Invariant Quantum States of Quadratic Hamiltonians
Abstract
:1. Introduction
2. Simple Solutions for Time-Independent Hamiltonians
Two-Dimensional Examples: A Charged Oscillator and a Charge in a Homogeneous Magnetic Field
3. General Solutions for Positive Time-Independent Hamiltonians
4. Specific Time-Dependent Hamiltonians Admitting Invariant Covariance Matrices
5. Discussion
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- López-Saldívar, J.A.; Man’ko, M.A.; Man’ko, V.I. Differential parametric formalism for the evolution of Gaussian states: Nonunitary evolution and invariant states. Entropy 2020, 22, 586. [Google Scholar] [CrossRef] [PubMed]
- Robertson, H.P. An indeterminacy relation for several observables and its classical interpretation. Phys. Rev. 1934, 46, 794–801. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Man’ko, V.I. Density matrices and Wigner functions of quasiclassical quantum systems. In Group Theory, Gravitation and Elementary Particle Physics (Proceedings of Lebedev Physics Institute, Volume 167); Komar, A.A., Ed.; Nova Science: Commack, NY, USA, 1987; pp. 7–101. [Google Scholar]
- Dodonov, V.V.; Horovits, M.B. Change of energy and magnetic moment of a quantum charged particle after a fast jump of the magnetic field in solenoids of arbitrary cross sections. Phys. A 2021, 571, 125843. [Google Scholar] [CrossRef]
- Agarwal, G.S. Wigner-function description of quantum noise in interferometers. J. Mod. Opt. 1987, 34, 909–921. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Man’ko, V.I. Evolution of multidimensional systems. Magnetic properties of ideal gases of charged particles. In Invariants and the Evolution of Nonstationary Quantum Systems (Proceedings of Lebedev Physics Institute, Volume 183); Markov, M.A., Ed.; Nova Science: Commack, NY, USA, 1989; pp. 263–414. [Google Scholar]
- Braunstein, S.L.; van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 2005, 77, 513–577. [Google Scholar] [CrossRef] [Green Version]
- Akhundova, E.A.; Dodonov, V.V.; Man’ko, V.I. Wigner functions of quadratic systems. Phys. A 1982, 115, 215–231. [Google Scholar] [CrossRef] [Green Version]
- Banchi, L.; Braunstein, S.L.; Pirandola, S. Quantum fidelity for arbitrary Gaussian states. Phys. Rev. Lett. 2015, 115, 260501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gantmacher, F.R. Theory of Matrices; AMS Chelsea: Providence, RI, USA, 1959. [Google Scholar]
- Johnson, M.H.; Lippmann, B.A. Motion in a constant magnetic field. Phys. Rev. 1949, 76, 828–832. [Google Scholar] [CrossRef]
- Malkin, I.A.; Man’ko, V.I. Coherent states of a charged particle in a magnetic field. Zh. Eksp. Teor. Fiz. 1969, 55, 1014–1025, English translation: Sov. Phys.—JETP 1969, 28, 527–532. [Google Scholar]
- Bogoliubov, N.N.; Tyablikov, S.V. An approximate method of finding the lowest energy levels of electrons in a metal. Zhurn. Eksp. Teor. Fiz. 1949, 19, 256–268. (In Russian) [Google Scholar]
- Tyablikov, S.V. Methods in the Quantum Theory of Magnetism; Plenum: New York, NY, USA, 1967; pp. 105–113. [Google Scholar]
- Bergman, E.E.; Holz, A. Exact solutions of an n-dimensional anisotropic oscillator in a uniform magnetic field. Nuovo Cim. B 1972, 7, 265–276. [Google Scholar] [CrossRef]
- Titulaer, U.M. Ergodic features of harmonic-oscillator systems. I. Physica 1973, 70, 257–275. [Google Scholar] [CrossRef]
- Tsallis, C. Diagonalization methods for the general bilinear Hamiltonian of an assembly of bosons. J. Math. Phys. 1978, 19, 277–286. [Google Scholar] [CrossRef]
- Colpa, J.H.P. Diagonalization of quadratic boson Hamiltonians. Physica A 1978, 93, 327–343. [Google Scholar] [CrossRef]
