (0.0122) | (0.0714) | (0.1698) | (0.0360) | (0.0240) | |||||
0.1182 | 0.0510 | 0.0896 | 0.1402 | 0.1669 | 0.0685 | |||||
(0.0212) | (0.0030) | (0.0154) | (0.0851) | (0.0390) | (0.0212) | |||||
70 | I | 0.5270 | 0.0539 | 0.1512 | 0.0955 | 0.1133 | 0.0676 | |||
(0.2800) | (0.0053) | (0.0880) | (0.0169) | (0.0898) | (0.0232) | |||||
0.0745 | 0.0488 | 0.0482 | 0.1311 | 0.1727 | 0.0728 | |||||
(0.0084) | (0.0008) | (0.0131) | (0.0766) | (0.0947) | (0.0236) | |||||
II | 0.2639 | 0.0298 | 0.0921 | 0.0909 | 0.1266 | 0.0545 | ||||
(0.0827) | (0.0241) | (0.0299) | (0.0170) | (0.0929) | (0.0211) | |||||
0.0721 | 0.0421 | 0.0398 | 0.1266 | 0.1548 | 0.0669 | |||||
(0.0087) | (0.0008) | (0.0102) | (0.0668) | (0.0935) | (0.0237) |
n | m | k | Sch | Par | SEL | LL | GEL | IS | ||
---|---|---|---|---|---|---|---|---|---|---|
ℏ = 0.35 | ℏ = 0.45 | q = 0.8 | q = 1.1 | |||||||
30 | 20 | 16 | I | 0.7811 | 0.1161 | 0.3833 | 0.1537 | 0.1738 | 0.0949 | |
(0.6541) | (0.0172) | (0.2961) | (0.0531) | (0.0731) | (0.0029) | |||||
0.1956 | 0.1554 | 0.1985 | 0.0740 | 0.0896 | 0.1697 | |||||
(0.0500) | (0.0323) | (0.0433) | (0.0117) | (0.0154) | (0.0182) | |||||
II | 0.6270 | 0.1147 | 0.3802 | 0.1388 | 0.0896 | 0.0905 | ||||
(0.4396) | (0.0167) | (0.2438) | (0.0372) | (0.0154) | (0.0028) | |||||
0.1675 | 0.1518 | 0.1957 | 0.0653 | 0.0398 | 0.1687 | |||||
(0.0549) | (0.0321) | (0.0400) | (0.0107) | (0.0102) | (0.0164) | |||||
18 | I | 0.6715 | 0.0551 | 0.2316 | 0.1476 | 0.1719 | 0.0889 | |||
(0.4910) | (0.0039) | (0.1054) | (0.0488) | (0.0728) | (0.0025) | |||||
0.1831 | 0.1403 | 0.1973 | 0.0381 | 0.0526 | 0.1573 | |||||
(0.0455) | (0.0306) | (0.0420) | (0.0091) | (0.0192) | (0.0127) | |||||
II | 0.5067 | 0.0556 | 0.1959 | 0.1466 | 0.1700 | 0.0805 | ||||
(0.3001) | (0.0041) | (0.1296) | (0.0412) | (0.0711) | (0.0050) | |||||
0.1815 | 0.1402 | 0.1867 | 0.1661 | 0.0420 | 0.1547 | |||||
(0.0422) | (0.0299) | (0.0365) | (0.0381) | (0.0112) | (0.0123) | |||||
30 | 25 | 16 | I | 0.7793 | 0.1895 | 0.2297 | 0.1388 | 0.1619 | 0.0629 | |
(0.6508) | (0.0456) | (0.1262) | (0.0372) | (0.0638) | (0.0074) | |||||
0.1975 | 0.1625 | 0.1846 | 0.0718 | 0.1194 | 0.1557 | |||||
(0.0508) | (0.0394) | (0.0356) | (0.0119) | (0.0263) | (0.0122) | |||||
II | 0.5042 | 0.1608 | 0.1709 | 0.1385 | 0.1610 | 0.0605 | ||||
(0.2968) | (0.0840) | (0.1049) | (0.0372) | (0.0638) | (0.0077) | |||||
0.1442 | 0.5328 | 0.1466 | 0.0026 | 0.0911 | 0.1241 | |||||
(0.0365) | (0.3006) | (0.0227) | (0.0075) | (0.0158) | (0.0046) | |||||
18 | I | 0.6717 | 0.1749 | 0.2249 | 0.1167 | 0.1592 | 0.0575 | |||
(0.4918) | (0.0328) | (0.1260) | (0.0246) | (0.0576) | (0.0159) | |||||
0.1759 | 0.1419 | 0.1937 | 0.0759 | 0.0534 | 0.1592 | |||||
(0.0422) | (0.0291) | (0.0392) | (0.0121) | (0.0124) | (0.0113) | |||||
II | 0.4176 | 0.1583 | 0.3992 | 0.1097 | 0.1564 | 0.0317 | ||||
