Entangling Lattice-Trapped Bosons with a Free Impurity: Impact on Stationary and Dynamical Properties
Abstract
:1. Introduction
2. Setup and Hamiltonian
3. Variational Approach
4. Impact of Intercomponent Coupling on Ground State Properties
4.1. Fidelity for Quantifying the Impact of the Intercomponent Interaction
4.2. Entropy Measures for Quantifying the Degree of Correlations
4.2.1. Weakly Repulsive Interacting Majority Component
4.2.2. Moderately Repulsive Interacting Majority Component
4.2.3. Attractively Interacting Majority Component
4.3. Single- and Two-Particle Density Distributions
4.3.1. Weakly Repulsive Interacting Majority Component
4.3.2. Moderately Repulsive Interacting Majority Component
4.3.3. Attractively Interacting Majority Component
5. Quench Induced Tunneling Dynamics
6. Summary and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bloch, I.; Dalibard, J.; Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 2008, 80, 885. [Google Scholar] [CrossRef] [Green Version]
- Bloch, I. Probing and Controlling Strongly Correlated Quantum Many-Body Systems Using Ultracold Quantum Gases; Cambridge University Press: Cambridge, UK, 2017; p. 253. [Google Scholar]
- Fukuhara, T.; Sugawa, S.; Takasu, Y.; Takahashi, Y. All-optical formation of quantum degenerate mixtures. Phys. Rev. A 2009, 79, 021601. [Google Scholar] [CrossRef] [Green Version]
- Henderson, K.; Ryu, C.; MacCormick, C.; Boshier, M.G. Experimental demonstration of painting arbitrary and dynamic potentials for Bose–Einstein condensates. New J. Phys. 2009, 11, 043030. [Google Scholar] [CrossRef]
- Serwane, F.; Zürn, G.; Lompe, T.; Ottenstein, T.; Wenz, A.; Jochim, S. Deterministic preparation of a tunable few-fermion system. Science 2011, 332, 336–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmied, R.; Bancal, J.D.; Allard, B.; Fadel, M.; Scarani, V.; Treutlein, P.; Sangouard, N. Bell correlations in a Bose-Einstein condensate. Science 2016, 352, 441–444. [Google Scholar] [CrossRef] [Green Version]
- Chin, C.; Grimm, R.; Julienne, P.; Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 2010, 82, 1225. [Google Scholar] [CrossRef]
- Köhler, T.; Góral, K.; Julienne, P.S. Production of cold molecules via magnetically tunable Feshbach resonances. Rev. Mod. Phys. 2006, 78, 1311. [Google Scholar] [CrossRef] [Green Version]
- Mistakidis, S.I.; Katsimiga, G.C.; Kevrekidis, P.G.; Schmelcher, P. Correlation effects in the quench-induced phase separation dynamics of a two species ultracold quantum gas. New J. Phys. 2018, 20, 043052. [Google Scholar] [CrossRef]
- Pyzh, M.; Schmelcher, P. Phase separation of a Bose-Bose mixture: Impact of the trap and particle-number imbalance. Phys. Rev. A 2020, 102, 023305. [Google Scholar] [CrossRef]
- Petrov, D.S.; Astrakharchik, G.E. Ultradilute low-dimensional liquids. Phys. Rev. Lett. 2016, 117, 100401. [Google Scholar] [CrossRef] [Green Version]
- Parisi, L.; Giorgini, S. Quantum droplets in one-dimensional Bose mixtures: A quantum Monte-Carlo study. Phys. Rev. A 2020, 102, 023318. [Google Scholar] [CrossRef]
- Catani, J.; Lamporesi, G.; Naik, D.; Gring, M.; Inguscio, M.; Minardi, F.; Kantian, A.; Giamarchi, T. Quantum dynamics of impurities in a one-dimensional Bose gas. Phys. Rev. A 2012, 85, 023623. [Google Scholar] [CrossRef] [Green Version]
