1. Introduction
This paper is motivated by Schrödinger’s book [
1], in which he considered one of the most fundamental and intriguing problems of modern science: “What is life?” This was his attempt to proceed towards clarification of this problem on the basis of quantum physics and thermodynamics. Of course, from the purely biological viewpoint this attempt to resolve the basic problem of biology in the purely physical framework may be considered as very naive. Schrödinger by himself pointed out the casual nature of his approach. At the same the treatment of “What is life?” question in the purely physical framework can have its advantages; in particular, clarifying and cleaning the biological details may enlighten a few basic issues related to this question.
1.1. Order-Stability as a Distinguishing Feature of Biosystems
Schrödinger tried to find analogies between physical and biological systems’ functioning. And he emphasized the amazing ability for order preservation as one of the basic features of functioning of biological systems. He compared this feature with the thermodynamics of physical systems governed by the Second Law of Thermodynamics:
“What is the characteristic feature of life? When is a piece of matter said to be alive? It is alive when it goes on ‘doing something’, moving, exchanging material with its environment, and so forth, and that for a much longer period than we would expect of an inanimate piece of matter to ‘keep going’ under similar circumstances.”
Entropy is the basic measure of disorder in physics and information theory. To be stable, a biosystem should be able to control entropy and prevent its essential increase. (It is clear that entropy can fluctuate.) Schrödinger views the heuristic mechanism of entropy-stabilization through its emission from a system
S to the environment
that is, through an increase of disorder in
Such a system’s behaviour does not match the laws of physics [
1]: “When a system that is not alive is isolated or placed in a uniform environment, all motion usually comes to a standstill…” Schrödinger continues to speculate and suggests that
S absorbs a flow of “negative entropy” from
From the viewpoint of conventional physics, this notion is ambiguous and he points out that the mystery of life cannot be explained without the discovery of new physical laws.
1.2. Information Biology and Physics
The book [
1] stimulated the creation of a new area of science which is nowadays known as information biology by emphasizing that order stability or even its improvement for the alive-state cannot be modelled solely in terms of the energy and matter flows between a biosystem
S and the environment
Biosystems should be viewed as
open systems interacting with the physical and information components of the surrounding environment. Since the 1970s, information’s role was highlighted in biology, for example, the well known paper of Johnson [
2] characterizing information theory as a “general calculus for biology”. As was pointed by Gatenby and Frieden [
3], “it is clear that life without matter and energy is impossible, Johnson’s manuscript emphasizes that life without information is likewise impossible. Since the article, remarkable progress has been made towards understanding the informational fundament for life…” This information reconstruction of biology was closely related to the similar process in physics, starting with Wheeler’s
“It from bit” [
4] and to the recent
quantum information revolution. The latter has led to an information reconsideration of quantum foundations [
5,
6,
7,
8,
9,
10,
11]. Therefore, quantum information and open quantum systems [
12] can contribute to the modelling of information interactions of the biosystem
S and the environment
(see monograph [
13]).
1.3. Quantum-Like Models
This is a good place to make the remark on genuine quantum and
quantum-like modeling in biology. The first one is known as quantum biophysics and it describes genuine quantum processes in biosystems (see [
14] for review). It operates on micro-scales, see, for example, the series of works [
15,
16,
17,
18,
19,
20,
21,
22] on modeling cognition from genuine quantum physical processes in the brain. Schrödinger’s book was the first step in this direction. (Maybe the global aim of quantum biophysics is too ambitious—to reduce biological functions, as say psychological functions, to quantum physical processes. The difference in scales, for space, time and temperature, is too big.).
In quantum-like modeling, a biosystem is characterized from the purely information processing viewpoint, that is, its size and other scales, say of temperature, are not important. As was shown in numerous studies (mainly in cognition, psychology and decision making, but even microbiology) [
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70], in some contexts biosystems process information in accordance with the quantum laws. Thus, they can be considered as quantum-like (although not genuinely quantum). In this paper, we proceed in the quantum-like framework. It covers even formal information processing in genuine quantum systems, that is, so to say software. Of course, quantum physical hardware differs crucially from hardware of macroscopic quantum-like information processors.