(0.2249) | (0.0426) | (0.2387) | (0.0326) | (0.0573) | (0.0373) | |||||
0.1405 | 0.1358 | 0.1419 | 0.0458 | 0.0379 | 0.1433 | |||||
(0.0363) | (0.0238) | (0.0262) | (0.0099) | (0.0110) | (0.0096) | |||||
60 | 50 | 38 | I | 0.7202 | 0.1193 | 0.3516 | 0.0945 | 0.1918 | 0.0862 | |
(0.5371) | 0.0203 | (0.1445) | (0.0231) | (0.0979) | (0.0416) | |||||
0.0999 | 0.0941 | 0.2423 | 0.0238 | 0.0384 | 0.0451 | |||||
(0.0151) | (0.0124) | (0.0631) | (0.0071) | (0.0149) | (0.0689) | |||||
II | 0.7103 | 0.1182 | 0.3491 | 0.0947 | 0.1605 | 0.8068 | ||||
(0.5229) | 0.0190 | (0.1432) | (0.0239) | (0.0283) | (0.0415) | |||||
0.0975 | 0.0851 | 0.0602 | 0.0236 | 0.0379 | 0.0612 | |||||
(0.0149) | (0.0110) | (0.0102) | (0.0070) | (0.0105) | (0.0677) | |||||
42 | I | 0.6029 | 0.1275 | 0.2732 | 0.0960 | 0.1700 | 0.0726 | |||
(0.3818) | 0.0104 | (0.0975) | (0.0292) | (0.0901) | (0.1899) | |||||
0.0912 | 0.0987 | 0.2011 | 0.0106 | 0.0370 | 0.0588 | |||||
(0.0134) | (0.0103) | (0.0451) | (0.0065) | (0.0140) | (0.0700) | |||||
II | 0.5708 | 0.1129 | 0.2700 | 0.0820 | 0.1698 | 0.0562 | ||||
(0.3435) | 0.0274 | (0.0945) | (0.0215) | (0.0900) | (0.0149) | |||||
0.0910 | 0.0884 | 0.0324 | 0.0250 | 0.0396 | 0.0612 | |||||
(0.0112) | (0.0267) | (0.0091) | (0.0059) | (0.0230) | (0.0834) | |||||
60 | 55 | 38 | I | 0.7190 | 0.1046 | 0.3471 | 0.0773 | 0.1534 | 0.0719 | |
(0.5364) | 0.0361 | (0.1421) | (0.0249) | (0.0398) | (0.0210) | |||||
0.1002 | 0.0892 | 0.2431 | 0.0197 | 0.0320 | 0.0808 | |||||
(0.0149) | (0.0259) | (0.0634) | (0.0066) | (0.0143) | (0.0777) | |||||
II | 0.6198 | 0.0935 | 0.3414 | 0.0903 | 0.1315 | 0.6755 | ||||
(0.4035) | 0.0448 | (0.1385) | (0.0245) | (0.0326) | (0.0203) | |||||
0.0976 | 0.0846 | 0.1618 | 0.0207 | 0.0320 | 0.0899 | |||||
(0.0142) | (0.0047) | (0.0383) | (0.0066) | (0.0143) | (0.0594) | |||||
42 | I | 0.6000 | 0.1260 | 0.1941 | 0.0793 | 0.1698 | 0.0713 | |||
(0.3784) | 0.0124 | (0.0604) | (0.0251) | (0.0913) | (0.0478) | |||||
0.0912 | 0.0927 | 0.1942 | 0.0101 | 0.0315 | 0.0856 | |||||
(0.0134) | (0.0271) | (0.0430) | (0.0064) | (0.0137) | (0.0872) | |||||
II | 0.4604 | 0.1124 | 0.1933 | 0.0529 | 0.0659 | 0.0376 | ||||
(0.2308) | 0.0280 | (0.0595) | (0.0222) | (0.0187) | (0.0146) | |||||
0.0911 | 0.0884 | 0.1080 | 0.0187 | 0.0529 | 0.1554 | |||||
(0.0129) | (0.0201) | (0.0180) | (0.0066) | (0.0215) | (0.0799) | |||||
100 | 80 | 62 | I | 0.6559 | 0.0885 | 0.2590 | 0.0987 | 0.1269 | 0.0893 | |
(0.4429) | (0.0153) | (0.1089) | (0.0169) | (0.0993) | (0.0120) | |||||
0.0920 | 0.0946 | 0.0896 | 0.1354 | 0.1648 | 0.0856 | |||||
(0.0137) | (0.0062) | (0.0154) | (0.0657) | (0.0938) | (0.0209) | |||||
II | 0.5476 | 0.0710 | 0.1893 | 0.0882 | 0.1227 | 0.0813 | ||||
(0.3123) | (0.0111) | (0.0394) | (0.0160) | (0.0915) | (0.0199) | |||||
0.3132 | 0.0932 | 0.0676 | 0.1232 | 0.1550 | 0.0725 | |||||
