Analysis of Air Mean Temperature Anomalies by Using Horizontal Visibility Graphs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Seasonality Removal
2.3. Horizontal Visibility Graph (HVG)
2.3.1. Degree Centrality
2.3.2. Global Clustering Coefficient
3. Results
3.1. Degree Centrality Computation
3.2. Clustering Coefficient Computation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Horton, B. Geographical distribution of changes in maximum and minimum temperatures. Atmos. Res. 1995, 37, 101–117. [Google Scholar] [CrossRef]
- Jones, P.D.; New, M.; Parker, D.E.; Martin, S.; Rigor, I.G. Surface air temperature and its changes over the past 150 years. Rev. Geophys. 1999, 37, 173–199. [Google Scholar] [CrossRef]
- Jones, P.D.; Moberg, A. Hemispheric and large-scale surface air temperature variations: An extensive revision and an update to 2001. J. Clim. 2003, 16, 206–223. [Google Scholar] [CrossRef] [Green Version]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Summary for Policymakers WG I. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Field, C.B.; Barros, V.R.; Dokken, D.J.; Mach, K.J.; Mastrandrea, M.D.; Bilir, T.E.; Chatterjee, M.; Ebi, K.L.; Estrada, Y.O.; Genova, R.C.; et al. Summary for Policymakers WG II. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1–32. [Google Scholar]
- Swain, D.L.; Singh, D.; Touma, D.; Diffenbaugh, N.S. Attributing extreme events to climate change: A new frontier in a warming world. One Earth 2020, 2, 522–527. [Google Scholar] [CrossRef]
- Burgueño, A.; Lana, X.; Serra, C.; Martínez, M.D. Daily extreme temperature multifractals in Catalonia (NE Spain). Phys. Lett. A 2014, 378, 874–885. [Google Scholar] [CrossRef]
- Gómez-Navarro, J.J.; Montávez, J.P.; Jimenez-Guerrero, P.; Jerez, S.; García-Valero, J.A.; González-Rouco, J.F. Warming patterns in regional climate change projections over the Iberian Peninsula. Metz 2010, 19, 275–285. [Google Scholar] [CrossRef]
- Latif, Y.; Yaoming, M.; Yaseen, M.; Muhammad, S.; Wazir, M.A. Spatial analysis of temperature time series over the upper Indus Basin (UIB) Pakistan. Theor. Appl. Climatol. 2020, 139, 741–758. [Google Scholar] [CrossRef] [Green Version]
- Ongoma, V.; Rahman, M.A.; Ayugi, B.; Nisha, F.; Galvin, S.; Shilenje, Z.W.; Ogwang, B.A. Variability of diurnal temperature range over Pacific Island countries, a case study of Fiji. Meteorol. Atmos. Phys. 2020. [Google Scholar] [CrossRef]
- Zhuang, Y.; Zhang, J. Diurnal asymmetry in future temperature changes over the main belt and road regions. Ecosyst. Health Sustain. 2020, 6, 1749530. [Google Scholar] [CrossRef] [Green Version]
- Lacasa, L.; Luque, B.; Ballesteros, F.; Luque, J.; Nuño, J.C. From time series to complex networks: The visibility graph. Proc. Natl. Acad. Sci. USA 2008, 105, 4972–4975. [Google Scholar] [CrossRef] [Green Version]
- Lacasa, L.; Luque, B.; Luque, J.; Nuño, J.C. The visibility graph: A new method for estimating the hurst exponent of fractional brownian motion. Europhys. Lett. 2009, 86, 30001. [Google Scholar] [CrossRef] [Green Version]
- Lacasa, L.; Toral, R. Description of stochastic and chaotic series using visibility graphs. Phys. Rev. E 2010, 82, 036120. [Google Scholar] [CrossRef] [Green Version]