- Meinert, F.; Knap, M.; Kirilov, E.; Jag-Lauber, K.; Zvonarev, M.B.; Demler, E.; Nägerl, H.C. Bloch oscillations in the absence of a lattice. Science 2017, 356, 945–948. [Google Scholar] [CrossRef] [Green Version]
- Mistakidis, S.I.; Volosniev, A.G.; Zinner, N.T.; Schmelcher, P. Effective approach to impurity dynamics in one-dimensional trapped Bose gases. Phys. Rev. A 2019, 100, 013619. [Google Scholar] [CrossRef] [Green Version]
- Ardila, L.P.; Giorgini, S. Impurity in a Bose-Einstein condensate: Study of the attractive and repulsive branch using quantum Monte Carlo methods. Phys. Rev. A 2015, 92, 033612. [Google Scholar] [CrossRef] [Green Version]
- Grusdt, F.; Astrakharchik, G.E.; Demler, E. Bose polarons in ultracold atoms in one dimension: Beyond the Fröhlich paradigm. New J. Phys. 2017, 19, 103035. [Google Scholar] [CrossRef]
- Tajima, H.; Uchino, S. Many Fermi polarons at nonzero temperature. New J. Phys. 2018, 20, 073048. [Google Scholar] [CrossRef]
- Dehkharghani, A.S.; Volosniev, A.G.; Zinner, N.T. Coalescence of two impurities in a trapped one-dimensional bose gas. Phys. Rev. Lett. 2018, 121, 080405. [Google Scholar] [CrossRef] [Green Version]
- Mistakidis, S.I.; Volosniev, A.G.; Schmelcher, P. Induced correlations between impurities in a one-dimensional quenched Bose gas. Phys. Rev. Res. 2020, 2, 023154. [Google Scholar] [CrossRef]
- Takahashi, J.; Tajima, H.; Nakano, E.; Iida, K. Extracting non-local inter-polaron interactions from collisional dynamics. arXiv 2020, arXiv:2011.07911. [Google Scholar]
- Brauneis, F.; Hammer, H.W.; Lemeshko, M.; Volosniev, A.G. Impurities in a one-dimensional Bose gas: The flow equation approach. arXiv 2021, arXiv:2101.10958. [Google Scholar]
- Massignan, P.; Zaccanti, M.; Bruun, G.M. Polarons, dressed molecules and itinerant ferromagnetism in ultracold Fermi gases. Rep. Progr. Phys. 2014, 77, 034401. [Google Scholar] [CrossRef]
- Schmidt, R.; Knap, M.; Ivanov, D.A.; You, J.S.; Cetina, M.; Demler, E. Universal many-body response of heavy impurities coupled to a Fermi sea: A review of recent progress. Rep. Progr. Phys. 2018, 81, 024401. [Google Scholar] [CrossRef] [Green Version]
- Fukuhara, T.; Kantian, A.; Endres, M.; Cheneau, M.; Schauss, P.; Hild, S.; Bellem, D.; Schollw Ock, U.; Giamarchi, T.; Gross, C.; et al. Quantum dynamics of a mobile spin impurity. Nat. Phys. 2013, 9, 235–241. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.Z.; Ni, Y.; Robens, C.; Zwierlein, M.W. Bose polarons near quantum criticality. Science 2020, 368, 190–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scazza, F.; Valtolina, G.; Massignan, P.; Recati, A.; Amico, A.; Burchianti, A.; Fort, C.; Inguscio, M.; Zaccanti, M.; Roati, G. Repulsive Fermi polarons in a resonant mixture of ultracold Li 6 atoms. Phys. Rev. Lett. 2017, 118, 083602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jørgensen, N.B.; Wacker, L.; Skalmstang, K.T.; Parish, M.M.; Levinsen, J.; Christensen, R.S.; Bruun, G.M.; Arlt, J.J. Observation of attractive and repulsive polarons in a Bose-Einstein condensate. Phys. Rev. Lett. 2016, 117, 055302. [Google Scholar] [CrossRef] [Green Version]
- Cetina, M.; Jag, M.; Lous, R.S.; Fritsche, I.; Walraven, J.T.; Grimm, R.; Levinsen, J.; Parish, M.M.; Schmidt, R.; Knap, M.; et al. Ultrafast many-body interferometry of impurities coupled to a Fermi sea. Science 2016, 354, 96–99. [Google Scholar] [CrossRef] [Green Version]