(0.1115) | (0.0042) | (0.0172) | (0.0672) | (0.0970) | (0.0215) | |||||
70 | I | 0.5263 | 0.0698 | 0.2399 | 0.0997 | 0.1233 | 0.0732 | |||
(0.2883) | (0.0100) | (0.1005) | (0.0157) | (0.0925) | (0.0224) | |||||
0.0782 | 0.0590 | 0.0526 | 0.1332 | 0.1745 | 0.0780 | |||||
(0.0091) | (0.0053) | (0.0192) | (0.0660) | (0.0944) | (0.0234) | |||||
II | 0.4096 | 0.0695 | 0.1228 | 0.0838 | 0.1021 | 0.0679 | ||||
(0.1797) | (0.0109) | (0.0373) | (0.0157) | (0.0895) | (0.0161) | |||||
0.2091 | 0.0371 | 0.0420 | 0.1114 | 0.1507 | 0.0690 | |||||
(0.0545) | (0.0008) | (0.0112) | (0.0683) | (0.0943) | (0.0235) | |||||
100 | 90 | 62 | I | 0.6549 | 0.0543 | 0.2290 | 0.0800 | 0.1315 | 0.0892 | |
(0.4404) | (0.0054) | (0.0737) | (0.0150) | (0.0920) | (0.0121) | |||||
0.0977 | 0.0668 | 0.1194 | 0.1203 | 0.1690 | 0.0771 | |||||
(0.0130) | (0.0043) | (0.0263) | (0.0675) | (0.0952) | (0.0240) | |||||
II | 0.4217 | 0.0423 | 0.2023 | 0.0945 | 0.1239 | 0.0720 | ||||
(0.1917) | (0.0078) | (0.0812) | (0.0164) | (0.0994) | (0.0236) | |||||
0.0732 | 0.0582 | 0.0911 | 0.1451 | 0.1567 | 0.0726 | |||||
(0.0087) | (0.0010) | (0.0158) | (0.0644) | (0.0968) | (0.0211) | |||||
70 | I | 0.5258 | 0.0411 | 0.1542 | 0.0845 | 0.1307 | 0.0683 | |||
(0.2854) | (0.0075) | (0.0968) | (0.0579) | (0.0906) | (0.0237) | |||||
0.0738 | 0.0363 | 0.0534 | 0.1285 | 0.1695 | 0.0634 | |||||
(0.0080) | (0.0008) | (0.0124) | (0.0666) | (0.0952) | (0.0239) | |||||
II | 0.2537 | 0.0318 | 0.0867 | 0.0794 | 0.1248 | 0.0664 | ||||
(0.0763) | (0.0004) | (0.0285) | (0.0099) | (0.0938) | (0.0239) | |||||
0.1168 | 0.0210 | 0.0379 | 0.1125 | 0.1616 | 0.0689 | |||||
(0.0208) | (0.0016) | (0.0110) | (0.0682) | (0.0390) | (0.0239) |
n | m | k | Sch | ACIs | Log-CIs | Boot-p CIs | HPD Intervals | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
30 | 20 | 16 | I | 91.00% | 85.32% | 91.14% | 91.23% | 91.36% | 91.40% | 91.18% | 91.12% |
(0.8139) | (1.4571) | (0.8044) | (1.5610) | (0.8172) | (1.3819) | (0.8034) | (1.5568) | ||||
II | 91.60% | 83.21% | 92.26% | 92.63% | 92.48% | 92.18% | 91.46% | 91.38% | |||
(0.8134) | (1.3467) | (0.8634 | (1.4140) | (0.8653) | (1.2618) | (0.8556) | (1.3877) | ||||
18 | I | 92.60% | 85.73% | 90.71% | 91.03% | 91.82% | 92.18% | 91.14% | 91.92% | ||
(0.7731) | (1.3532) | (0.7691) | (1.4545) | (0.7771) | (1.3162) | (0.7691) | (1.4527) | ||||
II | 93.40% | 89.62% | 94.43% | 92.50% | 92.64% | 92.84% | 91.52% | 92.16% | |||
(0.8485) | (1.2287) | (0.8429) | (1.2999) | (0.8384) | (1.1713) | (0.8407) | (1.2888) | ||||
30 | 25 | 16 | I | 92.70% | 85.10% | 91.82% | 91.92% | 92.03% | 91.70% | 91.72% | 91.60% |
(0.8212) | (1.3716) | (0.8065) | (1.5668) | (0.8231) | (1.4005) | (0.7712) | (1.4605) | ||||
II | 92.20% | 86.23% | 92.93% | 93.32% | 92.48% | 92.02% | 91.84% | 91.88% | |||
(0.8172) | (1.3527) | (0.8198) | (1.4811) | (0.8272) | (1.3351) | (0.7948) | (1.3854) | ||||
