Tavis–Cummings Model with Moving Atoms
Abstract
:1. Introduction
2. Physical Model and System Dynamics
3. Quantum Quantifiers and Main Results
3.1. Qubits–Field Entanglement and Qubit–Qubit Entanglement
3.2. Photon Statistics
3.3. Effect of Qubit–Qubit Interaction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jaynes, E.T.; Cummings, F.W. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 1963, 51, 89. [Google Scholar] [CrossRef] [Green Version]
- Paul, H. Induzierte emission bei starker einstrahlung. Ann. Phys. (Leipzig) 1963, 11, 411. [Google Scholar] [CrossRef]
- Meschede, D.; Walther, H.; Müller, G. One-Atom Maser. Phys. Rev. Lett. 1985, 54, 551. [Google Scholar] [CrossRef] [PubMed]
- Haroche, S.; Raimond, J.M. Radiative Properties of Rydberg States in Resonant Cavities. Adv. At. Mol. Phys. 1985, 20, 347. [Google Scholar]
- Rempe, G.; Walther, H.; Klein, N. Observation of quantum collapse and revival in a one-atom maser. Phys. Rev. Lett. 1987, 58, 353. [Google Scholar] [CrossRef]
- Hillery, M. Squeezing and photon number in the Jaynes-Cummings model. Phys. Rev. A 1989, 39, 1556. [Google Scholar] [CrossRef] [PubMed]
- Rabi, I.I. On the Process of Space Quantization. Phys. Rev. 1936, 49, 324. [Google Scholar] [CrossRef]
- Rabi, I.I. Space Quantization in a Gyrating Magnetic Field. Phys. Rev. 1937, 51, 652. [Google Scholar] [CrossRef]
- Narozhny, N.B.; Sanchez-Mondragon, J.J.; Eberly, J.H. Coherence versus incoherence: Collapse and revival in a simple quantum model. Phys. Rev. A 1981, 23, 236. [Google Scholar] [CrossRef]
- Assemat, F.; Grosso, D.; Signoles, A.; Facon, A.; Dotsenko, I.; Haroche, S.; Raimond, J.M.; Brune, M.; Gleyzes, S. Quantum Rabi Oscillations in Coherent and in Mesoscopic Cat Field States. Phys. Rev. Lett. 2019, 123, 143605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Ma, Y.; Cai, W.; Mu, X.; Dai, W.; Wang, W.; Hu, L.; Li, X.; Han, J.; Wang, H.; et al. Demonstration of Controlled-Phase Gates between Two Error-Correctable Photonic Qubits. Phys. Rev. Lett. 2020, 124, 120501. [Google Scholar] [CrossRef] [Green Version]
- Hacker, B.; Welte, S.; Daiss, S.; Shaukat, A.; Ritter, S.; Li, L.; Rempe, G. Deterministic creation of entangled atom light Schrödinger-cat states. Nat. Photonics 2019, 13, 110. [Google Scholar] [CrossRef] [Green Version]
- Furuichi, S.; Ohya, M. Entanglement Degree in the Time Development of the Jaynes Cummings Model. Lett. Math. Phys. 1999, 49, 279. [Google Scholar] [CrossRef]
- Bose, S.; Fuentes-Guridi, I.; Knight, P.L.; Vedral, V. Subsystem Purity as an Enforcer of Entanglement. Phys. Rev. Lett. 2001, 87, 050401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hennrich, M.; Kuhn, A.; Rempe, G. Transition from Antibunching to Bunching in Cavity QED. Phys. Rev. Lett. 2005, 94, 053604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubin, F.; Rotter, D.; Mukherjee, M.; Russo, C.; Eschner, J.; Blatt, R. Photon Correlation versus Interference of Single-Atom Fluorescence in a Half-Cavity. Phys. Rev. Lett. 2007, 98, 183003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weidinger, M.; Varcoe, B.T.H.; Heerlein, R.; Walther, H. Trapping States in the Micromaser. Rev. Lett. 1999, 82, 3795. [Google Scholar] [CrossRef] [Green Version]
- Brattke, S.; Varcoe, B.T.H.; Walther, H. Generation of Photon Number States on Demand via Cavity Quantum Electrodynamics. Phys. Rev. Lett. 2001, 86, 3534. [Google Scholar] [CrossRef] [PubMed]
- Brune, M.; Haroche, S.; Raimond, J.M.; Davidovich, L.; Zagury, N. Manipulation of photons in a cavity by dispersive atom-field coupling: Quantum-nondemolition measurements and generation of Schrödinger cat states. Phys. Rev. A 1992, 45, 5193. [Google Scholar] [CrossRef] [Green Version]