One may point to differences in the classical and quantum probabilistic descriptions [
71,
72,
73] and the applicability of the quantum probability calculus and, hence, the quantum information theory to macroscopic biosystems. However, interrelations between these two descriptions is a complex problem of quantum foundations which we are not able to discuss in this paper (see, e.g., [
74,
75,
76]). The main distinguishing feature of quantum(-like) information processing is operation with states’ superpositions. They represent unresolved uncertainty. This uncertainty is not reduced to classical probabilistic uncertainty, because incompatible variables cannot be realized on the same probability space. So, the same quantum state carries uncertainties for numerous incompatible variables. Such information processing saves a lot of computational resources. A biosystem (or social, or AI system, see
Section 1.5), processes its state and then at each time it can select the concrete representation corresponding to some variable.
1.4. Order-Stability in a Biosystem Compounded of a Few Subsystems from a Quantum Information Approach
We model the order stability inside of a complex biosystem S that is composed of a few subsystems We study the following problem:
Can a compound system preserve the “global order” in itself, in spite of the increase of local disorder—in its subsystems?
In the mathematical framework, this question is formulated as follows:
Can preserve its entropy while some of its subsystems increase (may be essentially) their entropies?
We show that within quantum information processing the answer is positive. However, within the classical information processing the increase of subsystem’s entropy automatically implies the increase of compound system’s entropy.
The key point is that in quantum theory the significant role is played by entanglement (cf. [
67]), nonclassical correlations between the states of subsystems
of
In the absence of entanglement, entropy behaves classically.
We explore the following feature of quantum channels (dynamical maps describing the state evolution)—they can transfer non-entangled states into entangled. We present the scheme of the concrete quantum channels construction preserving the global entropy and increasing all local entropies. This feature of quantum channels is well known and widely used in quantum information theory and its applications to quantum computing. The novelty is in its exploring for modeling order-stability in biosystems.
We point to the model of entanglement production as an action realized by a special operator over given disentangled states which was proposed in articles [
77,
78]. This approach generalizes the standard quantum information scheme based on quantum channels and it is especially interesting for applications to biology, social science, management, and artificial intelligence. In such applications, one cannot exclude that information processing is based on more general quantum operators than quantum channels.
1.5. Other Applications: Social Science, Management, Artificial Intelligence, Information Retrieval
Our quantum-like framework and the result on entropy-stability can be applied not only to biosystems compounded of subsystems, say organs compounded of cells or organisms compounded of organs, or interacting neural networks in the brain, but also to social science and management (see the paper of Lawless [
65] who also mentioned a coupling with Schrödinger’s book [
1]), and artificial intelligence; in particular, to modeling behavior of future AI-systems which will be equipped with quantum processors—quantum computers, simulators, memory devices, internet based networks endowed with quantum cryptography. On the other hand, already nowadays the quantum-like ideology can stimulate design and development of Artificial Intelligence (AI)-systems equipped with classical processors, but exploring the quantum information processing. Some steps in this direction were done within the recent studies on quantum(-like) information retrieval (see, e.g., [
79,
80,
81]): Algorithms based on the complex Hilbert state representation of information, but driven on classical computers, demonstrate superiority w.r.t. some parameters comparing with the traditional (“classical”) algorithms.
One of the distinguishing features of quantum-like modeling is that, for its output, the physical basis of information processors is not important. So, we can apply results of such modeling both to genuine quantum and macroscopic classical information processors and AI-systems.
For AI-systems, the main result of this paper is that systems equiped with quantum(-like) software are more stable than pure classical AI-systems. In classical AI, generation of disorder in any sybsystem has impact to the whole AI-system In quantum AI, entanglement between states of subsystems can prevent generation of global disorder from the local destabilization.
In social systems using quantum-like information processing, the global stability can be preserved, in spite of local destabilization. The crucial point is information processing in the form of superpositions, that is, without complete resolution of uncertainties.
1.6. The Problem of Self-Measurement
In
Section 7, we briefly discuss the problem of self-measurements performed by biosystems within quantum measurement theory and more concretely the indirect measurement scheme [
82]. Such self-measurements destroy entanglement and generate classical probabilistic mixtures.