- Maldonaldo, O. On the Bogoliubov transformation for quadratic boson observables. J. Math. Phys. 1993, 34, 5016–5027. [Google Scholar] [CrossRef]
- Lewis, H.R., Jr.; Riesenfeld, W.B. An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field. J. Math. Phys. 1969, 10, 1458–1473. [Google Scholar] [CrossRef]
- Malkin, I.A.; Man’ko, V.I.; Trifonov, D.A. Invariants and evolution of coherent states for charged particle in time-dependent magnetic field. Phys. Lett. A 1969, 30, 414–416. [Google Scholar] [CrossRef]
- Malkin, I.A.; Man’ko, V.I.; Trifonov, D.A. Linear adiabatic invariants and coherent states. J. Math. Phys. 1973, 14, 576–582. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Malkin, I.A.; Man’ko, V.I. Integrals of the motion, Green functions and coherent states of dynamical systems. Int. J. Theor. Phys. 1975, 14, 37–54. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Malkin, I.A.; Man’ko, V.I. Invariants and the Green functions of a relativistic charged particle in electromagnetic fields. Lett. Nuovo Cim. 1975, 14, 241–244. [Google Scholar] [CrossRef]
- Ivanova, E.V.; Malkin, I.A.; Man’ko, V.I. Invariants and radiation of some nonstationary systems. Int. J. Theor. Phys. 1977, 16, 503–515. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Man’ko, V.I. Coherent states and the resonance of a quantum damped oscillator. Phys. Rev. A 1979, 20, 550–560. [Google Scholar] [CrossRef]
- Castaños, O.; López-Peña, R.; Man’ko, V.I. Noether’s theorem and time-dependent quantum invariants. J. Phys. A Math. Gen. 1994, 21, 1751–1770. [Google Scholar] [CrossRef]
- Man’ko, V.I.; Mendes, R.V. Time-dependent invariants for Dirac equation and Newton–Wigner position operator. Phys. Scr. 1997, 56, 417–422. [Google Scholar] [CrossRef]
- Fedele, R.; Man’ko, V.I. Quantumlike corrections and semiclassical description of charged-particle beam transport. Phys. Rev. E 1998, 58, 992–1001. [Google Scholar] [CrossRef] [Green Version]
- Man’ko, V.I.; Rosa, L.; Vitale, P. Time-dependent invariants and Green functions in the probability representation of quantum mechanics. Phys. Rev. A 1998, 57, 3291–3303. [Google Scholar] [CrossRef] [Green Version]
- Man’ko, V.I.; Markovich, L.A. Quantum tomography of time-dependent nonlinear hamiltonian systems. Rep. Math. Phys. 2019, 83, 87–106. [Google Scholar] [CrossRef]
- Leach, P.G.L. Quadratic Hamiltonians, quadratic invariants and the symmetry group SU(n). J. Math. Phys. 1978, 19, 446–451. [Google Scholar] [CrossRef]
- Dhara, A.K.; Lawande, S.V. Time-dependent invariants and the Feynman propagator. Phys. Rev. A 1984, 30, 560–567. [Google Scholar] [CrossRef]
- Abe, S. Invariants for time-dependent fermion systems. Phys. Lett. A 1993, 181, 359–365. [Google Scholar] [CrossRef]
- Mizrahi, S.S.; Moussa, M.H.Y.; Baseia, B. The quadratic time-dependent Hamiltonian: Evolution operator, squeezing regions in phase space and trajectories. Int. J. Mod. Phys. B 1994, 8, 1563–1576. [Google Scholar] [CrossRef]
- Andrews, M. Invariant operators for quadratic Hamiltonians. Am. J. Phys. 1999, 67, 336–343. [Google Scholar] [CrossRef]
- Mostafazadeh, A. Supersymmetric dynamical invariants. J. Phys. A Math. Gen. 2001, 34, 4493–4505. [Google Scholar] [CrossRef]
- Guasti, M.F.; Moya-Cessa, H. Amplitude and phase representation of quantum invariants for the time-dependent harmonic oscillator. Phys. Rev. A 2003, 67, 063803. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, M.S.; Leach, P.G.L. Wigner functions for time-dependent coupled linear oscillators via linear and quadratic invariant processes. J. Phys. A Math. Gen. 2005, 38, 881–893. [Google Scholar] [CrossRef]
- Choi, J.R.; Yeon, K.H. Quantum properties of light in linear media with time-dependent parameters by Lewis–Riesenfeld invariant operator method. Int. J. Mod. Phys. B 2005, 19, 2213–2224. [Google Scholar] [CrossRef]