18 | I | 92.30% | 84.55% | 93.56% | 92.30% | 91.78% | 92.35% | 91.68% | 92.22% | ||
(0.7684) | (1.3399) | (0.7656) | (1.4376) | (0.7724) | (1.3021) | (0.7681) | (1.4486) | ||||
II | 0.929 | 85.76% | 92.18% | 91.70% | 92.32% | 92.38% | 91.68% | 92.52% | |||
(0.7910) | (1.2766) | (0.7928) | (1.3786) | (0.7897) | (1.2489) | (0.7920) | (1.3751) | ||||
60 | 50 | 38 | I | 92.57% | 88.64% | 93.07% | 93.62% | 93.20% | 91.54% | 93.50% | 93.80% |
0.5479) | (0.9431) | (0.5459) | (0.9824) | (0.5368) | (0.9170) | (0.5158) | (0.7909) | ||||
II | 93.21% | 89.90% | 94.16% | 93.74% | 93.70% | 92.80% | 93.62% | 93.82% | |||
(0.5183) | (0.8916) | (0.5656) | (0.9396) | (0.5316) | (0.8707) | (0.5085) | (0.7485) | ||||
42 | I | 93.53% | 90.21% | 94.08% | 94.03% | 96.24% | 92.50% | 93.78% | 94.08% | ||
(0.5436) | (0.9493) | (0.5270) | (0.9147) | (0.5412) | (0.8654) | (0.5289) | (0.7429) | ||||
II | 93.92% | 91.37% | 92.19% | 93.62% | 93.81% | 92.67% | 93.91% | 94.16% | |||
(0.5090) | (0.9156) | (0.5517) | (0.8698) | (0.5194) | (0.8479) | (0.5153) | (0.7259) | ||||
60 | 55 | 38 | I | 93.27% | 90.23% | 94.12% | 93.33% | 93.50% | 92.20% | 93.67% | 94.48% |
(0.5312) | (0.8481) | (0.5439) | (0.9763) | (0.5431) | (0.9157) | (0.4972) | (0.7352) | ||||
II | 93.64% | 91.68% | 93.71% | 94.31% | 93.60% | 93.30% | 93.82% | 94.36% | |||
(0.5292) | (0.8462) | (0.5559) | (0.9686) | (0.5345) | (0.8917) | (0.5019) | (0.7353) | ||||
42 | I | 93.66% | 90.51% | 94.13% | 93.86% | 93.91% | 92.91% | 94.16% | 94.50% | ||
(0.5150) | (0.9174) | (0.5323) | (0.9334) | (0.5273) | (0.8644) | (0.5066) | (0.7076) | ||||
II | 93.91% | 91.03% | 94.35% | 94.51% | 94.15% | 93.73% | 94.40% | 94.93% | |||
(0.5452) | (0.7920) | (0.5421) | (0.9092) | (0.5175) | (0.8249) | (0.4912) | (0.7031) | ||||
100 | 80 | 62 | I | 93.25% | 90.28% | 94.80% | 93.90% | 93.52% | 90.50% | 94.86% | 95.08% |
(0.4313) | (0.8709) | (0.4294) | (0.7688) | (0.4361) | (0.7311) | (0.4299) | (0.6750) | ||||
II | 94.10% | 91.56% | 93.21% | 94.03% | 94.23% | 91.57% | 94.38% | 95.60% | |||
(0.4386) | (0.7537) | (0.4476) | (0.7270) | (0.4172) | (0.6800) | (0.4148) | (0.6714) | ||||
70 | I | 93.71% | 91.74% | 95.26% | 93.24% | 93.73% | 92.03% | 95.72% | 95.24% | ||
(0.4129) | (0.6561) | (0.4131) | (0.7126) | (0.4219) | (0.6807) | (0.4138) | (0.6603) | ||||
II | 94.82% | 92.36% | 93.33% | 92.53% | 94.96% | 92.40% | 94.34% | 95.52% | |||
(0.4228) | (0.6480) | (0.4354) | (0.6686) | (0.3985) | (0.6311) | (0.4180) | (0.6478) | ||||
100 | 90 | 62 | I | 94.5% | 91.93% | 95.28% | 95.30% | 94.56% | 92.59% | 95.74% | 95.64% |
(0.4314) | (0.8907) | (0.4327) | (0.7778) | (0.4234) | (0.7243) | (0.4017) | (0.6513) | ||||
II | 94.64% | 92.03% | 94.62% | 94.06% | 94.50% | 92.50% | 94.88% | 96.02% | |||
(0.4311) | (0.9071) | (0.4387) | (0.7569) | (0.4209) | (0.7078) | (0.3929) | (0.6138) | ||||