- Wenz, A.; Zürn, G.; Murmann, S.; Brouzos, I.; Lompe, T.; Jochim, S. From few to many: Observing the formation of a Fermi sea one atom at a time. Science 2013, 342, 457–460. [Google Scholar] [CrossRef] [Green Version]
- Mistakidis, S.I.; Koutentakis, G.M.; Grusdt, F.; Sadeghpour, H.R.; Schmelcher, P. Radiofrequency spectroscopy of one-dimensional trapped Bose polarons: Crossover from the adiabatic to the diabatic regime. arXiv 2020, arXiv:2011.13756. [Google Scholar]
- Mistakidis, S.I.; Koutentakis, G.M.; Katsimiga, G.C.; Busch, T.; Schmelcher, P. Many-body quantum dynamics and induced correlations of Bose polarons. New J. Phys. 2020, 22, 043007. [Google Scholar] [CrossRef]
- Boudjemâa, A.; Guebli, N.; Sekmane, M.; Khlifa-Karfa, S. Breathing modes of repulsive polarons in Bose–Bose mixtures. J. Phys. Cond. Matt. 2020, 32, 415401. [Google Scholar] [CrossRef]
- Ardila, L.A.P.; Astrakharchik, G.E.; Giorgini, S. Strong coupling Bose polarons in a two-dimensional gas. Phys. Rev. Res. 2020, 2, 023405. [Google Scholar] [CrossRef]
- Camacho-Guardian, A.; Ardila, L.A.P.; Pohl, T.; Bruun, G.M. Bipolarons in a Bose-Einstein condensate. Phys. Rev. Lett. 2018, 121, 013401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukherjee, K.; Mistakidis, S.I.; Majumder, S.; Schmelcher, P. Induced interactions and quench dynamics of bosonic impurities immersed in a Fermi sea. Phys. Rev. A 2020, 102, 053317. [Google Scholar] [CrossRef]
- Bougas, G.; Mistakidis, S.I.; Schmelcher, P. Pattern formation of correlated impurities subjected to an impurity-medium interaction pulse. Phys. Rev. A 2021, 103, 023313. [Google Scholar] [CrossRef]
- Tajima, H.; Takahashi, J.; Nakano, E.; Iida, K. Collisional dynamics of polaronic clouds immersed in a Fermi sea. Phys. Rev. A 2020, 102, 051302. [Google Scholar] [CrossRef]
- Tonielli, F.; Chakraborty, N.; Grusdt, F.; Marino, J. Ramsey interferometry of non-Hermitian quantum impurities. Phys. Rev. Res. 2020, 2, 032003. [Google Scholar] [CrossRef]
- Mistakidis, S.I.; Grusdt, F.; Koutentakis, G.M.; Schmelcher, P. Dissipative correlated dynamics of a moving impurity immersed in a Bose–Einstein condensate. New J. Phys. 2019, 21, 103026. [Google Scholar] [CrossRef]
- Mukherjee, K.; Mistakidis, S.I.; Majumder, S.; Schmelcher, P. Pulse-and continuously driven many-body quantum dynamics of bosonic impurities in a Bose-Einstein condensate. Phys. Rev. A 2020, 101, 023615. [Google Scholar] [CrossRef] [Green Version]
- Theel, F.; Keiler, K.; Mistakidis, S.I.; Schmelcher, P. Many-body collisional dynamics of impurities injected into a double-well trapped Bose-Einstein condensate. arXiv 2020, arXiv:2009.12147. [Google Scholar]
- Mistakidis, S.I.; Katsimiga, G.C.; Koutentakis, G.M.; Busch, T.; Schmelcher, P. Pump-probe spectroscopy of Bose polarons: Dynamical formation and coherence. Phys. Rev. Res. 2020, 2, 033380. [Google Scholar] [CrossRef]
- Lausch, T.; Widera, A.; Fleischhauer, M. Prethermalization in the cooling dynamics of an impurity in a Bose-Einstein condensate. Phys. Rev. A 2018, 97, 023621. [Google Scholar] [CrossRef] [Green Version]
- Palzer, S.; Zipkes, C.; Sias, C.; Köhl, M. Quantum transport through a Tonks-Girardeau gas. Phys. Rev. Lett. 2009, 103, 150601. [Google Scholar] [CrossRef] [Green Version]