- Abdalla, M.S.; Choi, J.R. Propagator for the time-dependent charged oscillator via linear and quadratic invariants. Ann. Phys. 2007, 322, 2795–2810. [Google Scholar] [CrossRef]
- Abdalla, M.S.; Leach, P.G.L. Lie algebraic treatment of the quadratic invariants for a quantum system. Theor. Math. Phys. 2009, 159, 535–550. [Google Scholar] [CrossRef]
- Cherbal, O.; Drir, M.; Maamache, M.; Trifonov, D.A. Invariants and coherent states for a nonstationary fermionic forced oscillator. Phys. Lett. A 2010, 374, 535–538. [Google Scholar] [CrossRef] [Green Version]
- Cordero-Soto, R.; Suazo, E.; Suslov, S.K. Quantum integrals of motion for variable quadratic Hamiltonians. Ann. Phys. 2010, 325, 1884–1912. [Google Scholar] [CrossRef] [Green Version]
- Aldaya, V.; Cossío, F.; Guerrero, J.; López-Ruiz, F.F. The quantum Arnold transformation. J. Phys. A Math. Theor. 2011, 44, 065302. [Google Scholar] [CrossRef]
- Fiore, G.; Gouba, L. Class of invariants for the two-dimensional time-dependent Landau problem and harmonic oscillator in a magnetic field. J. Math. Phys. 2011, 52, 103509. [Google Scholar] [CrossRef] [Green Version]
- Bertin, M.C.; Pimentel, B.M.; Ramirez, J.A. Construction of time-dependent dynamical invariants: A new approach. J. Math. Phys. 2012, 53, 042104. [Google Scholar] [CrossRef] [Green Version]
- Cruz, H.; Schuch, D.; Castaños, O.; Rosas-Ortiz, O. Time-evolution of quantum systems via a complex nonlinear Riccati equation. I. Conservative systems with time-independent Hamiltonian. Ann. Phys. 2015, 360, 44–60. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, J.; López-Ruiz, F.F. On the Lewis–Riesenfeld (Dodonov–Man’ko) invariant method. Phys. Scr. 2015, 90, 074046. [Google Scholar] [CrossRef] [Green Version]
- Bagrov, V.G.; Gitman, D.M.; Pereira, A.S. Coherent states of systems with quadratic Hamiltonians. Braz. J. Phys. 2015, 45, 369–375. [Google Scholar] [CrossRef] [Green Version]
- De Ponte, M.A.; Cônsoli, P.M.; Moussa, M.H.Y. Method for the construction of the Lewis-Riesenfeld time-dependent invariants and their eigenvalue equations. Phys. Rev. A 2018, 98, 032102. [Google Scholar] [CrossRef]
- Lawson, L.M.; Avossevou, G.Y.H.; Gouba, L. Lewis-Riesenfeld quantization and SU(1, 1) coherent states for 2D damped harmonic oscillator. J. Math. Phys. 2018, 59, 112101. [Google Scholar] [CrossRef] [Green Version]
- Zenad, M.; Ighezou, F.Z.; Cherbal, O.; Maamache, M. Ladder invariants and coherent states for time-dependent non-Hermitian Hamiltonians. Int. J. Theor. Phys. 2020, 59, 1214–1226. [Google Scholar] [CrossRef]
- Zelaya, K.; Rosas-Ortiz, O. Quantum nonstationary oscillators: Invariants, dynamical algebras and coherent states via point transformations. Phys. Scr. 2020, 95, 064004. [Google Scholar] [CrossRef] [Green Version]
- Zelaya, K.; Hussin, V. Time-dependent rational extensions of the parametric oscillator: Quantum invariants and the factorization method. J. Phys. A Math. Theor. 2020, 53, 165301. [Google Scholar] [CrossRef] [Green Version]
- Zelaya, K.; Marquette, I.; Hussin, V. Fourth Painlevé and Ermakov equations: Quantum invariants and new exactly-solvable time-dependent Hamiltonians. J. Phys. A Math. Theor. 2021, 54, 015206. [Google Scholar] [CrossRef]
- Chen, X.; Torrontegui, E.; Muga, J.G. Lewis-Riesenfeld invariants and transitionless quantum driving. Phys. Rev. A 2011, 83, 062116. [Google Scholar] [CrossRef] [Green Version]
- Guéry-Odelin, D.; Ruschhaupt, A.; Kiely, A.; Torrontegui, E.; Martínez-Garaot, S.; Muga, J.G. Shortcuts to adiabaticity: Concepts, methods, and applications. Rev. Mod. Phys. 2019, 91, 045001. [Google Scholar] [CrossRef]