70 | I | 94.71% | 91.92% | 95.17% | 95.10% | 94.88% | 92.03% | 95.03% | 96.04% | ||
(0.4380) | (0.7111) | (0.4152) | (0.7195) | (0.4198) | (0.6256) | (0.3987) | (0.6131) | ||||
II | 94.83% | 92.65% | 95.63% | 93.70% | 95.01% | 92.80% | 95.97% | 96.78% | |||
(0.4134) | (0.6985) | (0.4242) | (0.6977) | (0.3867) | (0.5862) | (0.3716) | (0.5252) |
n | m | k | Sch | ACIs | Log-CIs | Boot-p CIs | HPD Intervals | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
30 | 20 | 16 | I | 92.21% | 85.12% | 92.80% | 91.37% | 91.86% | 91.54% | 91.28% | 91.36% |
(0.8082) | (1.4333) | (0.8086) | (1.5806) | (0.8245) | (1.3886) | (0.8094) | (1.3806) | ||||
II | 92.63% | 85.12% | 93.54% | 91.92% | 93.20% | 92.68% | 91.10% | 92.63% | |||
(0.8552) | (1.2903) | (0.8567) | (1.3925) | (0.8575) | (1.2579) | (0.8610) | (1.2051) | ||||
18 | I | 92.42% | 83.91% | 92.73% | 91.11% | 90.90% | 92.36% | 91.33% | 91.64% | ||
(0.7682) | (1.3373) | (0.7644) | (1.4355) | (0.7752) | (1.311) | (0.7709) | (1.2593) | ||||
II | 91.70% | 87.90% | 92.31% | 92.00% | 92.52% | 92.94% | 91.42% | 92.78% | |||
(0.8416) | (1.2125) | (0.8379) | (1.2806) | (0.8335) | (1.1767) | (0.8422) | (1.1927) | ||||
30 | 25 | 16 | I | 91.66% | 85.00% | 91.93% | 92.73% | 91.42% | 91.58% | 91.34% | 91.85% |
(0.8136) | (1.4535) | (0.8081) | (1.5726) | (0.8180) | (1.3935) | (0.8094) | (1.3579) | ||||
II | 92.81% | 86.08% | 91.00% | 92.48% | 91.98% | 92.26% | 92.52% | 91.36% | |||
(0.856) | (1.2924) | (0.8239) | (1.4979) | (0.8218) | (1.3367) | (0.8240) | (1.2990) | ||||
18 | I | 91.80% | 85.53% | 92.71% | 91.40% | 91.62% | 91.48% | 92.14% | 92.14% | ||
(0.7705) | (1.3431) | (0.7663) | (1.4428) | (0.7846) | (1.3042) | (0.7673) | (1.2944) | ||||
II | 92.93% | 86.32% | 92.80% | 91.73% | 92.06% | 92.00% | 92.46% | 92.38% | |||
(0.7971) | (1.2958) | (0.7905) | (1.3683) | (0.7961) | (1.2453) | (0.7911) | (1.2373) | ||||
60 | 50 | 38 | I | 93.33% | 89.20% | 95.40% | 94.60% | 93.40% | 94.53% | 93.46% | 94.76% |
(0.5389) | (0.9433) | (0.5480) | (0.9901) | (0.5554) | (0.9074) | (0.5162) | (0.7907) | ||||
II | 93.58% | 88.87% | 93.52% | 93.33% | 93.80% | 94.10% | 94.00% | 94.20% | |||
(0.5491) | (0.9340) | (0.5672) | (0.9454) | (0.5378) | (0.8759) | (0.5066) | (0.7491) | ||||
42 | I | 93.74% | 90.10% | 93.21% | 94.61% | 93.85% | 94.33% | 94.10% | 94.84% | ||
(0.4133) | (0.8990) | (0.5286) | (0.9198) | (0.5426) | (0.8560) | (0.5290) | (0.7463) | ||||
II | 94.00% | 91.34% | 95.73% | 93.82% | 94.00% | 94.50% | 94.20% | 94.62% | |||
(0.5338) | (0.9572) | (0.5551) | (0.8818) | (0.5124) | (0.8221) | (0.5143) | (0.7439) | ||||
60 | 55 | 38 | I | 94.31% | 90.62% | 93.20% | 92.79% | 94.50% | 94.87% | 94.40% | 95.10% |
(0.4308) | (0.8645) | (0.5422) | (0.9686) | (0.5301) | (0.8556) | (0.5077) | (0.7355) | ||||
II | 94.22% | 90.62% | 93.10% | 93.64% | 94.31% | 94.80% | 94.55% | 95.50% | |||