2. Classical Entropy
2.1. Micro and Macrostates
Suppose that at some instant of time, a system S can be in one of states labeled by symbols We call them microstates of set Let be a probability distribution on , that is, where We call a macrostate, or simply state.
For state
entropy is defined as
In bio applications (see
Section 2.4), this quantity can be interpreted in the following way. Suppose that mcirostates of
S can be “scanned” by other biosystems. Thus the microstate dynamics can be treated as signaling to other biosystems. For simplicity, we consider the discrete time dynamics; it generates the sequence of symbols
where
is the time parameter of the microstate-dynamics. Mathematically this dynamics (signaling) is modeled as a random process. Under some conditions, the probability
can be interpreted as the frequency probability - the limiting frequency of occurrence of the symbol
x in the process’s trajectory
where
is the number of occurrences of
x in the sequence (2).
If system S is able to preserve its microstate, say one concrete then and and entropy (The microstate can fluctuate visiting x-states different from but not so often, as In contrast, if the microstate of system S fluctuates covering uniformly then and entropy Thus entropy can be used as the measure of state-stability, order preservation in The increase of entropy implies the decrease of information, the diminishing of order, and death, or at least decay. On the contrary, the decrease of entropy means the increase of information, the rise of order, and life or at least the improvement of self-organization.
2.2. Compound Systems
We are interested in compound systems
The (statistical) states of
S are represented by probability distributions
where
The entropy of
S is given by
For a compound system, the states of its subsystems are given by the marginal probability distributions:
and the corresponding entropies are
We can consider two bio-systems, say two cells, that communicate with each other: “feels” x-states of and vice verse: cell-signaling. Systems can represent as well neural networks in the brain, social systems, or AI-systems.
If
(the direct product of probability measures), that is, probability
then
Generally, additivity is violated and only the
subadditivity inequality holds:
In the quantum case, the situation is the same. We now point out the specific classical constraint between the entropy of a compound system and subsystems’ entropies:
Quantum information processing relaxes this constraint; in such processing the global order in a compound biosystem S can be preserved, in spite generating of local disorders in its subsystems
2.3. Stability of Global Order Is Possible Only with Stable Local Orders
Consider a model of signaling between biosystems based on recognition not of microstates, but macrostates. So, and communicate by recognition of the macrostates of each other (the probability distributions). There are two time scales, the fine time scale parameter and the rough time scale parameter t corresponding to the micro and macro state dynamics, respectively. The -scale dynamics determines macrostates evolving with the t-scale dynamics.
Suppose that state of
S evolves in accordance with some dynamics
It generates dynamics of subsystems’ states
Suppose that initially
S had very low entropy,
and suppose that it does not increase (at least essentially) with time, that is,
Inequalities (
8), (
7) trivially imply inequality:
Hence, stability of entropy is possible only under assumption of stability of the entropy of each subsystem, In other words, preserving of global order is possible only under the condition of local orders preserving—in all subsystems.
2.4. Classical Information Processing in Biosystem
Now consider a complex biosystem containing a large ensemble of identical “elementary biological subsystems”, say cells; for example, an organism S with N cells; each of them can be in one of the microstates. Probability can be interpreted as the statistical (ensemble) probability where is the number of cells in the state This leads to the statistical interpretation of entropy. (The ergodicity assumption gives the possibility of identification of the frequency probabilities with the statistical (ensemble) probabilities.).
Let system be a compound biosystem such that each contains a large number of “elementary biological subsystems”, say cells. Then, at each instance of time the macrostates of S and can be determined statistically. The previous considerations on their entropies are applicable even with the statistical interpretation of probabilities.
We have presented two different schemes for determination and recognitions of macrostates which are related to two different types of signaling, information exchange between biosystems, and
frequency (temporal),
statistical (ensemble).