- Keiler, K.; Mistakidis, S.I.; Schmelcher, P. Doping a lattice-trapped bosonic species with impurities: From ground state properties to correlated tunneling dynamics. New J. Phys. 2020, 22, 083003. [Google Scholar] [CrossRef]
- Bohrdt, A.; Grusdt, F.; Knap, M. Dynamical formation of a magnetic polaron in a two-dimensional quantum antiferromagnet. New J. Phys. 2020, 22, 123023. [Google Scholar] [CrossRef]
- Cai, Z.; Wang, L.; Xie, X.; Wang, Y. Interaction-induced anomalous transport behavior in one-dimensional optical lattices. Phys. Rev. A 2010, 81, 043602. [Google Scholar] [CrossRef] [Green Version]
- Johnson, T.H.; Clark, S.R.; Bruderer, M.; Jaksch, D. Impurity transport through a strongly interacting bosonic quantum gas. Phys. Rev. A 2011, 84, 023617. [Google Scholar] [CrossRef] [Green Version]
- Theel, F.; Keiler, K.; Mistakidis, S.I.; Schmelcher, P. Entanglement-assisted tunneling dynamics of impurities in a double well immersed in a bath of lattice trapped bosons. New J. Phys. 2020, 22, 023027. [Google Scholar] [CrossRef]
- Keiler, K.; Schmelcher, P. State engineering of impurities in a lattice by coupling to a Bose gas. New J. Phys. 2018, 20, 103042. [Google Scholar] [CrossRef] [Green Version]
- Keiler, K.; Krönke, S.; Schmelcher, P. Correlation induced localization of lattice trapped bosons coupled to a Bose–Einstein condensate. New J. Phys. 2018, 20, 033030. [Google Scholar] [CrossRef]
- Keiler, K.; Schmelcher, P. Interaction-induced single-impurity tunneling in a binary mixture of trapped ultracold bosons. Phys. Rev. A 2019, 100, 043616. [Google Scholar] [CrossRef] [Green Version]
- Bruderer, M.; Bao, W.; Jaksch, D. Self-trapping of impurities in Bose-Einstein condensates: Strong attractive and repulsive coupling. Europhys. Lett. 2008, 82, 30004. [Google Scholar] [CrossRef] [Green Version]
- Yin, T.; Cocks, D.; Hofstetter, W. Polaronic effects in one-and two-band quantum systems. Phys. Rev. A 2015, 92, 063635. [Google Scholar] [CrossRef] [Green Version]
- Grusdt, F.; Shashi, A.; Abanin, D.; Demler, E. Bloch oscillations of bosonic lattice polarons. Phys. Rev. A 2014, 90, 063610. [Google Scholar] [CrossRef] [Green Version]
- Weber, C.; John, S.; Spethmann, N.; Meschede, D.; Widera, A. Single Cs atoms as collisional probes in a large Rb magneto-optical trap. Phys. Rev. A 2010, 82, 042722. [Google Scholar] [CrossRef] [Green Version]
- Will, S.; Best, T.; Braun, S.; Schneider, U.; Bloch, I. Coherent Interaction of a Single Fermion with a Small Bosonic Field. Phys. Rev. Lett. 2011, 106, 115305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tajima, H.; Takahashi, J.; Mistakidis, S.I.; Nakano, E.; Iida, K. Polaron problems in ultracold atoms: Role of the medium across different spatial dimensions. arXiv 2021, arXiv:2101.07643. [Google Scholar]
- Cao, L.; Bolsinger, V.; Mistakidis, S.; Koutentakis, G.; Krönke, S.; Schurer, J.; Schmelcher, P. A unified ab initio approach to the correlated quantum dynamics of ultracold fermionic and bosonic mixtures. J. Chem. Phys. 2017, 147, 044106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, L.; Krönke, S.; Vendrell, O.; Schmelcher, P. The multi-layer multi-configuration time-dependent Hartree method for bosons: Theory, implementation, and applications. J. Chem. Phys. 2013, 139, 134103. [Google Scholar] [CrossRef] [Green Version]
- Krönke, S.; Cao, L.; Vendrell, O.; Schmelcher, P. Non-equilibrium quantum dynamics of ultra-cold atomic mixtures: The multi-layer multi-configuration time-dependent Hartree method for bosons. New J. Phys. 2013, 15, 063018. [Google Scholar] [CrossRef]