(0.4474) | (0.8358) | (0.5524) | (0.9559) | (0.5084) | (0.8406) | (0.4970) | (0.7103) | ||||
42 | I | 93.50% | 90.71% | 93.66% | 94.00% | 93.58% | 94.93% | 94.42% | 95.78% | ||
(0.5529) | (0.8817) | 0.5572) | (0.9157) | (0.5263) | (0.8129) | (0.5031) | (0.7025) | ||||
II | 94.92% | 91.63% | 93.00% | 94.44% | 94.81% | 94.90% | 94.70% | 96.08% | |||
(0.4365) | (0.8042) | (0.5417) | (0.9079) | (0.5210) | (0.7729) | (0.4963) | (0.6911) | ||||
100 | 80 | 62 | I | 93.70% | 90.91% | 93.91% | 93.85% | 93.70% | 91.00% | 94.00% | 95.20% |
(0.4319) | (0.7260) | (0.4278) | (0.7610) | (0.4374) | (0.6958) | (0.4206) | (0.6753) | ||||
II | 93.81% | 92.00% | 93.90% | 95.43% | 94.00% | 92.50% | 94.06% | 95.66% | |||
(0.4390) | (0.7574) | (0.4509) | (0.7375) | (0.4125) | (0.6858) | (0.4112) | (0.6711) | ||||
70 | I | 93.76% | 91.63% | 94.70% | 95.20% | 94.12% | 92.80% | 94.54% | 95.22% | ||
(0.4125) | (0.6491) | (0.4128) | (0.0717) | (0.4191) | (0.6545) | (0.4038) | (0.6472) | ||||
II | 94.06% | 92.22% | 94.50% | 94.36% | 94.31% | 92.28% | 94.68% | 95.10% | |||
(0.4240) | (0.6150) | (0.4379) | (0.6721) | (0.4120) | (0.6355) | (0.4022) | (0.6312) | ||||
100 | 90 | 62 | I | 94.45% | 92.10% | 94.00% | 93.57% | 94.20% | 93.07% | 94.66% | 96.40% |
(0.4011) | (0.7081) | (0.4312) | (0.7731) | (0.4243) | (0.7031) | (0.4018) | (0.6516) | ||||
II | 94.70% | 92.70% | 94.03% | 94.51% | 94.85% | 93.07% | 94.90% | 96.28% | |||
(0.4380) | (0.6986) | (0.4377) | (0.7531) | (0.4325) | (0.6733) | (0.3921) | (0.6402) | ||||
70 | I | 95.31% | 92.16% | 93.76% | 94.11% | 95.55% | 92.90% | 95.81% | 96.38% | ||
(0.4008) | (0.7392) | (0.4142) | (0.7164) | (0.3951) | (0.6256) | (0.3925) | (0.6113) | ||||
II | 95.50% | 93.95% | 94.81% | 93.90% | 95.89% | 94.10% | 96.01% | 96.14% | |||
(0.4313) | (0.6955) | (0.4236) | (0.6954) | (0.3893) | (0.6090) | (0.3756) | (0.5907) |
References
- Cohen, A. Estimating the mean and variance of normal populations from singly truncated and doubly truncated samples. Ann. Math. Stat. 1950, 21, 557–569. [Google Scholar] [CrossRef]
- Cohen, A. On estimating the mean and variance of singly truncated normal frequency distributions from the first three sample moments. Ann. Inst. Stat. Math. 1951, 3, 37–44. [Google Scholar] [CrossRef]
- Cohen, A. Tables for maximum likelihood estimates: Singly truncated and singly censored samples. Technometrics 1961, 3, 535–541. [Google Scholar] [CrossRef]
- Whitten, B.J.; Sundaraiyer, V. A pseudo-complete sample technique for estimation from censored samples. Commun. Stat. Theory Methods 1988, 17, 2239–2258. [Google Scholar] [CrossRef]
- Cohen, A. Truncated and Censored Samples: Theory and Applications; CRC Press: New York, NY, USA, 1991. [Google Scholar]
- Lodhi, C.; Tripathi, Y.; Rastogi, M. Estimating the parameters of a truncated normal distribution under progressive type-II censoring. Commun. Stat. Simul. Comput. 2019. [Google Scholar] [CrossRef]
