Optimal Frequency and Amplitude of Vertical Viewpoint Oscillation for Improving Vection Strength and Reducing Neural Constrains on Gait
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experiment Setup and Procedures
2.2.1. Experiment Setup
2.2.2. Procedures
2.3. Signal Processing
2.4. Statistics
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roy, A.R.; Simon, L. The benefits of using a walking interface to navigate virtual environments. ACM Trans. Comput. Hum. Interact. 2009, 16, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Tyler, R.; Chang, S.N.; Nedel, L. Immersion of virtual reality for rehabilitation—Review. Appl. Ergon. 2018, 69, 153–161. [Google Scholar] [CrossRef]
- Menin, A.; Torchelsen, R.; Nedel, L. An analysis of VR technology used in immersive simulations with a serious game perspective. IEEE Comput. Graph. Appl. 2018, 38, 57–73. [Google Scholar] [CrossRef] [PubMed]
- Gibson, J.J. The Senses Considered as Perceptual Systems; Houghton Mifflin: Boston, MA, USA, 1966. [Google Scholar]
- Gibson, J.J. Perception of the Visual World; Houghton Mifflin: Boston, MA, USA, 1950. [Google Scholar]
- Stephen, P.; Barbara, J.G.; Shane, G.B. Global-perspective jitter improves vection in central vision. Perception 2000, 29, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Anatole, L.; Jean, M.B.; Jean, M.H.; Donikian, S. Camera motions improve the sensation of walking in virtual environments. In Proceedings of the IEEE Virtual Reality Conference, Alexandria, VA, USA, 25–29 March 2006; IEEE: Piscataway, NJ, USA, 2006. [Google Scholar] [CrossRef] [Green Version]
- Stephen, P.; Frederick, B.; Andrea, B.; John, F. Vertical display oscillation effects on forward vection and simulator sickness. Aviat. Space Environ. Med. 2007, 78, 951–956. [Google Scholar] [CrossRef]
- April, A.; Stephen, P.; Deborah, A.; Robert, S.A. Vection in depth during treadmill walking. Perception 2013, 42, 562–576. [Google Scholar] [CrossRef]
- So, R.H.Y.; Wei, Y.; Chen, D.J.Z. Vection provoked by visual oscillation: Is frequency the major determining factor. In Proceedings of the IEEE 6th Global Conference on Consumer Electronics, Nagoya, Japan, 24–27 October 2017; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar] [CrossRef]
- Jason, R.F.; Carrie, A.F.; Matthew, S.A.; Darryl, G.T. Visuomotor entrainment and the frequency-dependent response of walking balance to perturbations. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1135–1142. [Google Scholar] [CrossRef]
- Patricia, M.M.; Jonathan, B.D.; Jason, M.W. Walking variability during continuous pseudo-random oscillations of the support surface and visual field. J. Biomech. 2010, 43, 1470–1475. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Yang, K.; Zhu, Y.; Mu, H. Speed adaptation and acceleration ripple suppression of treadmill user system using a virtual force moment balance model. Trans. Inst. Meas. Control 2020, 42, 322–329. [Google Scholar] [CrossRef]
- Wang, W.; Yang, K.; Zhu, Y.; Qian, Y.; Wan, C. A comparison of variability and gait dynamics in spatiotemporal variables between different self-paced treadmill control modes. J. Biomech. 2020, 110, 109979. [Google Scholar] [CrossRef]
- Deborah, A.; Stephen, P. The role of perceived speed in vection: Does perceived speed modulate the jitter and oscillation advantages? PLoS ONE 2014, 9, 1–14. [Google Scholar] [CrossRef]
- Stephen, P.; Bernhard, E.R. The search for instantaneous vection: An oscillating visual prime reduces vection onset latency. PLoS ONE 2018, 13, e0195886. [Google Scholar] [CrossRef]
