Information and Self-Organization II: Steady State and Phase Transition
Abstract
:1. Introduction
2. Reminders
2.1. A Concise Introduction of the Basic Terms
2.2. Previous Comparisons between Friston’s FEP and Synergetics’ 2nd Foundation
2.3. Previous Comparison between FEP and SIRNIA
2.4. On Schrödinger’s What Is Life and Friston’s FEP
2.5. The System’s Probability Distribution
- (1)
- Parameters that are fixed externally (some of them are used as control parameters).
- (2)
- Variables that describe the dynamic response of the system to .
- (1)
- How to derive ?
- (2)
- How to utilize the information contained in ?
3. Microscopic Theory
3.1. Goal
3.2. Experimental Set-Up
3.3. Basic Variables, Parameters and Processes
- (1)
- it gives rise to damping—,
- (2)
- and to a fluctuating force , where the statical average is (These fluctuating forces change very quickly and are sometimes referred to as random fluctuations).
- (a)
- stemming from the interaction of atom μ with the field represented by ;
- (b)
- coupling of atom μ to a reservoir leading to damping with a rate constant γ;
- (c)
- and to a fluctuating force , characterized by
3.4. Summary of the Basic Laser Equations
- (a)
- a deterministic cause: the first two brackets in (8);
- (b)
- a stochastic cause, .
3.5. Derivation of the Probability Distribution P
- is the total fluctuation intensity.
- * This distribution function can be linked to the photon distribution function that has been precisely measured, confirming (16).
4. The Free Energy Principle and Its Metamorphosis: From Helmholtz (Thermodynamics) and Feynman (Statistical Mechanics) to MacKay (Information Theory) and Friston (Life Sciences)
4.1. Helmholtz Free Energy
4.2. Thermodynamics and Information Theory Have the Same Root: Combinatorics and Large Numbers
4.3. Jaynes’ Maximum (Information) Entropy Principle
4.4. Feynman’s Free Energy Principle
4.5. An Example: The Ising Model
4.6. The Free Energy Principle beyond Physics
4.7. Synergetics 2nd Foundation
4.8. Summary
5. Bayesian Inference
5.1. Interlude: How to Find a Generative Model?
5.2. Variational Bayesian Inference
6. Life as a Steady State
- How did life originate?
- How does it evolve?
- How does it maintain a steady state, be it at the level of phylogenesis or ontogenesis?
6.1. Friston’s Free Energy Principle. An Example
- (1)
- A learning phase: by choosing r and measuring , it can determine and (with limits!)
- (2)
- A prediction phase: Having fixed (which happens at the neuronal level), the animal may predict when it has selected action .
6.2. The FEP and Synergetics 2nd Foundation: A Comparison
- a variational principle;
- a generative model.
- (a)
- In Friston’s case, the variational principle is FEP, and the formulation of the generative model is in the hands of the “modeler”.
- (b)
- In Synergetics 2nd Foundation, the variational principle is Jaynes’ Maximum (Information) Entropy Principle. The formulation of the generative model may be reduced to the selection of constraints in the form of moments and correlation functions, but it can also be chosen freely depending on appropriate constraints.