In temporal framework, monitors the microstate of during some interval at the fine time scale and after each such time interval updates information about the macrostate of At the rough time scale this update is treated as the instantaneous change of the macrostate; or in the language of infinitesimals—the state determination -interval is infinitesimal w.r.t. to the rough scale and, is the result of the update of the state
In the ensemble framework, updates the microstate of via determination of intensity of realizations of the microstates of Here the probability distribution can be interpreted as a field, the probability field. Of course, determination of this field of probability can neither be done instantaneously. The previous two scale scheme should be applied.
Generalization of these two interpretation-schemes to the quantum case is not straightforward.
3. Quantum Entropy
3.1. A Few Words about the Quantum Formalism
Denote by a complex Hilbert space endowed with the scalar product For simplicity, we assume that it is finite dimensional. The space of density operators is denoted by The space of all linear operators in is denoted by the symbol In turn, this is the complex Hilbert space with the scalar product, We shall also consider linear operators acting in They are called superoperators.
A pure quantum state is represented by a vector that is normalized to 1, that is, It can be represented as the density operator this is the orthogonal projector on the vector States which are not pure are called mixed.
3.2. Features of von Neumann Entropy
The von Neumann entropy is defined as
where
is a density operator.
There exists an orthonormal basis
consisting of eigenvectors of
that is,
(where
and
In this basis, the matrix of the operator
has the form
hence
However, the von Neumann entropy has the classical form, but only w.r.t. this to special basis.
We present three basic properties of the von Neumann entropy.
if and only if is a pure quantum state, that is,
For a unitary operator
The maximum of entropy is approached on the state and where N is the dimension of the state space.
It is natural to call the state of maximal disorder.
3.3. Information Processing in Classical vs. Genuine Quantum and Quantum-Like Bio and AI Systems
Starting with Formula (
11), one can try to proceed along the classical interpretational scheme. To consider vectors
as microstates a system
and the density operator
as the macrostate of
the operator form of representation of the probability distribution
However, another density operator has different basis and different set of microstates. One can try to overcome this problem by declaring the micro-state space as the unit sphere
of Hilbert space
Then each “macrostate” given by a density operator determines the probability distribution on the set of its basis states. One of the problems of such an approach is that, if some eigenvalues of
are degenerate, then the set of microstates is not not uniquely defined. As the most striking example, take the state
where
Then any basis in
can be considered as the set of its microstates and this operator
determines infinitely many different probability distributions on
And some of them are mutually-singular, from measure-theoretic viewpoint. In fact, the situation is even more indefinite. For a density operator
we can consider general decompositions of the form:
where
and
is any set of pure states (pretending to be microstates). Then the probability distribution
on the subset
of sphere
can also be considered as a macrostate represented by operator
It seems that the classical picture of microstate–macrostate measure-theoretic interrelation is not applicable (at least straightforwardly) to the quantum case.
For the moment, we proceed with the formal mathematical model in which biosystems’ states are given by density operators. This approach matches perfectly the genuine quantum biophysics [
14] and our study can be considered as justification of order stability in compound quantum biophysical systems, including stability of mental processing based on the “quantum brain model” in the spirit of papers [
15,
16,
17,
18,
19,
20,
21,
22]. The same can be said about the genuine quantum artificial intelligence based on quantum computers and simulators. However, our desire is to apply the order-stability result of this paper to quantum-like macroscopic biosystems. Some steps in this direction were done in works [
63,
83,
84]. In the latter, the quantum-like information processing in the brain is generated via superposition representation of action potentials in neurons. This representation can be considered as qubit digitization of continuous action potentials and linear quantum(-like) dynamics as linearization of nonlinear classical electrochemical dynamics in neural networks.
In modeling order-stability in the quantum-like AI-devices, we can proceed with the formal mathematical representation of states by density operators which is realized on classical computing devices.
3.4. States of a Compound System and Its Subsystems, Entanglement
Let
be a compound system represented in Hilbert space
and let
The states of its subsystems are calculated as the partial traces of
:
Consider now a pure state of
S that is factorisable w.r.t. the tensor product structure, that is,
States which are not represented in this form are called
entangled. Entangled states play the crucial role in quantum information theory. In particular, this is the most important resource of quantum computations. They represent the correlations between subsystems of a quantum system. These correlations are nonclassical, in the sense that they cannot be adequately described by the classical probability, the Kolmogorov measure-theoretic axiomatics [
71].