- Carmona-Cabezas, R.; Ariza-Villaverde, A.B.; Gutiérrez de Ravé, E.; Jiménez-Hornero, F.J. Visibility graphs of ground-level ozone time series: A multifractal analysis. Sci. Total Environ. 2019, 661, 138–147. [Google Scholar] [CrossRef]
- Carmona-Cabezas, R.; Gómez-Gómez, J.; Ariza-Villaverde, A.B.; Gutiérrez de Ravé, E.; Jiménez-Hornero, F.J. Can complex networks describe the urban and rural tropospheric O3 dynamics? Chemosphere 2019, 230, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Donner, R.V.; Donges, J.F. Visibility graph analysis of geophysical time series: Potentials and possible pitfalls. Acta Geophys. 2012, 60, 589–623. [Google Scholar] [CrossRef]
- Elsner, J.B.; Jagger, T.H.; Fogarty, E.A. Visibility network of United States hurricanes. Geophys. Res. Lett. 2009, 36, L16702. [Google Scholar] [CrossRef] [Green Version]
- Pierini, J.O.; Lovallo, M.; Telesca, L. Visibility graph analysis of wind speed records measured in Central Argentina. Phys. A Stat. Mech. Appl. 2012, 391, 5041–5048. [Google Scholar] [CrossRef]
- Luque, B.; Lacasa, L.; Ballesteros, F.; Luque, J. Horizontal visibility graphs: Exact results for random time series. Phys. Rev. E 2009, 80, 046103. [Google Scholar] [CrossRef] [Green Version]
- Braga, A.C.; Alves, L.G.A.; Costa, L.S.; Ribeiro, A.A.; de Jesus, M.M.A.; Tateishi, A.A.; Ribeiro, H.V. Characterization of river flow fluctuations via horizontal visibility graphs. Phys. A 2016, 444, 1003–1011. [Google Scholar] [CrossRef]
- Tsonis, A.A.; Roebber, P.J. The architecture of the climate network. Phys. A Stat. Mech. Appl. 2004, 333, 497–504. [Google Scholar] [CrossRef]
- Paluš, M.; Hartman, D.; Hlinka, J.; Vejmelka, M. Discerning connectivity from dynamics in climate networks. Nonlinear Process. Geophys. 2011, 18, 751–763. [Google Scholar] [CrossRef]
- Havlin, S.; Kenett, D.Y.; Ben-Jacob, E.; Bunde, A.; Cohen, R.; Hermann, H.; Kantelhardt, J.W.; Kertész, J.; Kirkpatrick, S.; Kurths, J.; et al. Challenges in network science: Applications to infrastructures, climate, social systems and economics. Eur. Phys. J. Spec. Top. 2012, 214, 273–293. [Google Scholar] [CrossRef] [Green Version]
- Lange, H.; Sippel, S.; Rosso, O.A. Nonlinear dynamics of river runoff elucidated by horizontal visibility graphs. Chaos 2018, 28, 075520. [Google Scholar] [CrossRef] [Green Version]
- Mali, P.; Manna, S.K.; Mukhopadhyay, A.; Haldar, P.K.; Singh, G. Multifractal analysis of multiparticle emission data in the framework of visibility graph and sandbox algorithm. Phys. A Stat. Mech. Appl. 2018, 493, 253–266. [Google Scholar] [CrossRef]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘Small-World’ networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef]
- Cencini, M.; Falcioni, M.; Olbrich, E.; Kantz, H.; Vulpiani, A. Chaos or noise: Difficulties of a distinction. Phys. Rev. E 2000, 62, 427–437. [Google Scholar] [CrossRef] [Green Version]
- Millán, H.; Ghanbarian-Alavijeh, B.; García-Fornaris, I. Nonlinear dynamics of mean daily temperature and dewpoint time series at Babolsar, Iran, 1961–2005. Atmos. Res. 2010, 98, 89–101. [Google Scholar] [CrossRef]
- Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef] [Green Version]