- Mistakidis, S.I.; Katsimiga, G.C.; Koutentakis, G.M.; Busch, T.; Schmelcher, P. Quench dynamics and orthogonality catastrophe of Bose polarons. Phys. Rev. Lett. 2019, 122, 183001. [Google Scholar] [CrossRef] [Green Version]
- Pflanzer, A.C.; Zöllner, S.; Schmelcher, P. Material-barrier tunnelling in one-dimensional few-boson mixtures. J. Phys. B At. Mol. Opt. Phys. 2009, 42, 231002. [Google Scholar] [CrossRef]
- Myatt, C.J.; Burt, E.A.; Ghrist, R.W.; Cornell, E.A.; Wieman, C.E. Production of Two Overlapping Bose-Einstein Condensates by Sympathetic Cooling. Phys. Rev. Lett. 1997, 78, 586–589. [Google Scholar] [CrossRef]
- Hall, D.S.; Matthews, M.R.; Ensher, J.R.; Wieman, C.E.; Cornell, E.A. Dynamics of Component Separation in a Binary Mixture of Bose-Einstein Condensates. Phys. Rev. Lett. 1998, 81, 1539–1542. [Google Scholar] [CrossRef] [Green Version]
- Miesner, H.J.; Stamper-Kurn, D.M.; Stenger, J.; Inouye, S.; Chikkatur, A.P.; Ketterle, W. Observation of Metastable States in Spinor Bose-Einstein Condensates. Phys. Rev. Lett. 1999, 82, 2228–2231. [Google Scholar] [CrossRef] [Green Version]
- Maddaloni, P.; Modugno, M.; Fort, C.; Minardi, F.; Inguscio, M. Collective Oscillations of Two Colliding Bose-Einstein Condensates. Phys. Rev. Lett. 2000, 85, 2413–2417. [Google Scholar] [CrossRef] [Green Version]
- Mertes, K.M.; Merrill, J.W.; Carretero-González, R.; Frantzeskakis, D.J.; Kevrekidis, P.G.; Hall, D.S. Nonequilibrium Dynamics and Superfluid Ring Excitations in Binary Bose-Einstein Condensates. Phys. Rev. Lett. 2007, 99, 190402. [Google Scholar] [CrossRef] [Green Version]
- Becker, C.; Stellmer, S.; Soltan-Panahi, P.; Dörscher, S.; Baumert, M.; Richter, E.M.; Kronjäger, J.; Bongs, K.; Sengstock, K. Oscillations and interactions of dark and dark–bright solitons in Bose–Einstein condensates. Nat. Phys. 2008, 4, 496–501. [Google Scholar] [CrossRef]
- Lode, A.U.J.; Lévêque, C.; Madsen, L.B.; Streltsov, A.I.; Alon, O.E. Colloquium: Multiconfigurational time-dependent Hartree approaches for indistinguishable particles. Rev. Mod. Phys. 2020, 92, 011001. [Google Scholar] [CrossRef] [Green Version]
- Alon, O.E.; Beinke, R.; Cederbaum, L.S. Many-body effects in the excitations and dynamics of trapped Bose-Einstein condensates. arXiv 2021, arXiv:2101.11615. [Google Scholar]
- Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009, 81, 865. [Google Scholar] [CrossRef] [Green Version]
- Light, J.; Hamilton, I.; Lill, J. Generalized discrete variable approximation in quantum mechanics. J. Chem. Phys. 1985, 82, 1400–1409. [Google Scholar] [CrossRef]
- Raab, A. On the Dirac–Frenkel/McLachlan variational principle. Chem. Phys. Lett. 2000, 319, 674–678. [Google Scholar] [CrossRef]
- Jozsa, R. Fidelity for mixed quantum states. J. Mod. Opt. 1994, 41, 2315–2323. [Google Scholar] [CrossRef]
- Wang, W.; Penna, V.; Capogrosso-Sansone, B. Inter-species entanglement of Bose–Bose mixtures trapped in optical lattices. New J. Phys. 2016, 18, 063002. [Google Scholar] [CrossRef] [Green Version]
- Bengtsson, I.; Życzkowski, K. Geometry of Quantum States: An Introduction to Quantum Entanglement; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Roy, R.; Gammal, A.; Tsatsos, M.C.; Chatterjee, B.; Chakrabarti, B.; Lode, A.U.J. Phases, many-body entropy measures, and coherence of interacting bosons in optical lattices. Phys. Rev. A 2018, 97, 043625. [Google Scholar] [CrossRef] [Green Version]