Exploration of a Room by Blindfolded Persons
7. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haken, H.; Portugali, J. Information and Selforganization: A Unifying Approach and Applications. Entropy 2016, 18, 197. [Google Scholar] [CrossRef] [Green Version]
- Haken, H.; Portugali, J. Information Adaptation. The Interplay between Shannon and Semantic Information in Cognition; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Friston, K. The free-energy principle: A unified brain theory? Nat. Rev. Neurosci. 2010, 11, 127–138. [Google Scholar] [CrossRef]
- Schrödinger, E. What is Life? Cambridge Univ Press: Cambridge, UK, 1944. [Google Scholar]
- Haken, H.; Portugali, J. Synergetic Cities: Information, Steady State and Phase Transition: Implications to Urban Scaling, Smart Cities and Planning; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Haken, H. Synergetics. Introduction and Advanced Topics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2004. [Google Scholar]
- Helmholtz, H. Physical Memoirs, Selected and Translated from Foreign Sources; Kessinger Publishing, LLC: Whitefish, MT, USA, 1882. [Google Scholar]
- Feynman, R.P.; Lebowitz, J.L. Statistical Mechanics: A Set of Lectures; W. A. Benjamin: Reading, MA, USA, 1972. [Google Scholar]
- MacKay, D.J.C. Free-energy minimization algorithm for decoding and cryptoanalysis. Electron. Lett. 1995, 31, 445–447. [Google Scholar] [CrossRef]
- MacKay, D.J.C. Information Theory, Inference & Learning Algorithms; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Bayes, T. An Essay towards Solving a Problem in the Doctrine of Chances; Prince, Ed.; Philosophical Transactions Royal Society: London, UK, 1763; Volume 53, pp. 370–418. [Google Scholar]
- Da Costa, L.; Parr, T.; Sengupta, B.; Friston, K. Neural Dynamics under Active Inference: Plausibility and Efficiency of Information Processing. Entropy 2021, 23, 454. [Google Scholar] [CrossRef]
- Haken, H. Synergetics—An Introduction; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1977. [Google Scholar]
- Haken, G. Information and Self-Organization: A Macroscopic Approach to Complex Systems, 3rd ed.; enlarged ed.; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press: Urbana, IL, USA, 1949. [Google Scholar]
- Portugali, J. Complexity, Cognition and the City; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Portugali, J. What makes cities complex? In Complexity, Cognition Urban Planning and Design; Portugali, J., Stolk, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Brillouin, L. The Negentropy Principle of Information. J. Appl. Phys. 1953, 24, 1152–1163. [Google Scholar] [CrossRef]
- Ramstead, M.J.D.; Badcock, P.J.; Friston, K.J. Answering Schrödinger’s question: A free-energy formulation. Phys. Life Rev. 2018, 24, 1–16. [Google Scholar] [CrossRef]
- Haken, H. Light Vol. 2. Laser Light Dynamics; Elsevier Science: Amsterdam, The Netherlands; New York, NY, USA, 1985. [Google Scholar]
- Schawlow, A.L.; Townes, C.H. Optical maser. Phys. Rev. 1958, 112, 1940. [Google Scholar] [CrossRef] [Green Version]
- Boltzman, S. über die Beziehung zwischen dem Zweiten Hauptsatze der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung resp. den Sätzen über das Wärmegleichgewicht, Sitzungsber. Akad. Wiss. Wien II 1877, 76, 428. [Google Scholar]
- Planck, M. The Genesis and Present State of Development of the Quantum Theory. Nobel Lecture. 1920. Available online: https://www.nobelprize.org/prizes/physics/1918/planck/lecture/ (accessed on 29 May 2021).
- Jaynes, E.T. Information theory and statistical mechanics I. Phys. Rev. 1957, 106, 620–630. [Google Scholar] [CrossRef]
- Jaynes, E.T. Information theory and statistical mechanics II. Phys. Rev. 1957, 108, 171–190. [Google Scholar] [CrossRef]
- Friston, K.; Jérémie, M.; Trujillo-Barreto, N.; Ashburner, J.; Penny, W. Variational free energy and the Laplace ap-proximation. NeuroImage 2007, 34, 220–234. [Google Scholar] [CrossRef] [PubMed]
- Gottwald, S.; Braun, D.A. The two kinds of free energy and the Bayesian revolution. PLoS Comput. Biol. 2020, 16. [Google Scholar] [CrossRef]
- Maturana, H.R.; Varela, F.J. Autopoiesis and cognition: The realization of the living. In Boston Studies in the Philosophy and History of Science, 1st ed.; Reidel: Dordrecht, The Netherlands, 1972. [Google Scholar]
- Friston, K.; Mattout, J.; Kilner, J. Action understanding and active inference. Biol. Cybern. 2011, 104, 137–160. [Google Scholar] [CrossRef] [Green Version]