- Muga, J.G.; Martínez-Garaot, S.; Pons, M.; Palmero, M.; Tobalina, A. Time-dependent harmonic potentials for momentum or position scaling. Phys. Rev. Res. 2020, 2, 043162. [Google Scholar] [CrossRef]
- Tobalina, A.; Torrontegui, E.; Lizuain, I.; Palmero, M.; Muga, J.G. Invariant-based inverse engineering of time-dependent, coupled harmonic oscillators. Phys. Rev. A 2020, 102, 063112. [Google Scholar] [CrossRef]
- Morales, D.A. Correspondence between Berry’s phase and Lewis’s phase for quadratic Hamiltonians. J. Phys. A Math. Gen. 1988, 21, L889–L892. [Google Scholar] [CrossRef]
- Mizrahi, S.S. The geometrical phase: An approach through the use of invariants. Phys. Lett. A 1989, 138, 465–468. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Man’ko, V.I. Adiabatic invariants, correlated states and Berry’s phase. In Topological Phases in Quantum Theory (Proceedings of the International Seminar, Dubna, September 1988); Markovski, B., Vinitsky, S.I., Eds.; World Scientific: Bukit Batok, Singapore, 1989; pp. 74–83. [Google Scholar]
- Gao, X.C.; Xu, J.B.; Qian, T.Z. Geometric phase and the generalized invariant formulation. Phys. Rev. A 1991, 44, 7016–7021. [Google Scholar] [CrossRef]
- Mostafazadeh, A. Geometric phases, symmetries of dynamical invariants and exact solution of the Schrödinger equation. J. Phys. A Math. Gen. 2001, 34, 6325–6338. [Google Scholar] [CrossRef]
- Mostafazadeh, A. Time-dependent Hilbert spaces, geometric phases, and general covariance in quantum mechanics. Phys. Lett. A 2004, 320, 375–382. [Google Scholar] [CrossRef] [Green Version]
- Duzzioni, E.I.; Serra, R.M.; Moussa, M.H.Y. A general treatment of geometric phases and dynamical invariants. EPL 2008, 82, 20007. [Google Scholar] [CrossRef]
- Gao, X.C.; Xu, J.B.; Qian, T.Z. Invariants and geometric phase for systems with non-hermitian time-dependent Hamiltonians. Phys. Rev. A 1992, 46, 3626–3630. [Google Scholar] [CrossRef] [PubMed]
- Maamache, M.; Djeghiour, O.K.; Mana, N.; Koussa, W. Pseudo-invariants theory and real phases for systems with non-Hermitian time-dependent Hamiltonians. Eur. Phys. J. Plus 2017, 132, 383. [Google Scholar] [CrossRef]
- Ramos, B.F.; Pedrosa, I.A.; de Lima, A.L. Lewis and Riesenfeld approach to time-dependent non-Hermitian Hamiltonians having PT symmetry. Eur. Phys. J. Plus 2018, 133, 449. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Malkin, I.A.; Man’ko, V.I. Invariants and nonequilibrium density matrices. J. Stat. Phys. 1977, 16, 357–370. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Man’ko, V.I. Integrals of motion of pure and mixed quantum systems. Phys. A 1978, 94, 403–412. [Google Scholar] [CrossRef]
- Kim, S.P.; Santana, A.E.; Khanna, F.C. Generalized invariants and quantum evolution of open fermionic systems. Phys. Lett. A 2000, 272, 46–52. [Google Scholar] [CrossRef] [Green Version]
- Abe, S. Weak invariants of time-dependent quantum dissipative systems. Phys. Rev. A 2016, 94, 032116. [Google Scholar] [CrossRef] [Green Version]
- Dodonov, V.V. Universal integrals of motion and universal invariants of quantum systems. J. Phys. A Math. Gen. 2000, 33, 7721–7738. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Man’ko, O.V. Universal invariants of quantum-mechanical and optical systems. J. Opt. Soc. Am. A 2000, 17, 2403–2410. [Google Scholar] [CrossRef]
- Sudarshan, E.C.G.; Chiu, C.B.; Bhamathi, G. Generalized uncertainty relations and characteristic invariants for the multimode states. Phys. Rev. A 1995, 52, 43–54. [Google Scholar] [CrossRef]
- Hernández, E.S.; Remaud, B. Quantal fluctuations and invariant operators for a general time-dependent harmonic oscillator. Phys. Lett. A 1980, 75, 269–272. [Google Scholar] [CrossRef] [Green Version]