The definition of entanglement can be generalized to mixed states. A state
is called separable if it can be represented in the form:
where
A compound state that cannot be represented in this form is called entangled. However, in this paper we shall consider only entanglement of pure states.
If the state
is factorisable, that is,
then
cf. (
6). Generally, as in the classical case (see (
7)), we have only subadditivity
However, in contrast to the classical case, it can happen that
cf. (
8). We shall explore this distinguishing feature of the quantum information measure of disorder.
Consider now the pure state where The states of the systems are pure if and only if is separable. Thus, for an entangled state the states are always mixed states.
This fact is important for our further study. It implies that, for an entangled pure state, the entropies of subsystem’s states because is not pure.
3.5. Compound Systems; Quantum Channels
Consider evolution of the state of the compound system
and the corresponding evolution of the states of
In the framework of open quantum systems theory, for each a state’s evolution of S is represented by a quantum channel—trace-preserving completely positive map (superoperator) acting in the space
Each subsystem of the compund system S can be considered as an open quantum system. In the case of the isolated system system plays the role of the environment of system and vice verse. If S is not isolated, the environment of includes and the environment of of
4. Stability of Global Order, in Spite of the Increase of Local Disorder
We are interested in the condition of order-stability in the compound system S in the situation of disorder-increasing in its subsystems Suppose that initially all entropies were very small Suppose now that subsystems’ entropies started to increase and in the process of evolution they can increase essentially. Can preserve its value (or increase only slightly)?
In this note, we consider the case of factorizable pure initial state of the compound system that is,
The simplest model of such behavior is based on the unitary evolution of that is, one parameteric group of unitary operators In this case, Such dynamics transfer pure states into pure states. Hence, If corresponds to a separable pure state, then as well.
If the quantum channel transfers a separable state into an entangled state, then are mixed states and, hence, they have positive entropy. Thus, our desire is to construct a unitary evolution operator that can transfer separable states into entangled states. It is well-known that such operators exist and they are widely used in quantum computations. For readers convenience (and especially by taking into account that this issue is directed to experts in cognition, psychology, and decision making and not in quantum information theory), we present the well known examples of such operators for state spaces of an arbitrary (finite) dimension. These operators are explicitly expressed through orthonormal bases in Hilbert spaces and an entropy increase can be calculated explicitly.
5. Complex Systems
A biosystem
S is typically composed of a large number of subsystems
(say genes, proteins, cells, organs, neural networks). Let subsystem
be represented in Hilbert space
The compound system
S is represented in the tensor product
For quantum state
states of the subsystems are given by partial traces
Let
be a quantum channel describing the dynamics of the compound state,
then the states of subsystems evolves as
For the fixed subsystem
the system
plays the role of its environment (in the case of isolated
We are interested in generalization of condition (
17) for
However, even in the case
considered in this paper calculations are long. We do not want to overshadow the main idea of compound-stability by even longer calculations. Although calculations for an arbitrary
M are more complicated, but it is clear that desired quantum channels can be constructed, especially for spaces of the dimension
for
M qubit spaces.
6. Quantum Channel Preserving Compound System’s Entropy, in Spite of Increasing of Its Subsystems’ Entropies
The constructions of the desired quantum channel for subsystem’s state spaces of dimensions and are different. In the latter case, the expressions for the von Neumann entropies of the subsystems contain the factor Therefore, we consider these cases separately.
6.1. Two Subsystems with Qubit State Spaces
Let
and
be
and
be orthonormal bases in
. We define a completely positive channel
from
to
by
where
V is a linear map from
to
given by
We remark that the operator
V is unitary (see, e.g., [
85]). Thus this channel is noiseless—it is given by the unitary dynamics.
Let
be an initial compound state on
of the form:
We remark that this is the density operator corresponding to a
pure state and the von Neumann entropy of
equals zero:
We point out that the pure state under consideration is separable (non-entangled) and hence the two marginal states of
are given by density operators corresponding to pure states:
The von Neumann entropy of two marginal states
and
are equal to zero:
The final compound state
transmitted through the CP channel is
We emphasize that this is the density operator corresponding to an entangled pure state.