- Chiorescu, I.; Bertet, P.; Semba, K.; Nakamura, Y.; Harmans, C.J.P.M.; Mooij, J.E. Optimal cooling of a driven artificial atom in dissipative environment. Nature (Lond.) 2004, 431, 159. [Google Scholar] [CrossRef] [Green Version]
- Hatakenaka, N.; Kurihara, S. Josephson cascade micromaser. Phys. Rev. A 1996, 54, 1729. [Google Scholar] [CrossRef]
- Gerry, C.C. Schrödinger cat states in a Josephson junction. Phys. Rev. B 1998, 57, 7474. [Google Scholar] [CrossRef]
- Irish, E.K.; Schwab, K. Quantum measurement of a coupled nanomechanical resonator Cooper-pair box system. Phys. Rev. B 2003, 68, 155311. [Google Scholar] [CrossRef] [Green Version]
- Fink, J.M.; Ppl, M.G.; Baur, M.; Bianchetti, R.; Leek, P.J.; Blais, A.; Wallraff, A. Climbing the Jaynes-Cummings ladder and observing its nonlinearity in a cavity QED system. Nature (Lond.) 2008, 454, 315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laussy, F.P.; del Valle, E.; Schrapp, M.; Laucht, A.; Finley, J.J. Climbing the Jaynes-Cummings ladder by photon counting. J. Nanophotonics 2012, 6, 061803. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Pan, X.; Cai, W.; Mu, X.; Xu, Y.; Hu, L.; Wang, W.; Wang, H.; Song, Y.P.; Yang, Z.; et al. Demonstration of quantum error correction and universal gate set on a binomial bosonic logical qubit. Phys. Rev. Lett. 2020, 125, 180503. [Google Scholar] [CrossRef]
- Heeres, R.W.; Reinhold, P.; Ofek, N.; Frunzio, L.; Jiang, L.; Devoret, M.; Schoelkopf, R.J. Implementing a universal gate set on a logical qubit encoded in an oscillator. Nat. Commun. 2017, 8, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ofek, N.; Petrenko, A.; Heeres, R.; Reinhold, P.; Leghtas, Z.; Vlastakis, B.; Liu, Y.; Frunzio, L.; Girvin, S.M.; Jiang, L.; et al. Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 2016, 536, 441. [Google Scholar] [CrossRef]
- Wang, C.; Gao, Y.Y.; Reinhold, P.; Heeres, R.W.; Ofek, N.; Chou, K.; Axline, C.; Reagor, M.; Blumoff, J.; Sliwa, K.M.; et al. A Schrödinger cat living in two boxes. Science 2016, 352, 1087. [Google Scholar] [CrossRef] [Green Version]
- Meier, F.; Awschalom, D.D. Spin-photon dynamics of quantum dots in two-mode cavities. Phys. Rev. B 2004, 70, 205329. [Google Scholar] [CrossRef] [Green Version]
- Kasprzak, J.; Reitzenstein, S.; Muljarov, E.A.; Kistner, C.; Schneider, C.; Strauss, M.; Afling, S.H.; Forchel, A.; Langbein, W. Up on the Jaynes Cummings ladder of a quantum-dot/microcavity system. Nat. Mater. 2010, 9, 304. [Google Scholar] [CrossRef]
- Tavis, M.; Cummings, F.W. Exact solution for an N-molecule—radiation-field Hamiltonian. Phys. Rev. 1968, 170, 379. [Google Scholar] [CrossRef]
- Lee, J.; Martin, M.J.; Jau, Y.; Keating, T.; Deutsch, I.H.; Biedermann, G.W. Demonstration of the Jaynes-Cummings ladder with Rydberg-dressed atoms. Phys. Rev. A 2017, 95, 041801(R). [Google Scholar] [CrossRef] [Green Version]
- Berrada, K.; Abdel-Khalek, S.; Raymond Ooi, C.H. Geometric phase and entanglement for a single qubit interacting with deformed-states superposition. Quantum Inf. Process. 2013, 12, 2177. [Google Scholar] [CrossRef]
- Vahlbruch, H.; Mehmet, M.; Chelkowski, S.; Hage, B.; Franzen, A.; Lastzka, N.; Gobler, S.; Danzmann, K.; Schnabel, R. Observation of Squeezed Light with 10-dB Quantum-Noise Reduction. Phys. Rev. Lett. 2008, 100, 033602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vahlbruch, H.; Mehmet, M.; Danzmann, K.; Schnabel, R. Detection of 15 dB Squeezed States of Light and their Application for the Absolute Calibration of Photoelectric Quantum Efficiency. Phys. Rev. Lett. 2016, 117, 110801. [Google Scholar] [CrossRef]
