Optimal Fractional-Order Active Disturbance Rejection Controller Design for PMSM Speed Servo System
Abstract
:1. Introduction
2. Background and Preliminaries
2.1. The Tuning Methods for ADRC
2.2. Fractional-Order Calculus
2.3. Problem Formulation
2.4. The Structure of the FOADRC
3. Stability Boundary Analysis
- Real root boundary (RRB): The RRB is defined by the equation , so the boundary of is:
- Infinite root boundary (IRB): Due to the relative order of is 2, has no boundary restrictions.
4. FOADRC/IOADRC Design Strategy
4.1. Controller Design Specifications
- Gain crossover frequency
- Phase margin
- ITAE
4.2. The Optimal FOADRC Design for PMSM Speed Servo Plant
4.2.1. The FOADRC Satisfying the Frequency-Domain Specifications
4.2.2. The Optimal FOADRC Satisfying Time-Domain Specifications
4.3. IOADRC Design Strategy
5. Simulation Results
5.1. Tracking Performance
5.2. Robustness to External Disturbance
6. Experiment Results and Discussion
6.1. Tracking Performance
6.2. Robustness to External Disturbance
6.3. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
fractional-order active disturbance rejection control | |
fractional-order proportional-derivative | |
extended state observer | |
permanent magnet synchronous motor | |
active disturbance rejection control | |
integer-order active disturbance rejection control | |
proportional-integral-derivative | |
fractional-order | |
fractional-order proportional-integral | |
fractional-order (proportional-derivative) | |
fractional-order proportional-integral-derivative | |
integral square error | |
integral time absolute error | |
linear active disturbance rejection control | |
generalized active disturbance rejection control | |
genetic algorithm | |
fractional active disturbance rejection control | |
fractional-order extended state observer | |
fractional order system | |
proportional-integral | |
real root boundary | |
infinite root boundary | |
complex root boundary | |
phase margin | |
impulse-response-invariant-discretization |
References
- Krishnan, R. Electric Motor Drives: Modeling, Analysis, and Control; Prentice Hall: Upper Saddle River, NJ, USA, 2001. [Google Scholar]
- Alcántara, S.; Vilanova, R.; Pedret, C. PID control in terms of robustness/performance and servo/regulator trade-offs: A unifying approach to balanced autotuning. J. Process Control 2013, 23, 527–542. [Google Scholar] [CrossRef]
- Han, J. From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 2009, 56, 900–906. [Google Scholar] [CrossRef]
- Horowitz, I.M. Synthesis of Feedback Systems; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Tsien, H.S. Engineering Cybernetics; McGraw-Hill: New York, NY, USA, 1954. [Google Scholar]
- Gao, Z. Scaling and bandwidth-parameterization based controller tuning. Proc. Am. Control. Conf. 2006, 6, 4989–4996. [Google Scholar]
- Xue, W.; Bai, W.; Yang, S.; Song, K.; Huang, Y.; Xie, H. ADRC with adaptive extended state observer and its application to air–fuel ratio control in gasoline engines. IEEE Trans. Ind. Electron. 2015, 62, 5847–5857. [Google Scholar] [CrossRef]
- Zheng, Q.; Gao, Z. On practical applications of active disturbance rejection control. In Proceedings of the 29th Chinese Control Conference, Beijing, China, 29–31 July 2010; pp. 6095–6100. [Google Scholar]
- Wenchao, H.Y.X. Active disturbance rejection control: Methodology, applications and theoretical analysis. J. Syst. Sci. Math. Sci. 2012, 32, 1287–1307. [Google Scholar]
- Wu, Z.; He, T.; Li, D.; Xue, Y.; Sun, L.; Sun, L. Superheated steam temperature control based on modified active disturbance rejection control. Control Eng. Pract. 2019, 83, 83–97. [Google Scholar] [CrossRef]
- Fu, C.; Tan, W. Tuning of linear ADRC with known plant information. ISA Trans. 2016, 65, 384–393. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Gao, H.; Zhao, B.; Zhao, L. A GA-based parameters tuning method for an ADRC controller of ISP for aerial remote sensing applications. ISA Trans. 2018, 81, 318–328. [Google Scholar] [CrossRef]
- Oldham, K.B.; Spanier, J. The fractional calculus. Math. Gaz. 1974, 56, 396–400. [Google Scholar]
- Ross, B. The development of fractional calculus 1695–1900. Hist. Math. 1977, 4, 75–89. [Google Scholar] [CrossRef] [Green Version]
- Freeborn, T.J. A survey of fractional-order circuit models for biology and biomedicine. IEEE J. Emerg. Sel. Top. Circuits Syst. 2013, 3, 416–424. [Google Scholar] [CrossRef]