- Cha, J.; Cho, B.; Sharp, J. Rethinking the truncated normal distribution. Int. J. Exp. Des. Process Optim. 2013, 3, 27–63. [Google Scholar] [CrossRef]
- Akahira, M. Maximum likelihood estimation for a one-sided truncated family of distributions. Jpn. Stat. Data Sci. 2020. [Google Scholar] [CrossRef]
- Kundu, D.; Joarder, A. Analysis of Type-II progressively hybrid censored data. Comput. Stat. Data Anal. 2006, 50, 2509–2528. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Cramer, E. The Art of Progressive Censoring: Applications to Reliability and Quality; Springer: New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- Cho, Y.; Sun, H.; Lee, K. Estimating the Entropy of a Weibull Distribution under Generalized Progressive Hybrid Censoring. Entropy 2015, 17, 102–122. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.; Sun, H.; Lee, K. Exact likelihood inference of the exponential parameter under generalized Type-II progressive hybrid censoring. Stat. Methodol. 2015, 23, 18–34. [Google Scholar] [CrossRef]
- Wang, L.; Li, H. Inference for exponential competing risks data under generalized progressive hybrid censoring. Commun. Stat. Simul. Comput. 2019. [Google Scholar] [CrossRef]
- Singh, D.P.; Lodhi, C.; Tripathi, Y.; Wang, L. Inference for two-parameter Rayleigh competing risks data under generalized progressive hybrid censoring. Qual. Reliab. Eng. Int. 2020. [Google Scholar] [CrossRef]
- McLachlan, G.; Krishnan, T. The EM Algorithm and Extensions. J. Classif. 1998, 15, 154–156. [Google Scholar] [CrossRef]
- Belaghi, R.; Noori Asl, M.; Alma, O.; Singh, S.; Vasfi, M. Estimation and Prediction for the Poisson-Exponential Distribution Based on Type-II Censored Data. Am. J. Math. Manag. Sci. 2018, 38, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Gui, W. Inference and optimal censoring scheme for progressively Type-II censored competing risks model for generalized Rayleigh distribution. Comput. Stat. 2021, 36, 479–513. [Google Scholar] [CrossRef]
- Hall, P. The Bootstrap and Edgeworth Expansion; Springer: New York, NY, USA, 1993. [Google Scholar]
- Tierney, L.; Kadane, J. Accurate Approximations for Posterior Moments and Marginal Densities. J. Am. Stat. Assoc. 1986, 81, 82–86. [Google Scholar] [CrossRef]
- Von der Linden, W.; Dose, V.; von Toussaint, U. Bayesian Probability Theory: Application to the Physical Sciences; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Akgül, F.G.; Yu, K.; Senoglu, B. Classical and Bayesian Inferences in Step-Stress Partially Accelerated Life Tests for Inverse Weibull Distribution Under Type-I Censoring. Strength Mater. 2020, 52, 480–496. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Sandhu, R. A Simple Simulational Algorithm for Generating Progressive Type-II Censored Samples. Am. Stat. 1995, 49, 229–230. [Google Scholar] [CrossRef]
