Cross-Scale Causality and Information Transfer in Simulated Epileptic Seizures
Abstract
:1. Introduction
2. Overview of Methods
2.1. Measuring Dependence with Mutual Information
2.2. Inference of Causality and Time-Delayed Information Transfer
2.3. Interactions over Time Scales
2.4. Statistical Evaluation with Surrogate Data
2.5. The Epileptor Model
3. Results and Discussion
3.1. Analysis of the Epileptor Model
3.2. Analysis of Time Series Generated by the Epileptor Model
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fisher, R.S.; Acevedo, C.; Arzimanoglou, A.; Bogacz, A.; Cross, J.H.; Elger, C.E.; Engel, J., Jr.; Forsgren, L.; French, J.A.; Glynn, M.; et al. ILAE official report: A practical clinical definition of epilepsy. Epilepsia 2014, 55, 475–482. [Google Scholar] [CrossRef] [Green Version]
- Badawy, R.; Freestone, D.; Lai, A.; Cook, M. Epilepsy: Ever-changing states of cortical excitability. Neuroscience 2012, 222, 89–99. [Google Scholar] [CrossRef]
- Beghi, E.; Carpio, A.; Forsgren, L.; Hesdorffer, D.C.; Malmgren, K.; Sander, J.W.; Tomson, T.; Hauser, W.A. Recommendation for a definition of acute symptomatic seizure. Epilepsia 2010, 51, 671–675. [Google Scholar] [CrossRef]
- Da Silva, F.L.; Blanes, W.; Kalitzin, S.N.; Parra, J.; Suffczynski, P.; Velis, D.N. Epilepsies as dynamical diseases of brain systems: Basic models of the transition between normal and epileptic activity. Epilepsia 2003, 44, 72–83. [Google Scholar] [CrossRef]
- Jirsa, V.K.; Stacey, W.C.; Quilichini, P.P.; Ivanov, A.I.; Bernard, C. On the nature of seizure dynamics. Brain 2014, 137, 2210–2230. [Google Scholar] [CrossRef] [Green Version]
- Creaser, J.; Lin, C.; Ridler, T.; Brown, J.T.; D’Souza, W.; Seneviratne, U.; Cook, M.; Terry, J.R.; Tsaneva-Atanasova, K. Domino-like transient dynamics at seizure onset in epilepsy. PLoS Comput. Biol. 2020, 16, e1008206. [Google Scholar] [CrossRef] [PubMed]
- Baier, G.; Goodfellow, M.; Taylor, P.; Wang, Y.; Garry, D. The importance of modeling epileptic seizure dynamics as spatio-temporal patterns. Front. Physiol. 2012, 3, 281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haghighi, H.S.; Markazi, A. A new description of epileptic seizures based on dynamic analysis of a thalamocortical model. Sci. Rep. 2017, 7, 1–10. [Google Scholar]
- Pijn, J.P.M.; Velis, D.N.; van der Heyden, M.J.; DeGoede, J.; van Veelen, C.W.; da Silva, F.H.L. Nonlinear dynamics of epileptic seizures on basis of intracranial EEG recordings. Brain Topogr. 1997, 9, 249–270. [Google Scholar] [CrossRef] [Green Version]
- El Houssaini, K.; Bernard, C.; Jirsa, V.K. The Epileptor model: A systematic mathematical analysis linked to the dynamics of seizures, refractory status epilepticus and depolarization block. eNeuro 2020, 7, ENEURO.0485-18.2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Courtiol, J.; Guye, M.; Bartolomei, F.; Petkoski, S.; Jirsa, V.K. Dynamical mechanisms of interictal resting-state functional connectivity in epilepsy. J. Neurosci. 2020, 40, 5572–5588. [Google Scholar] [CrossRef]
- Chang, W.C.; Kudlacek, J.; Hlinka, J.; Chvojka, J.; Hadrava, M.; Kumpost, V.; Powell, A.D.; Janca, R.; Maturana, M.I.; Karoly, P.J.; et al. Loss of neuronal network resilience precedes seizures and determines the ictogenic nature of interictal synaptic perturbations. Nat. Neurosci. 2018, 21, 1742–1752. [Google Scholar] [CrossRef] [PubMed]
- Paluš, M. Multiscale atmospheric dynamics: Cross-frequency phase-amplitude coupling in the air temperature. Phys. Rev. Lett. 2014, 112, 078702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paluš, M. Cross-scale interactions and information transfer. Entropy 2014, 16, 5263–5289. [Google Scholar] [CrossRef] [Green Version]
- Granger, C.W. Time series analysis, cointegration, and applications. Am. Econ. Rev. 2004, 94, 421–425. [Google Scholar] [CrossRef] [Green Version]