- Kimble, H.J.; Dagenais, M.; Mandel, L. Photon Antibunching in Resonance Fluorescence. Phys. Rev. Lett. 1977, 39, 691. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, B.; Vogel, W.; Mraz, M.; Köhnke, S.; Hage, B. Anomalous Quantum Correlations of Squeezed Light. Phys. Rev. Lett. 2017, 118, 153601. [Google Scholar] [CrossRef] [Green Version]
- Gerber, S.; Rotter, D.; Slodicka, L.; Eschner, J.; Carmichael, H.J.; Blatt, R. Intensity-Field Correlation of Single-Atom Resonance Fluorescence. Phys. Rev. Lett. 2009, 102, 183601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Einstein, A.; Podolsky, B.; Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 1935, 47, 777. [Google Scholar] [CrossRef] [Green Version]
- Bell, J.S. On the Einstein—Podolsky—Rosen paradox. Physics (Long Isl. City N. Y.) 1965, 1, 195. [Google Scholar]
- Ekert, A.K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 1991, 67, 661. [Google Scholar] [CrossRef] [Green Version]
- Bennett, C.H.; Brassard, G.; Crepeau, C.; Jozsa, R.; Peres, A.; Wootters, W. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 1993, 70, 1895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, C.H.; Wiesner, S.J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 1992, 69, 2881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phoenix, S.J.D.; Barnett, S.M. Non-local interatomic correlations in the micromaser. J. Mod. Opt. 1993, 40, 979. [Google Scholar] [CrossRef]
- Cirac, J.I.; Zoller, P. Preparation of macroscopic superpositions in many-atom systems. Phys. Rev. A 1994, 50, R2799. [Google Scholar] [CrossRef]
- Gerry, C.C. Preparation of multiatom entangled states through dispersive atom–cavity-field interaction. Phys. Rev. A 1996, 53, 2857. [Google Scholar] [CrossRef]
- Olaya-Castro, A.; Johnson, N.F.; Quiroga, L. Scheme for on-resonance generation of entanglement in time-dependent asymmetric two-qubit-cavity systems. Phys. Rev. A 2004, 70, 020301. [Google Scholar] [CrossRef] [Green Version]
- Torres, J.M.; Sadurni, E.; Seligman, T.H. Two interacting atoms in a cavity: Exact solutions, entanglement and decoherence. J. Phys. A Math. Theor. 2010, 43, 192002. [Google Scholar] [CrossRef]
- Amaro, J.G.; Pineda, C. Multipartite entanglement dynamics in a cavity. Phys. Scr. 2015, 90, 068019. [Google Scholar] [CrossRef] [Green Version]
- Porras, D.; Cirac, J.I. Effective Quantum Spin Systems with Trapped Ions. Phys. Rev. Lett. 2004, 92, 207901. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, M.J.; Brandao, G.S.L.; Plenio, M.B. Effective Spin Systems in Coupled Microcavities. Phys. Rev. Lett. 2007, 99, 160501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cusati, T.; Napoli, A.; Messina, A. Competition between inter- and intra- molecular energy exchanges in a simple quantum model of a dimer. J. Mol. Theochem. 2006, 769, 3. [Google Scholar] [CrossRef]
- Napoli, A.; Messina, A.; Cusati, T.; Draganescu, G. Quantum signatures in the dynamics of two dipole-dipole interacting soft dimers. Eur. Phys. J. B 2006, 50, 419. [Google Scholar] [CrossRef]
- Torres, J.M.; Bernad, J.Z.; Alber, G. Unambiguous atomic Bell measurement assisted by multiphoton states. Appl. Phys. B 2016, 122, 117. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, M.S.; Ahamed, M.M.A.; Obada, A.-F. Multimode and multiphoton processes in a non-linear Jaynes-Cummings model. Phys. A 1991, 170, 393. [Google Scholar] [CrossRef]
- Roy, P. Properties of Gazeau–Klauder coherent state of the anharmonic oscillator. Opt. Commun. 2003, 221, 145. [Google Scholar] [CrossRef]
- Zhang, W.M.; Feng, D.H.; Gilmore, R. Coherent states: Theory and some applications. Rev. Mod. Phys. 1990, 62, 867. [Google Scholar] [CrossRef]
- Nieto, M.M.; Simmons, L.M. Coherent states for general potentials. I. Formalism. Phys. Rev. D 1979, 20, 1321. [Google Scholar] [CrossRef]