- Friston, K.J.; Rosch, R.; Parr, T.; Price, C.; Bowman, H. Deep temporal models and active inference. Neurosci. Biobehav. Rev. 2017, 77, 388–402. [Google Scholar] [CrossRef] [PubMed]
- Parr, T.; Friston, K.J. Generalized free energy and active inference. Biol. Cybern. 2019, 113, 495–513. [Google Scholar] [CrossRef] [Green Version]
- Schnell, A.K.; Boeckle, M.; Rivera, M.; Clayton, N.S.; Hanlon, R.T. Cuttlefish exert self-control in a delay of gratification task. Proc. R. Soc. B Biol. Sci. 2021, 288, 20203161. [Google Scholar] [CrossRef] [PubMed]
- Rao, R.P.; Ballard, D.H. Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 1999, 2, 79–87. [Google Scholar] [CrossRef]
- Clark, A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav. Brain Sci. 2013, 36, 181–204. [Google Scholar] [CrossRef]
- Hohwy, J. The Predictive Mind; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Tschacher, W.; Haken, H. Intentionality in non-equilibrium systems? The functional aspects of self-organised pattern formation. New Ideas Psychol. 2007, 25, 1–15. [Google Scholar] [CrossRef]
- Wilson, H.R.; Cowan, J.D. Excitatory and Inhibitory Interactions in Localized Populations of Model Neurons. Biophys. J. 1972, 12, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Wilson, H.R.; Cowan, J.D. A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Biol. Cybern. 1973, 13, 55–80. [Google Scholar] [CrossRef]
- Jirsa, V.K.; Haken, H. A derivation of a macroscopic field theory of the brain from the quasi-microscopic neural dynamics. Phys. D Nonlinear Phenom. 1997, 4, 503–526. [Google Scholar] [CrossRef]
- Golani, I.; Kafkafi, N.; Drai, D. Phenotyping stereotypic behaviour: Collective variables, range of variation and predictability. Appl. Anim. Behav. Sci. 1999, 65, 191–220. [Google Scholar] [CrossRef]
- Yaski, O.; Portugali, J.; Eilam, D. The dynamic process of cognitive mapping in the absence of visual cues: Human data compared with animal studies. J. Exp. Biol. 2009, 212, 2619–2626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaski, O.; Portugali, J.; Eilam, D. City rats: Insight from rat spatial behavior into human cognition in urban environments. Anim. Cogn. 2011, 14, 655–663. [Google Scholar] [CrossRef]
- Yaski, O.; Portugali, J.; Eilam, D. Arena geometry and path shape: When rats travel in straight or in circuitous paths? Behav. Brain Res. 2011, 225, 449–454. [Google Scholar] [CrossRef]
- Yaski, O.; Portugali, J.; Eilam, D. Traveling in the dark: The legibility of a regular and predictable structure of the en-vironment extends beyond its borders. Behav. Brain Res. 2012, 229, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Schmidhuber, J. Curious model-building control systems. In Proceedings of the International Joint Conference on Neural Networks, Singapore, 18–21 November 1991. [Google Scholar]
- Friston, K.J.; Fitzgerald, T.H.B.; Rigoli, F.; Schwartenbeck, P.; Pezzulo, G. Active Inference: A Process Theory. Neural Comput. 2017, 29, 1–49. [Google Scholar] [CrossRef] [Green Version]
- Bruineberg, J.; Rietveld, E.; Parr, T.; van Maanen, L.; Friston, K.J. Free-energy minimization in joint agent-environment systems: A niche construction perspective. J. Theor. Biol. 2018, 455, 161–178. [Google Scholar] [CrossRef]
- Constant, A.; Ramstead, M.J.D.; Veissiere, S.P.L.; Campbell, J.O.; Friston, K.J. A variational approach to niche construction. J. R. Soc. Interface 2018, 15. [Google Scholar] [CrossRef] [PubMed]
- Kuchling, F.; Friston, K.; Georgiev, G.; Levin, M. Morphogenesis as Bayesian inference: A variational approach to pattern formation and control in complex biological systems. Phys. Life Rev. 2019, 33, 88–108. [Google Scholar] [CrossRef] [PubMed]
- Turing, A. The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 1952, 237, 37–72. [Google Scholar]
- Prigogine, I.; Nicolis, G. On Symmetry-Breaking Instabilities in Dissipative Systems. J. Chem. Phys. 1967, 46, 3542. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haken, H.; Portugali, J. Information and Self-Organization II: Steady State and Phase Transition. Entropy 2021, 23, 707. https://doi.org/10.3390/e23060707
Haken H, Portugali J. Information and Self-Organization II: Steady State and Phase Transition. Entropy. 2021; 23(6):707. https://doi.org/10.3390/e23060707
Chicago/Turabian StyleHaken, Hermann, and Juval Portugali. 2021. "Information and Self-Organization II: Steady State and Phase Transition" Entropy 23, no. 6: 707. https://doi.org/10.3390/e23060707
APA StyleHaken, H., & Portugali, J. (2021). Information and Self-Organization II: Steady State and Phase Transition. Entropy, 23(6), 707. https://doi.org/10.3390/e23060707