- Ravetti, M.G.; Carpi, L.C.; Gonçalves, B.A.; Frery, A.C.; Rosso, O.A. Distinguishing noise from chaos: Objective versus subjective criteria using horizontal visibility graph. PLoS ONE 2014, 9, e108004. [Google Scholar] [CrossRef] [PubMed]
Station Name | Short Name | Latitude (°N) | Longitude (°W) | Altitude (m) |
---|---|---|---|---|
Albacete air base | Albacete | 38.95 | 1.86 | 702 |
Badajoz airport | Badajoz | 38.88 | 6.81 | 185 |
Barcelona airport | Barcelona | 41.29 | −2.07 | 4 |
Bilbao airport | Bilbao | 43.30 | 2.91 | 42 |
Burgos airport | Burgos | 42.36 | 3.62 | 891 |
La Coruña | La Coruña | 43.37 | 8.42 | 58 |
Málaga airport | Málaga | 36.67 | 4.48 | 5 |
Sevilla airport | Sevilla | 37.42 | 5.88 | 34 |
Valencia | Valencia | 39.48 | 0.37 | 11 |
Zaragoza airport | Zaragoza | 41.66 | 1.00 | 249 |
Station | |||||||||
---|---|---|---|---|---|---|---|---|---|
Albacete | 2.2 | 1.7 | 0.03 | −1.9 | 4.3 | 0.00 | 0.6 | 0.7 | 0.01 |
Badajoz | −0.2 | 1.7 | 0.00 | 7.1 | 4.2 | 0.05 | 1.0 | 0.7 | 0.04 |
Barcelona | −2.4 | 1.4 | 0.05 | 0.7 | 3.2 | 0.00 | 1.7 | 0.8 | 0.06 |
Bilbao | −1.4 | 1.7 | 0.01 | 7.3 | 3.5 | 0.07 | 1.9 | 0.7 | 0.10 |
Burgos | 1.7 | 1.4 | 0.02 | 3.6 | 4.3 | 0.01 | 0.8 | 0.7 | 0.02 |
La Coruña | 1.7 | 1.6 | 0.02 | 6.4 | 4.3 | 0.04 | 1.1 | 0.8 | 0.03 |
Málaga | 0.9 | 1.4 | 0.01 | −4.7 | 2.8 | 0.05 | −0.2 | 0.7 | 0.00 |
Sevilla | −1.2 | 1.7 | 0.01 | 7.0 | 4.8 | 0.04 | 1.3 | 0.7 | 0.05 |
Valencia | 2.0 | 1.6 | 0.03 | 2.3 | 3.2 | 0.01 | 0.5 | 0.6 | 0.01 |
Zaragoza | −1.8 | 1.6 | 0.02 | 7.4 | 5.2 | 0.03 | 2.0 | 0.8 | 0.10 |
Station | ||||||
---|---|---|---|---|---|---|
Albacete | 3.91 | 0.02 | 0.46 | 0.06 | 0.57 | 0.01 |
Badajoz | 3.91 | 0.02 | 0.47 | 0.06 | 0.57 | 0.01 |
Barcelona | 3.91 | 0.02 | 0.43 | 0.04 | 0.56 | 0.01 |
Bilbao | 3.91 | 0.02 | 0.46 | 0.05 | 0.57 | 0.01 |
Burgos | 3.91 | 0.02 | 0.48 | 0.06 | 0.57 | 0.01 |
La Coruña | 3.91 | 0.02 | 0.46 | 0.06 | 0.57 | 0.01 |
Málaga | 3.91 | 0.02 | 0.43 | 0.04 | 0.56 | 0.01 |
Sevilla | 3.91 | 0.02 | 0.48 | 0.07 | 0.57 | 0.01 |
Valencia | 3.91 | 0.02 | 0.41 | 0.04 | 0.55 | 0.01 |
Zaragoza | 3.91 | 0.02 | 0.47 | 0.07 | 0.57 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Gómez, J.; Carmona-Cabezas, R.; Sánchez-López, E.; Gutiérrez de Ravé, E.; Jiménez-Hornero, F.J. Analysis of Air Mean Temperature Anomalies by Using Horizontal Visibility Graphs. Entropy 2021, 23, 207. https://doi.org/10.3390/e23020207
Gómez-Gómez J, Carmona-Cabezas R, Sánchez-López E, Gutiérrez de Ravé E, Jiménez-Hornero FJ. Analysis of Air Mean Temperature Anomalies by Using Horizontal Visibility Graphs. Entropy. 2021; 23(2):207. https://doi.org/10.3390/e23020207
Chicago/Turabian StyleGómez-Gómez, Javier, Rafael Carmona-Cabezas, Elena Sánchez-López, Eduardo Gutiérrez de Ravé, and Francisco José Jiménez-Hornero. 2021. "Analysis of Air Mean Temperature Anomalies by Using Horizontal Visibility Graphs" Entropy 23, no. 2: 207. https://doi.org/10.3390/e23020207
APA StyleGómez-Gómez, J., Carmona-Cabezas, R., Sánchez-López, E., Gutiérrez de Ravé, E., & Jiménez-Hornero, F. J. (2021). Analysis of Air Mean Temperature Anomalies by Using Horizontal Visibility Graphs. Entropy, 23(2), 207. https://doi.org/10.3390/e23020207