- Vastarouchas, C.; Dimeas, I.; Psychalinos, C.; Elwakil, A.S. Fractional Order Systems; Chapter 6. Fractional-Order Integrated Circuits in Control Applications and Biological Modeling; Elsevier: Amsterdam, The Netherlands, 2018; pp. 163–204. [Google Scholar]
- Abdou, M. On the fractional order space-time nonlinear equations arising in plasma physics. Indian J. Phys. 2019, 93, 537–541. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, Y. Fractional Order Motion Controls; Wiley Online Library: Hoboken, NJ, USA, 2012. [Google Scholar]
- Mescia, L.; Bia, P.; Caratelli, D. Fractional-Calculus-Based Electromagnetic Tool to Study Pulse Propagation in Arbitrary Dispersive Dielectrics. Phys. Status Solidi A 2019, 216. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Luo, Y.; Chen, Y. Fractional order proportional integral (FOPI) and [proportional integral](FO[PI]) controller designs for first order plus time delay (FOPTD) systems. In Proceedings of the 21st Chinese Control and Decision Conference (CCDC), Guilin, China, 17–19 June 2009; pp. 329–334. [Google Scholar]
- Zheng, W.; Luo, Y.; Pi, Y.; Chen, Y. Improved frequency-domain design method for the fractional order proportional–integral–derivative controller optimal design: A case study of permanent magnet synchronous motor speed control. IET Control Theory Appl. 2018, 12, 2478–2487. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, Y. Fractional order [proportional derivative] controller for a class of fractional order systems. Automatica 2009, 45, 2446–2450. [Google Scholar] [CrossRef]
- Vinagre, B.M.; Monje, C.A.; Calderon, A.J.; Suarez, J.I. Fractional PID controllers for industry application. A brief introduction. J. Vib. Control 2007, 13, 1419–1429. [Google Scholar] [CrossRef]
- De Keyser, R.; Muresan, C.I.; Ionescu, C.M. A novel auto-tuning method for fractional order PI/PD controllers. ISA Trans. 2016, 62, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Biswas, A.; Das, S.; Abraham, A.; Dasgupta, S. Design of fractional-order PID controllers with an improved differential evolution. Eng. Appl. Artif. Intell. 2009, 22, 343–350. [Google Scholar] [CrossRef]
- Zeng, G.Q.; Chen, J.; Dai, Y.X.; Li, L.M.; Zheng, C.W.; Chen, M.R. Design of fractional order PID controller for automatic regulator voltage system based on multi-objective extremal optimization. Neurocomputing 2015, 160, 173–184. [Google Scholar] [CrossRef]
- Monje, C.A.; Vinagre, B.M.; Feliu, V.; Chen, Y. Tuning and auto-tuning of fractional order controllers for industry applications. Control Eng. Pract. 2008, 16, 798–812. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Zhang, T.; Lee, B.J.; Kang, C.; Chen, Y.Q. Fractional-Order Proportional Derivative Controller Synthesis and Implementation for Hard-Disk-Drive Servo System. IEEE Trans. Control Syst. Technol. 2014, 22, 281–289. [Google Scholar] [CrossRef] [Green Version]
- Li, H.S.; Luo, Y.; Chen, Y.Q. A Fractional Order Proportional and Derivative (FOPD) Motion Controller: Tuning Rule and Experiments. IEEE Trans. Control Syst. Technol. 2010, 18, 516–520. [Google Scholar] [CrossRef]
- Li, D.; Ding, P.; Gao, Z. Fractional active disturbance rejection control. ISA Trans. 2016, 62, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Chen, Y.; Huang, J. Application of fractional-order active disturbance rejection controller on linear motion system. Control Eng. Pract. 2018, 81, 207–214. [Google Scholar] [CrossRef]
- Chen, P.; Luo, Y.; Zheng, W.; Gao, Z. A New Active Disturbance Rejection Controller Design Based on Fractional Extended State Observer. In Proceedings of the 38th Chinese Control Conference (CCC), Guangzhou, China, 27–30 July 2019; pp. 4276–4281. [Google Scholar]
- Sun, B.; Gao, Z. A DSP-based active disturbance rejection control design for a 1-kW H-bridge DC-DC power converter. IEEE Trans. Ind. Electron. 2005, 52, 1271–1277. [Google Scholar] [CrossRef] [Green Version]
- Ahi, B.; Haeri, M. Linear Active Disturbance Rejection Control From the Practical Aspects. IEEE/ASME Trans. Mech. 2018, 23, 2909–2919. [Google Scholar] [CrossRef]
- Nowak, P.; Czeczot, J.; Klopot, T. Robust tuning of a first order reduced Active Disturbance Rejection Controller. Control Eng. Pract. 2018, 74, 44–57. [Google Scholar] [CrossRef]
- Chen, Y. Impulse Response Invariant Discretization of Fractional Order Integrators/Differentiators, Filter Design and Analysis, MATLAB Central. Available online: http://www.mathworks.com/matlabcentral/fileexchange/21342impulse-response-invariant-discretization-of-fractional-order-integrators-differentiator (accessed on 20 February 2021).