- Granger, C.W. Investigating causal relations by econometric models and cross-spectral methods. Econom. J. Econom. Soc. 1969, 37, 424–438. [Google Scholar] [CrossRef]
- Paluš, M.; Komárek, V.; Hrnčíř, Z.; Štěrbová, K. Synchronization as adjustment of information rates: Detection from bivariate time series. Phys. Rev. E 2001, 63, 046211. [Google Scholar] [CrossRef] [Green Version]
- Schreiber, T. Measuring information transfer. Phys. Rev. Lett. 2000, 85, 461–464. [Google Scholar] [CrossRef] [Green Version]
- Paluš, M.; Vejmelka, M. Directionality of coupling from bivariate time series: How to avoid false causalities and missed connections. Phys. Rev. E 2007, 75, 056211. [Google Scholar] [CrossRef] [Green Version]
- Barnett, L.; Barrett, A.B.; Seth, A.K. Granger causality and transfer entropy are equivalent for Gaussian variables. Phys. Rev. Lett. 2009, 103, 238701. [Google Scholar] [CrossRef] [Green Version]
- Canolty, R.T.; Knight, R.T. The functional role of cross-frequency coupling. Trends Cogn. Sci. 2010, 14, 506–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aru, J.; Aru, J.; Priesemann, V.; Wibral, M.; Lana, L.; Pipa, G.; Singer, W.; Vicente, R. Untangling cross-frequency coupling in neuroscience. Curr. Opin. Neurobiol. 2015, 31, 51–61. [Google Scholar] [CrossRef] [Green Version]
- Lozano-Soldevilla, D.; Ter Huurne, N.; Oostenveld, R. Neuronal oscillations with non-sinusoidal morphology produce spurious phase-to-amplitude coupling and directionality. Front. Comput. Neurosci. 2016, 10, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Besserve, M.; Schölkopf, B.; Logothetis, N.K.; Panzeri, S. Causal relationships between frequency bands of extracellular signals in visual cortex revealed by an information theoretic analysis. J. Comput. Neurosci. 2010, 29, 547–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, H.; Bahramisharif, A.; van Gerven, M.A.J.; Jensen, O. Distinct directional couplings between slow and fast gamma power to the phase of theta oscillations in the rat hippocampus. Eur. J. Neurosci. 2020, 51, 2070–2081. [Google Scholar] [CrossRef]
- Martínez-Cancino, R.; Delorme, A.; Wagner, J.; Kreutz-Delgado, K.; Sotero, R.C.; Makeig, S. What can local transfer entropy tell us about phase-amplitude coupling in electrophysiological signals? Entropy 2020, 22, 1262. [Google Scholar] [CrossRef]
- Cover, T.; Thomas, J. Elements of Information Theory; J. Wiley: New York, NY, USA, 1991. [Google Scholar]
- Watanabe, S. Information theoretical analysis of multivariate correlation. IBM J. Res. Dev. 1960, 4, 66–82. [Google Scholar] [CrossRef]
- Garner, W.R. Uncertainty and Structure as Psychological Concepts; Wiley: New York, NY, USA, 1962. [Google Scholar]
- Fraser, A.M. Information and entropy in strange attractors. IEEE Trans. Inf. Theory 1989, 35, 245–262. [Google Scholar] [CrossRef]
- Studený, M.; Vejnarová, J. The multiinformation function as a tool for measuring stochastic dependence. In Learning in Graphical Models; NATO ASI Series (Series D: Behavioural and Social Sciences); Jordan, M.I., Ed.; Springer: Dordrecht, The Netherlands, 1998; Volume 89, pp. 261–297. [Google Scholar]
- Stramaglia, S.; Cortes, J.M.; Marinazzo, D. Synergy and redundancy in the Granger causal analysis of dynamical networks. New J. Phys. 2014, 16, 105003. [Google Scholar] [CrossRef] [Green Version]
- Barrett, A.B. Exploration of synergistic and redundant information sharing in static and dynamical Gaussian systems. Phys. Rev. E 2015, 91, 052802. [Google Scholar] [CrossRef] [Green Version]
- Lizier, J.T.; Bertschinger, N.; Jost, J.; Wibral, M. Information decomposition of target effects from multi-source interactions: Perspectives on previous, current and future work. Entropy 2018, 20, 307. [Google Scholar] [CrossRef] [Green Version]