- Glauber, R.J. Coherent and Incoherent States of the Radiation Field. Phys. Rev. 1963, 131, 2766. [Google Scholar] [CrossRef]
- Klauder, J.R.; Skagertam, B. Coherent States: Application in Physics and Mathematical Physics; World Scientific: Singapore, 1985. [Google Scholar]
- Shahid, I.; Qurat, U.A.; Farhan, S. Quantum recurrences in driven power-law potentials. Phys. Lett. A 2006, 356. [Google Scholar]
- Liboff, E.I. Common Generalizations of Orthocomplete and Lattice Effect Algebras. Int. J. Theor. Phys. 1979, 47, 185. [Google Scholar] [CrossRef]
- Robinett, R.W. Wave packet revivals and quasirevivals in one-dimensional power law potentials. J. Math. Phys. 2000, 41, 1801. [Google Scholar] [CrossRef]
- Berrada, K. Improving quantum phase estimation via power-law potential systems. Laser Phys. 2014, 24, 065201. [Google Scholar] [CrossRef]
- Abdel-Khalek, S.; Berrada, K.; Alkhateeb, S.A. Measures of nonclassicality for a two-level atom interacting with power-law potential field under decoherence effect. Laser Phys. 2016, 26, 095201. [Google Scholar] [CrossRef]
- Berrada, K.; Abdel-Khalek, S.; Eid, A. Entanglement and Pancharatnam Phase of a Four-Level Atom in Coherent States Within Generalized Heisenberg Algebra. J. Russ. Res. 2016, 37, 45. [Google Scholar]
- Sukhatme, U.P. WKB Energy Levels for a Class of One-Dimensional Potentials. Am. J. Phys. 1973, 41, 1015. [Google Scholar] [CrossRef]
- Sargent, M.; Scully, M.O.; Lamb, W.E., Jr. Laser Physics; Addison-Wesley Publishing Company: Boston, MA, USA, 1974. [Google Scholar]
- Abdel-Aty, M.; Abdalla, M.S.; Obada, A.-S.F. Uncertainty relation and information entropy of a time-dependent bimodal two-level system. J. Phys. B At. Mol. Opt. Phys. 2002, 35, 4773. [Google Scholar] [CrossRef]
- Abdalla, M.S.; Khalil, E.M.; Obada, A.-S.F. Time-dependent interaction between a two-level atom and a su(1,1) Lie algebra quantum system. Inter. J. Mod. Phys. B 2017, 31, 1750211. [Google Scholar] [CrossRef] [Green Version]
- Ourjoumtsev, A.; Tualle-Brouri, R.; Laurat, J.; Grangier, P. Generating Optical Schrödinger Kittens for Quantum Information Processing. Science 2006, 312, 83. [Google Scholar] [CrossRef] [PubMed]
- Ourjoumtsev, A.; Jeong, H.; Tualle-Brouri, R.; Grangier, P. Generation of optical ‘Schrödinger cats’ from photon number states. Nature 2007, 448, 784. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, M.S.; Khalil, E.M.; Obada, A.-S.F.; Perina, J.; Krepelka, J. Quantum statistical characteristics of the interaction between two two-level atoms and radiation field. Eur. Phy. J. Plus 2015, 130, 1–19. [Google Scholar]
- Khalil, E.M.; Abdalla, M.S.; Obada, A.-S.F.; Perina, J. Statistical properties of a two-photon cavity mode in the presence of degenerate parametric amplifier. JOSA B 2010, 27, 266. [Google Scholar] [CrossRef]
- Berrada, K.; Eleuch, H. Noncommutative deformed cat states under decoherence. Phys. Rev. D 2019, 100, 016020. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel-Khalek, S.; Berrada, K.; Khalil, E.M.; Eleuch, H.; Obada, A.-S.F.; Reda, E. Tavis–Cummings Model with Moving Atoms. Entropy 2021, 23, 452. https://doi.org/10.3390/e23040452
Abdel-Khalek S, Berrada K, Khalil EM, Eleuch H, Obada A-SF, Reda E. Tavis–Cummings Model with Moving Atoms. Entropy. 2021; 23(4):452. https://doi.org/10.3390/e23040452
Chicago/Turabian StyleAbdel-Khalek, Sayed, Kamal Berrada, Eied M. Khalil, Hichem Eleuch, Abdel-Shafy F. Obada, and Esraa Reda. 2021. "Tavis–Cummings Model with Moving Atoms" Entropy 23, no. 4: 452. https://doi.org/10.3390/e23040452
APA StyleAbdel-Khalek, S., Berrada, K., Khalil, E. M., Eleuch, H., Obada, A. -S. F., & Reda, E. (2021). Tavis–Cummings Model with Moving Atoms. Entropy, 23(4), 452. https://doi.org/10.3390/e23040452