- Wei, W.; Kai, M.Y.; Zhu, Y.; Qian, Y.; Wan, C.; Li, M. Walking speed estimation from a wearable insole pressure system embedded with an accelerometer using Bayesian neural network. ASME J. Med. Diagn. 2021, 4, 21003. [Google Scholar] [CrossRef]
- Norden, E.H.; Zheng, S.; Steven, R.L.; Manli, C.W.; Hsing, H.S.; Quanan, Z.; Nai, C.Y.; Chi, C.T.; Henry, H.L. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Zhao, H.W.; Norden, E.H. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Advan. Adapt. Data Analy. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Flandrin, P.; Goncalves, P.; Rilling, G. Detrending and denoising with empirical mode decomposition. In Proceedings of the 12th European Signal Processing Conference, Vienna, Austria, 6–10 September 2004; IEEE: Piscataway, NJ, USA, 2004; pp. 1581–1584. [Google Scholar]
- Brian, J.G.; Chung, K.P.; Peter, M.W.; Andrew, C.A. Multiscale entropy analysis of center of pressure dynamics in human postural control: Methodological considerations. Entropy 2015, 17, 7926–7947. [Google Scholar] [CrossRef]
- James, T.C.; Vicki, S.M.; Nicholas, S. Approximate entropy detects the effect of a secondary cognitive task on postural control in healthy young adults: A methodological report. J. NeuroEng. Rehabil. 2009, 4, 42. [Google Scholar] [CrossRef] [Green Version]
- Ben, Y.L.; Fu, L.W.; Chi, W.L.; Xue, Y.Z.; Xiao, L.W.; Yih, K.J. Complexity-Based Measures of Postural Sway during Walking at Different Speeds and Durations Using Multiscale Entropy. Entropy 2019, 21, 1128. [Google Scholar] [CrossRef] [Green Version]
- Gregory, S.W.; Zoe, T. Complexity, symmetry and variability of forward and backward walking at different speeds and transfer effects on forward walking: Implications for neural control. J. Biomech. 2019, 97, 109377. [Google Scholar] [CrossRef]
- Damasio, M.C.; Peng, K.C.; Ary, L.G.; Jeffrey, M.H. Multiscale entropy analysis of human gait dynamics. Physica A Statis. Mecha. Appl. 2003, 330, 53–60. [Google Scholar] [CrossRef]
Dependent Variable | Oscillation Pattern | Mean (std) | 95% Confidence Interval | F | p | η2 | |
---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||||
CI of M-L CoP | frequency | 12.60 (2.25) | 11.58 | 13.63 | 10.509 | 0.002 * | 0.637 |
amplitude | 12.31 (1.87) | 11.45 | 13.16 | 28.012 | <0.001 * | 0.824 | |
speed | 12.34 (2.10) | 11.62 | 13.06 | 8.245 | <0.001 * | 0.579 |
Oscillation Pattern | y1 | y2 | y3 | y4 | y5 |
---|---|---|---|---|---|
Best | 4 | 0 | 2 | 0 | 1 |
Worst | 0 | 1 | 0 | 6 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Yang, K.; Zhu, Y. Optimal Frequency and Amplitude of Vertical Viewpoint Oscillation for Improving Vection Strength and Reducing Neural Constrains on Gait. Entropy 2021, 23, 541. https://doi.org/10.3390/e23050541
Wang W, Yang K, Zhu Y. Optimal Frequency and Amplitude of Vertical Viewpoint Oscillation for Improving Vection Strength and Reducing Neural Constrains on Gait. Entropy. 2021; 23(5):541. https://doi.org/10.3390/e23050541
Chicago/Turabian StyleWang, Wei, Kaiming Yang, and Yu Zhu. 2021. "Optimal Frequency and Amplitude of Vertical Viewpoint Oscillation for Improving Vection Strength and Reducing Neural Constrains on Gait" Entropy 23, no. 5: 541. https://doi.org/10.3390/e23050541
APA StyleWang, W., Yang, K., & Zhu, Y. (2021). Optimal Frequency and Amplitude of Vertical Viewpoint Oscillation for Improving Vection Strength and Reducing Neural Constrains on Gait. Entropy, 23(5), 541. https://doi.org/10.3390/e23050541