- Paluš, M. Detecting nonlinearity in multivariate time series. Phys. Lett. A 1996, 213, 138–147. [Google Scholar] [CrossRef] [Green Version]
- Paluš, M.; Albrecht, V.; Dvořák, I. Information theoretic test for nonlinearity in time series. Phys. Lett. A 1993, 175, 203–209. [Google Scholar] [CrossRef]
- Gans, F.; Schumann, A.Y.; Kantelhardt, J.W.; Penzel, T.; Fietze, I. Cross-modulated amplitudes and frequencies characterize interacting components in complex systems. Phys. Rev. Lett. 2009, 102, 098701. [Google Scholar] [CrossRef]
- Heil, C.; Walnut, D. Continuous and Discrete Wavelet Transforms. SIAM Rev. 1989, 31, 628–666. [Google Scholar] [CrossRef] [Green Version]
- Huang, N.E.; Wu, Z. A review on Hilbert-Huang transform: Method and its applications to geophysical studies. Rev. Geophys. 2008, 46, RG2006. [Google Scholar] [CrossRef] [Green Version]
- Paluš, M.; Novotná, D. Enhanced Monte Carlo Singular System Analysis and detection of period 7.8 years oscillatory modes in the monthly NAO index and temperature records. Nonlin. Process. Geophys. 2004, 11, 721–729. [Google Scholar] [CrossRef] [Green Version]
- Paluš, M.; Novotná, D. Quasi-biennial oscillations extracted from the monthly NAO index and temperature records are phase-synchronized. Nonlin. Process. Geophys. 2006, 13, 287–296. [Google Scholar] [CrossRef]
- Pikovsky, A.; Rosenblum, M.; Kurths, J. Synchronization. A Universal Concept in Nonlinear Sciences; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Paluš, M. Identifying and Quantifying Chaos by Using Information-Theoretic Functionals. In Time Series Prediction: Forecasting the Future and Understanding the Past; Weigend, A.S., Gershenfeld, N.A., Eds.; Santa Fe Institute Studies in the Sciences of Complexity: Santa Fe, NM, USA, 1994; pp. 387–413. [Google Scholar]
- Paluš, M. Nonlinearity in normal human EEG: Cycles, temporal asymmetry, nonstationarity and randomness, not chaos. Biol. Cybern. 1996, 75, 389–396. [Google Scholar] [CrossRef]
- Paluš, M. Coarse-grained entropy rates for characterization of complex time series. Phys. D 1996, 93, 64–77. [Google Scholar] [CrossRef] [Green Version]
- Paluš, M. Testing for nonlinearity using redundancies - quantitative and qualitative aspects. Phys. D 1995, 80, 186–205. [Google Scholar] [CrossRef]
- Hlaváčková-Schindler, K.; Paluš, M.; Vejmelka, M.; Bhattacharya, J. Causality detection based on information-theoretic approaches in time series analysis. Phys. Rep. 2007, 441, 1–46. [Google Scholar] [CrossRef]
- Quiroga, R.Q.; Kraskov, A.; Kreuz, T.; Grassberger, P. Performance of different synchronization measures in real data: A case study on electroencephalographic signals. Phys. Rev. E 2002, 65, 041903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jajcay, N.; Kravtsov, S.; Sugihara, G.; Tsonis, A.A.; Paluš, M. Synchronization and causality across time scales in El Niño Southern Oscillation. Npj Clim. Atmos. Sci. 2018, 1, 1–8. [Google Scholar] [CrossRef]
- Paluš, M.; Krakovská, A.; Jakubík, J.; Chvosteková, M. Causality, dynamical systems and the arrow of time. Chaos Interdiscip. J. Nonlinear Sci. 2018, 28, 075307. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, K.; Paluš, M. Cross-Scale Causality and Information Transfer in Simulated Epileptic Seizures. Entropy 2021, 23, 526. https://doi.org/10.3390/e23050526
Gupta K, Paluš M. Cross-Scale Causality and Information Transfer in Simulated Epileptic Seizures. Entropy. 2021; 23(5):526. https://doi.org/10.3390/e23050526
Chicago/Turabian StyleGupta, Kajari, and Milan Paluš. 2021. "Cross-Scale Causality and Information Transfer in Simulated Epileptic Seizures" Entropy 23, no. 5: 526. https://doi.org/10.3390/e23050526
APA StyleGupta, K., & Paluš, M. (2021). Cross-Scale Causality and Information Transfer in Simulated Epileptic Seizures. Entropy, 23(5), 526. https://doi.org/10.3390/e23050526