- Poinot, T.; Trigeassou, J.C. Identification of fractional systems using an output-error technique. Nonlinear Dyn. 2004, 38, 133–154. [Google Scholar] [CrossRef]
- Zheng, W.; Luo, Y.; Chen, Y.; Pi, Y. Fractional-order modeling of permanent magnet synchronous motor speed servo system. J. Vib. Control 2016, 22, 2255–2280. [Google Scholar] [CrossRef]
- Ackermann, J.; Kaesbauer, D. Stable polyhedra in parameter space. Automatica 2003, 39, 937–943. [Google Scholar] [CrossRef] [Green Version]
- Hamamci, S.E. An algorithm for stabilization of fractional-order time delay systems using fractional-order PID controllers. IEEE Trans. Autom. Control 2007, 52, 1964–1969. [Google Scholar] [CrossRef]
- Hwang, C.; Cheng, Y. A numerical algorithm for stability testing of fractional delay systems. Automatica 2006, 42, 825–831. [Google Scholar] [CrossRef]
- Chen, Y.; Moore, K. Relay feedback tuning of robust PID controllers with iso-damping property. IEEE Trans. Syst. 2005, 35, 23–31. [Google Scholar] [CrossRef] [PubMed]
Speed Tracking | Anti-Load Disturbance | ||||
---|---|---|---|---|---|
Controller | Overshoot (%) | Settling Time (s) | Speed Drop (%) | ||
FOADRC | 20.5 | 0.7369 | 19.2 | 12.07 | 110.32 |
IOADRC | 26.4 | 0.9831 | 27.18 | 11.08 | 124.3 |
PID | 19 | 0.985 | 28.05 | 19.47 | 301.45 |
Speed Tracking | Anti-Load Disturbance | ||||
---|---|---|---|---|---|
Controller | Overshoot (%) | Settling Time (s) | Speed Drop (%) | ||
FOADRC | 22.1 | 0.985 | 28.72 | 17.6 | 174.814 |
IOADRC | 32.3 | 1.47 | 60.58 | 16.6 | 210.8931 |
PID | 19 | 1.94 | 64.3414 | 19.47 | 368.0378 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, P.; Luo, Y.; Peng, Y.; Chen, Y. Optimal Fractional-Order Active Disturbance Rejection Controller Design for PMSM Speed Servo System. Entropy 2021, 23, 262. https://doi.org/10.3390/e23030262
Chen P, Luo Y, Peng Y, Chen Y. Optimal Fractional-Order Active Disturbance Rejection Controller Design for PMSM Speed Servo System. Entropy. 2021; 23(3):262. https://doi.org/10.3390/e23030262
Chicago/Turabian StyleChen, Pengchong, Ying Luo, Yibing Peng, and Yangquan Chen. 2021. "Optimal Fractional-Order Active Disturbance Rejection Controller Design for PMSM Speed Servo System" Entropy 23, no. 3: 262. https://doi.org/10.3390/e23030262
APA StyleChen, P., Luo, Y., Peng, Y., & Chen, Y. (2021). Optimal Fractional-Order Active Disturbance Rejection Controller Design for PMSM Speed Servo System. Entropy, 23(3), 262. https://doi.org/10.3390/e23030262