- Bera, S.; Haldar, S.K.; Chakrabarti, B.; Trombettoni, A.; Kota, V.K.B. Relaxation of Shannon entropy for trapped interacting bosons with dipolar interactions. Eur. Phys. J. D 2020, 74, 1–10. [Google Scholar] [CrossRef]
- Penna, V.; Richaud, A. The phase-separation mechanism of a binary mixture in a ring trimer. Sci. Rep. 2018, 8, 10242. [Google Scholar] [CrossRef]
- Richaud, A.; Penna, V. Pathway toward the formation of supermixed states in ultracold boson mixtures loaded in ring lattices. Phys. Rev. A 2019, 100, 013609. [Google Scholar] [CrossRef] [Green Version]
- Bakr, W.S.; Peng, A.; Tai, M.E.; Ma, R.; Simon, J.; Gillen, J.I.; Fölling, S.; Pollet, L.; Greiner, M. Probing the superfluid-to-Mott insulator transition at the single-atom level. Science 2010, 329, 547–550. [Google Scholar] [CrossRef] [Green Version]
- Sherson, J.F.; Weitenberg, C.; Endres, M.; Cheneau, M.; Bloch, I.; Kuhr, S. Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 2010, 467, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Omran, A.; Boll, M.; Hilker, T.A.; Kleinlein, K.; Salomon, G.; Bloch, I.; Gross, C. Microscopic Observation of Pauli Blocking in Degenerate Fermionic Lattice Gases. Phys. Rev. Lett. 2015, 115, 263001. [Google Scholar] [CrossRef] [PubMed]
- Hohmann, M.; Kindermann, F.; Lausch, T.; Mayer, D.; Schmidt, F.; Lutz, E.; Widera, A. Individual Tracer Atoms in an Ultracold Dilute Gas. Phys. Rev. Lett. 2017, 118, 263401. [Google Scholar] [CrossRef] [Green Version]
- Pyzh, M.; Krönke, S.; Weitenberg, C.; Schmelcher, P. Quantum point spread function for imaging trapped few-body systems with a quantum gas microscope. New J. Phys. 2019, 21, 053013. [Google Scholar] [CrossRef]
- Lingua, F.; Capogrosso-Sansone, B.; Minardi, F.; Penna, V. Thermometry of bosonic mixtures in Optical Lattices via Demixing. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Suthar, K.; Angom, D. Characteristic temperature for the immiscible-miscible transition of binary condensates in optical lattices. Phys. Rev. A 2017, 95, 043602. [Google Scholar] [CrossRef] [Green Version]
- Suthar, K.; Angom, D. Optical-lattice-influenced geometry of quasi-two-dimensional binary condensates and quasiparticle spectra. Phys. Rev. A 2016, 93, 063608. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pyzh, M.; Keiler, K.; Mistakidis, S.I.; Schmelcher, P. Entangling Lattice-Trapped Bosons with a Free Impurity: Impact on Stationary and Dynamical Properties. Entropy 2021, 23, 290. https://doi.org/10.3390/e23030290
Pyzh M, Keiler K, Mistakidis SI, Schmelcher P. Entangling Lattice-Trapped Bosons with a Free Impurity: Impact on Stationary and Dynamical Properties. Entropy. 2021; 23(3):290. https://doi.org/10.3390/e23030290
Chicago/Turabian StylePyzh, Maxim, Kevin Keiler, Simeon I. Mistakidis, and Peter Schmelcher. 2021. "Entangling Lattice-Trapped Bosons with a Free Impurity: Impact on Stationary and Dynamical Properties" Entropy 23, no. 3: 290. https://doi.org/10.3390/e23030290
APA StylePyzh, M., Keiler, K., Mistakidis, S. I., & Schmelcher, P. (2021). Entangling Lattice-Trapped Bosons with a Free Impurity: Impact on Stationary and Dynamical Properties. Entropy, 23(3), 290. https://doi.org/10.3390/e23030290