- Lawless, J.F. Statistical Models and Methods for Lifetime Data; Wiley: New York, NY, USA, 1982. [Google Scholar]
- Dörre, A.; Emura, T. Analysis of Doubly Truncated Data, an Introduction; Springer: New York, NY, USA, 2019. [Google Scholar]
0.1788 | 0.2892 | 0.3300 | 0.4152 | 0.4212 | 0.4560 | 0.4840 | 0.5184 |
0.5196 | 0.5412 | 0.5556 | 0.6780 | 0.6864 | 0.6864 | 0.6888 | 0.8412 |
0.9312 | 0.9864 | 1.0512 | 1.0584 | 1.2792 | 1.2804 | 1.7340 |
Distribution | K-S | |||
---|---|---|---|---|
TN | 0.68079 | 0.16436 | 8.80069 | 0.16832 |
FN | 0.71401 | 0.14623 | 9.26571 | 0.17858 |
HN | - | 0.65601 | 11.84542 | 0.26135 |
Case | Parameter | MLE | MLE | SEL | GEL | LL | IS | ||
---|---|---|---|---|---|---|---|---|---|
(N-R) | (EM) | q = 0.8 | q = 1.1 | ℏ = 0.35 | ℏ = 0.45 | ||||
I | 0.80462 | 0.72634 | 0.71307 | 0.64764 | 0.55900 | 1.88966 | 1.88966 | 0.78965 | |
0.12125 | 0.14501 | 0.09444 | 0.09462 | 0.04257 | 1.11628 | 1.16278 | 0.14589 | ||
II | 0.78957 | 0.71985 | 0.69074 | 0.81490 | 0.75648 | 1.31132 | 1.41716 | 0.75745 | |
0.09959 | 0.13672 | 0.11179 | 0.22141 | 0.13891 | 1.04535 | 1.05878 | 0.10030 | ||
III | 0.80895 | 0.73029 | 0.75061 | 0.79298 | 0.73061 | 1.29832 | 1.39946 | 0.79024 | |
0.13780 | 0.16331 | 0.24271 | 0.30696 | 0.21909 | 1.06950 | 1.09043 | 0.17267 |
Case | Parameter | ACIs | Log-CIs | HPD Intervals | Boot-p CIs |
---|---|---|---|---|---|
I | (0.63866, 0.97059) | (0.63854, 0.98013) | (0.64351, 0.95027) | (0.63901, 0.96593) | |
(0.02390, 0.21861) | (0.02407, 0.21534) | (0.02519, 0.20918) | (0.02432, 0.21568) | ||
II | (0.63542, 0.94373) | (0.62853, 0.93851) | (0.64864, 0.93061) | (0.63854, 0.94837) | |
(0.02336, 0.18983) | (0.02161, 0.17734) | (0.02053, 0.17918) | (0.02241, 0.17782) | ||
III | (0.63058, 0.98731) | (0.63509, 0.98602) | (0.63837, 0.98069) | (0.64013, 0.98165) | |
(0.03544, 0.24016) | (0.03641, 0.24505) | (0.04068, 0.24033) | (0.03871, 0.24186) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, X.; Gui, W. Statistical Inference of Truncated Normal Distribution Based on the Generalized Progressive Hybrid Censoring. Entropy 2021, 23, 186. https://doi.org/10.3390/e23020186
Zeng X, Gui W. Statistical Inference of Truncated Normal Distribution Based on the Generalized Progressive Hybrid Censoring. Entropy. 2021; 23(2):186. https://doi.org/10.3390/e23020186
Chicago/Turabian StyleZeng, Xinyi, and Wenhao Gui. 2021. "Statistical Inference of Truncated Normal Distribution Based on the Generalized Progressive Hybrid Censoring" Entropy 23, no. 2: 186. https://doi.org/10.3390/e23020186
APA StyleZeng, X., & Gui, W. (2021). Statistical Inference of Truncated Normal Distribution Based on the Generalized Progressive Hybrid Censoring. Entropy, 23(2), 186. https://doi.org/10.3390/e23020186