The entropy of transformed state
coincides with the entropy of the initial state:
The two marginal states of
are
The von Neumann entropy of two marginal states
and
are
Thus the entropies of both subsystems increased for -amount, but the entropy of S preserves its zero value.
6.2. Two Subsystems with N-dimensional State Spaces
We expand the above setting to compound systems ().
Let
and
be
and
be orthonormal bases in
. We define a completely positive channel
from
to
by
where
V is a linear map from
to
given by
where
The operator
V is unitarity (see, e.g., [
85]). Hence, this channel is noiseless.
Let
be an initial compound state on
denoted by
One finds the von Neumann entropy of
such that
The two marginal states of
are
The von Neumann entropy of the two marginal states
and
are
The final compound state
transmitted through the CP channel is
We also have the von Neumann entropy of
is
The two marginal states of
are
The von Neumann entropy of the two marginal states
and
are
Consider the above general formulas for the case
Let
be an initial compound state on
denoted by
One finds the von Neumann entropy of
such that
The two marginal states of
are
The von Neumann entropy of the two marginal states
and
are
The final compound state
transmitted through the CP channel is
We also have the von Neumann entropy of
is
The two marginal states of
are
The von Neumann entropy of two marginal states
and
are
7. Quantum Measurement Theory: Self-Observations in Biosystems
Up to this section, our presentation was done without even mentioning the cornerstone of quantum mechanics—quantum measurement theory. In the latter, the crucial role is played by interaction between a system and a measurement apparatus By the Copenhagen interpretation outputs of quantum measurements are not properties of a system, but outputs of the complex process of interaction. Properties of a system are inapproachable directly; they are reflected in outputs of the pointer of It is important to separate system from measurement apparatus This separation is the delicate point of quantum measurement theory. And the situation is even more airy for self-observations performed by biosystems. Who observes whom?
We suggest resolving the issue of self-observations via straightforward application of the methodology of quantum mechanics. Subsystems of a biosystem S (at least some of them) can perform measurements on other subsystems. In the simplest case, and say subsystem performs observation on subsystem that is, plays the role of a measurement apparatus.
The most adequate description of such processes can be given within the indirect measurement scheme going back to von Neumann [
86] (see also Ozawa [
82] for modern formalization and coupling with theory of quantum instruments).
8. The Indirect Measurement Scheme
The indirect measurement scheme can be represented as the block of following interrelated components:
the states of the systems and the apparatus they are represented in complex Hilbert spaces and respectively;
the unitary operator U representing the interaction-dynamics for the compound system
the meter observable giving outputs of the pointer of the apparatus
It is assumed that the compound system
is isolated. The dynamics of pure states of the compound system is described by the Schrödinger equation:
where
H is it Hamiltonian of
and
is the unitary operator
And Hamiltonian
H has the form:
where
are Hamiltonians of
and
respectively, and
is Hamiltonian of interaction between systems
and
Suppose that we want to measure an observable on the system
, which is represented by Hermitian operator
acting in system’s state space
The
indirect measurement model for measurement of the
A-observable was introduced by Ozawa in [
82] as a “(general) measuring process”; this is a quadruple
consisting of a Hilbert space
a density operator
a unitary operator
U on the tensor product of the state spaces of
and
and a Hermitian operator
on
.
Here, represents the states of the apparatus M, U describes the time-evolution of system , describes the initial state of the apparatus M before the start of measurement, and the Hermitian operator is the meter observable of the apparatus M (say the pointer of This operator represents indirectly outcomes of an observable A for the system
The probability distribution
in the system state
is given by
where
is the spectral projection of
for the eigenvalue
We reall that operator
is Hermitian. In the finite dimensional case, it can be represented in the form:
where
is the set of its eigenvalues and
is the projector on the subspace of eigenvectors corresponding to eigenvalue
The change of the state
of the system
caused by the measurement for the outcome
is represented with the aid of the map
in the space of density operators defined as
where
is the partial trace over
We remark that the map
is a
quantum instrument [
82] (see [
69] for simple and brief introduction to theory of quantum instrument theory).