- Turner, R.E.; Snider, R.F. A phase space moment method for classical and quantum dynamics. Can. J. Phys. 1981, 59, 457–470. [Google Scholar] [CrossRef]
- Simon, R.; Mukunda, N.; Sudarshan, E.C.G. Partially coherent beams and a generalized ABCD-law. Opt. Commun. 1988, 65, 322–328. [Google Scholar] [CrossRef]
- Holm, D.D.; Lysenko, W.P.; Scovel, J.C. Moment invariants for the Vlasov equation. J. Math. Phys. 1990, 31, 1610–1615. [Google Scholar] [CrossRef]
- Bastiaans, M.J. Second-order moments of the Wigner distribution function in first-order optical systems. Optik 1991, 88, 163–168. [Google Scholar]
- Serna, J.; Martínez-Herrero, R.; Mejías, P.M. Parametric characterization of general partially coherent beams propagating through ABCD optical systems. J. Opt. Soc. Am. A 1991, 8, 1094–1098. [Google Scholar] [CrossRef]
- Dragt, A.J.; Neri, F.; Rangarajan, G. General moment invariants for linear Hamiltonian systems. Phys. Rev. A 1992, 45, 2572–2585. [Google Scholar] [CrossRef] [PubMed]
- Bastiaans, M.J. ABCD law for partially coherent Gaussian light, propagating through first-order optical systems. Opt. Quant. Electron. 1992, 24, S1011–S1019. [Google Scholar] [CrossRef]
- Martínez-Herrero, R.; Mejías, P.M.; Sanchez, M.; Neira, J.L.H. 3rd-order and 4th-order parametric characterization of partially coherent beams propagating through ABCD optical systems. Opt. Quant. Electron. 1992, 24, S1021–S1026. [Google Scholar] [CrossRef]
- Onciul, D. Invariance properties of general astigmatic beams through first-order optical systems. J. Opt. Soc. Am. A 1993, 10, 295–298. [Google Scholar] [CrossRef]
- Dragoman, D. Higher-order moments of the Wigner distribution function in first-order optical systems. J. Opt. Soc. Am. A 1994, 11, 2643–2646. [Google Scholar] [CrossRef]
- Atakishiyev, N.M.; Chumakov, S.M.; Rivera, A.L.; Wolf, K.B. On the phase space description of quantum nonlinear dynamics. Phys. Lett. A 1996, 215, 128–134. [Google Scholar] [CrossRef]
- Martínez-Herrero, R.; Mejías, P.M. On the fourth-order spatial characterization of laser beams: New invariant parameter through ABCD systems. Opt. Commun. 1997, 140, 57–60. [Google Scholar] [CrossRef]
- Sarris, C.M.; Caram, F.; Proto, A.N. The uncertainty principle as invariant of motion for time-dependent Hamiltonians. Phys. Lett. A 2004, 324, 1–8. [Google Scholar] [CrossRef]
- Sarris, C.M.; Proto, A.N. Time-dependent invariants of motion for complete sets of non-commuting observables. Phys. A 2005, 348, 97–109. [Google Scholar] [CrossRef]
- Simon, R.; Mukunda, N.; Dutta, B. Quantum-noise matrix for multimode systems: U(n) invariance, squeezing, and normal forms. Phys. Rev. A 1994, 49, 1567–1583. [Google Scholar] [CrossRef] [Green Version]
- Serafini, A.; Illuminati, F.; De Siena, S. Symplectic invariants, entropic measures and correlations of Gaussian states. J. Phys. B At. Mol. Opt. Phys. 2004, 37, L21–L28. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Man’ko, O.V. Quantum damped oscillator in a magnetic field. Phys. A 1985, 130, 353–366. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dodonov, V.V. Invariant Quantum States of Quadratic Hamiltonians. Entropy 2021, 23, 634. https://doi.org/10.3390/e23050634
Dodonov VV. Invariant Quantum States of Quadratic Hamiltonians. Entropy. 2021; 23(5):634. https://doi.org/10.3390/e23050634
Chicago/Turabian StyleDodonov, Viktor V. 2021. "Invariant Quantum States of Quadratic Hamiltonians" Entropy 23, no. 5: 634. https://doi.org/10.3390/e23050634
APA StyleDodonov, V. V. (2021). Invariant Quantum States of Quadratic Hamiltonians. Entropy, 23(5), 634. https://doi.org/10.3390/e23050634