Negativity of the Casimir Self-Entropy in Spherical Geometries
Abstract
:1. Introduction
2. Transverse Magnetic Free Energy of Plasma-Shell Sphere
3. Weak Coupling
4. Low Temperature
4.1. Euclidean Frequency Argument
4.2. Abel–Plana Analysis
5. High Temperature
6. Numerical Analysis
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TE | Transverse electric |
TM | Transverse magnetic |
References
- Schrödinger, E. What Is Life—The Physical Aspect of the Living Cell; Cambridge University Press: Cambridge, UK, 1944. [Google Scholar]
- Cvetic, M.; Nojiri, S.; Odintsov, S.D. Black hole thermodynamics and negative entropy in de Sitter and anti-de Sitter Einstein-Gauss-Bonnet gravity. Nucl. Phys. B 2002, 628, 295–330. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D. The final state and thermodynamics of dark energy universe. Phys. Rev. D 2004, 70, 103522. [Google Scholar] [CrossRef] [Green Version]
- Bordag, M. Entropy in some simple one-dimensional configurations. arXiv 2018, arXiv:1807.10354. [Google Scholar]
- Bordag, M.; Muñoz-Castañeda, J.M.; Santamaría-Sanz, L. Free energy and entropy for finite temperature quantum field theory under the influence of periodic backgrounds. Eur. Phys. J. C 2020, 80, 221. [Google Scholar] [CrossRef] [Green Version]
- Brevik, I.; Ellingsen, S.A.; Milton, K.A. Thermal corrections to the Casimir effect. New J. Phys. 2006, 8, 236. [Google Scholar] [CrossRef]
- Bezerra, V.B.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Romero, C. Lifshitz theory of atom-wall interaction with applications to quantum reflection. Phys. Rev. A 2008, 78, 042901. [Google Scholar] [CrossRef] [Green Version]
- Canaguier-Durand, A.; Maia Neto, P.A.; Lambrecht, A.; Reynaud, S. Thermal Casimir effect in the plane-sphere geometry. Phys. Rev. Lett. 2010, 104, 040403. [Google Scholar] [CrossRef] [Green Version]
- Canaguier-Durand, A.; Maia Neto, P.A.; Lambrecht, A.; Reynaud, S. Thermal Casimir effect for Drude metals in the plane-sphere geometry. Phys. Rev. A 2010, 82, 012511. [Google Scholar] [CrossRef] [Green Version]
- Bordag, M.; Pirozhenko, I.G. Casimir entropy for a ball in front of a plane. Phys. Rev. D 2010, 82, 125016. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Lopez, P. Casimir energy and entropy in the sphere–sphere geometry. Phys. Rev. B 2011, 84, 075431. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Lopez, P. Casimir energy and entropy between perfect metal spheres. Int. J. Mod. Phys. Conf. Ser. 2012, 14, 475–484. [Google Scholar] [CrossRef] [Green Version]
- Khusnutdinov, N.R. The thermal Casimir-Polder interaction of an atom with a spherical plasma shell. J. Phys. A Math. Theor. 2012, 45, 265301. [Google Scholar] [CrossRef] [Green Version]
- Milton, K.A.; Guérout, R.; Ingold, G.-L.; Lambrecht, A.; Reynaud, S. Negative Casimir entropies in nanoparticle interactions. J. Phys. Condens. Matter 2015, 27, 214003. [Google Scholar] [CrossRef] [Green Version]
- Ingold, G.-L.; Umrath, S.; Hartmann, M.; Guérout, R.; Lambrecht, A.; Reynaud, S.; Milton, K.A. Geometric origin of negative Casimir entropies: A scattering-channel analysis. Phys. Rev. E 2015, 91, 033203. [Google Scholar] [CrossRef]
- Li, Y.; Milton, K.A.; Kalauni, P.; Parashar, P. Casimir self-entropy of an electromagnetic thin sheet. Phys. Rev. D 2016, 94, 085010. [Google Scholar] [CrossRef] [Green Version]
- Milton, K.A.; Li, Y.; Kalauni, P.; Parashar, P.; Guérout, R.; Ingold, G.-L.; Lambrecht, A.; Reynaud, S. Negative entropies in Casimir and Casimir-Polder interactions. Fortschr. Phys. 2017, 65, 1600047. [Google Scholar] [CrossRef] [Green Version]
- Balian, R.; Duplantier, B. Electromagnetic waves near perfect conductors. 2. Casimir effect. Ann. Phys. 1978, 112, 165–208. [Google Scholar] [CrossRef]
- Milton, K.A.; Kalauni, P.; Parashar, P.; Li, Y. Casimir self-entropy of a spherical electromagnetic δ-function shell. Phys. Rev. D 2017, 96, 085007. [Google Scholar] [CrossRef] [Green Version]
- Milton, K.A.; Kalauni, P.; Parashar, P.; Li, Y. Remarks on the Casimir self-entropy of a spherical electromagnetic δ-function shell. Phys. Rev. D 2019, 99, 045013. [Google Scholar] [CrossRef] [Green Version]
- Bordag, M.; Kirsten, K. On the entropy of a spherical plasma shell. J. Phys. A 2018, 51, 455001. [Google Scholar] [CrossRef] [Green Version]
- Bordag, M. Free energy and entropy for thin sheets. Phys. Rev. D 2018, 98, 085010. [Google Scholar] [CrossRef] [Green Version]
- Parashar, P.; Milton, K.A.; Shajesh, K.V.; Brevik, I. Electromagnetic δ-function sphere. Phys. Rev. D 2017, 96, 085010. [Google Scholar] [CrossRef] [Green Version]
- Graham, N.; Jaffe, R.L.; Khemani, V.; Quandt, M.; Schröder, O.; Weigel, H. The Dirichlet Casimir problem. Nucl. Phys. B 2004, 677, 379–404. [Google Scholar] [CrossRef] [Green Version]
- Milton, K.A.; Parashar, P.; Brevik, I.; Kennedy, G. Self-stress on a dielectric ball and Casimir–Polder forces. Ann. Phys. 2020, 412, 168008. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Milton, K.A.; Parashar, P.; Hong, L. Negativity of the Casimir Self-Entropy in Spherical Geometries. Entropy 2021, 23, 214. https://doi.org/10.3390/e23020214
Li Y, Milton KA, Parashar P, Hong L. Negativity of the Casimir Self-Entropy in Spherical Geometries. Entropy. 2021; 23(2):214. https://doi.org/10.3390/e23020214
Chicago/Turabian StyleLi, Yang, Kimball A. Milton, Prachi Parashar, and Lujun Hong. 2021. "Negativity of the Casimir Self-Entropy in Spherical Geometries" Entropy 23, no. 2: 214. https://doi.org/10.3390/e23020214
APA StyleLi, Y., Milton, K. A., Parashar, P., & Hong, L. (2021). Negativity of the Casimir Self-Entropy in Spherical Geometries. Entropy, 23(2), 214. https://doi.org/10.3390/e23020214