8.1. Biosystems
Consider now a biosystem
S that is compound of two subsystems
and
In the above measurement scheme, we set
and
the unitary operator
U determines the quantum channel
If the initial density operators correspond to pure states, then, as we have seen, the unitary evolution of the state of
S can generate the density operator corresponding to an entangled pure state expressing the special character of correlations between the states of subsystems
and
However, quantum instrument
generates a mixed state, that is, measurement on subsystem
perfromed by subsystem
destroys special quantum-information correlations inside
The state of
S is given by
This is the state resulting from self-observation in
Generally, S can be composed of a large number m of subsystems They all can perform observations on each other. Each such observation interrupts the unitary evolution of As model examples, we can consider cell-signaling and processing of information in the brain.
8.2. Consciousness
In the brain, there is an information system which is specialized on brain’s self-observations. We can call it consciousness, denote it by the symbol (We repeat that systems under consideration are information systems. So, C need not be identified with the special spatial area of the brain. It can spatially distributed over different areas of the brain.) It is a subsystem of the “information brain”, that is, compound system S of all information processors in the physical brain; C contains numerous measurement apparatuses which specialized on observations on the states of various subsystems of
9. Concluding Discussion
Here we present a new approach to the problem of order-stability in biosystems formulated by Schrödinger in 1944 [
1]. This approach is based on the quantum-like paradigm realized in the framework of the open quantum systems theory. The following particular problem is studied:
preservation of order-stability by a biosystem S as a compound of subsystems performing some biological functions generating disorder-increasing. In the modelling, we explored the features of quantum information processing, especially the constancy of an isolated quantum information system entropy and the possibility to generate entangled states. The quantum-like model is purely informational, that is, biosystems are considered as information processors; for each subsystem
the rest of the compound system
S is treated as the
information environment. The order-stability has the meaning of stability of information processing in
Thus, this paper is a part of the information approach to physics and biology, from Wheeler’s
“It from bit” [
4] to the recent
information interpretation of quantum theory [
5,
6,
7,
8,
9,
10,
11] and Johnson’s emphasize that life without information processing is impossible [
2]. Once again, we stress that this approach is not rigidly coupled to the micro-world, but it supports strongly
the quantum-like paradigm - context sensitive systems, for example, biosystems can process information in accordance with the laws of quantum information theory.
In this paper, we considered the simplest situation of an isolated compound biosystem The next step is modeling order stability of the quantum information state of a compound open system S interacting with the information environment Its state dynamics is non-unitary. In such a model, disorder in the biosystem S is coming both from outside, namely from the information environment and from inside, that is to say, the subsystems of
The phenomenon of life is not reduced to order stability. However, even consistent modelling of information exchange stability in a complex biosystem is a step towards clarification of this phenomenon. The authors hope that this paper matches with Schrödinger vision [
1] of information processes in biosystems (within a modern quantum information representation).
We also discussed the problem of self-observations in biosystems within the indirect measurement scheme of quantum observations. This is the complex problem and in this paper we restricted our considerations to the brief discussion. We plan to turn to this problem in one of further publications.
The result of this paper on order stability in the whole system, while order decreases in its subsystems, is also applicable to social and AI-systems processing information in accordance with the quantum theory.
We can distinguish two types of AI-systems:
Systems equipped with genuine quantum information processing devices, say quantum computers or simulators.
Systems equipped with classical information processing devices, say classical digital or analog computers, realizing quantum(-like) information processing.
Personally I do not share the generally high expectation for successful realization of genuine quantum physical computing project, especially hopes that such quantum devices can be useful for AI-systems, say robots. I think that quantum information processing based on classical computational devices has better perspectives. But, since in science it is always difficult to make prognoses for future development, both types of AI-systems, genuine quantum and quantum-like, have to be studied. In future, the output of this paper may become useful for modeling behavior of collectives composed of quantum and quantum-like robots and other AI-systems.
However, the main impact of this paper is in clarification of order stability in biosystems as a consequence of quantum(-like) information processing. We hope that this is a step (of course, a little step) towards clarification of phenomenon of life.