Impacts of Uniform Magnetic Field and Internal Heated Vertical Plate on Ferrofluid Free Convection and Entropy Generation in a Square Chamber
Abstract
:1. Introduction
2. Mathematical Formulation
3. Numerical Procedure
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
B | magnitude of the uniform magnetic field (kg⋅s−2⋅A−1) |
Be | local Bejan number (–) |
Beavg | average Bejan number (–) |
c | heat capacity (J⋅kg−1⋅K−1) |
d | dimensional length of the plate (m) |
g | gravitational acceleration (m⋅s−2) |
Ge | Gebhart number (–) |
Ha | Hartmann number (–) |
k | thermal conductivity (W⋅m−1⋅K−1) |
L | size of the cavity (m) |
Nu | local Nusselt number (–) |
average Nusselt number (–) | |
p | dimensionless pressure (–) |
dimensional pressure (Pa) | |
Pr | Prandtl number (–) |
Ra | Rayleigh number (–) |
dimensional local entropy generation (W⋅m−3⋅K−1) | |
dimensionless local entropy generation (–) | |
dimensionless average total entropy generation (–) | |
dimensional local entropy generation due to fluid friction (W⋅m−3⋅K−1) | |
dimensionless local entropy generation due to fluid friction (–) | |
dimensionless average entropy generation due to fluid friction (–) | |
dimensional local entropy generation due to heat transfer (W⋅m−3⋅K−1) | |
dimensionless local entropy generation due to heat transfer (–) | |
dimensionless average entropy generation due to heat transfer (–) | |
dimensional local entropy generation due to external magnetic field (W⋅m−3⋅K−1) | |
dimensionless local entropy generation due to external magnetic field (–) | |
dimensionless average entropy generation due to external magnetic field (–) | |
T | dimensional temperature (K) |
t | dimensional time (s) |
Th1, Th2 | dimensional temperature range at heated plate (K) |
Tc | dimensional temperature at cooled vertical walls (K) |
dimensional velocity components along horizontal and vertical directions (m⋅s−1) | |
u, v | dimensionless velocity components along horizontal and vertical directions (–) |
dimensional Cartesian coordinate measured along the bottom wall of the cavity (m) | |
dimensional Cartesian coordinate measured along the vertical wall of the cavity (m) | |
x, y | dimensionless Cartesian coordinates (–) |
Greek symbols | |
α | thermal diffusivity (m2⋅s−1) |
β | coefficient of thermal expansion (K−1) |
γ | inclination angle of the magnetic field (–) |
δ | dimensionless length of the plate (–) |
θ | dimensionless temperature (–) |
λ | temperature parameter (–) |
μ | dynamic viscosity (Pa⋅s) |
ρ | fluid density (kg⋅m−3) |
σ | electrical conductivity of the fluid (Ω−1⋅m−1) |
τ | dimensionless time (–) |
φ | nanoparticles volume fraction (–) |
ψ | dimensionless stream function (–) |
Ω | dimensionless temperature difference (–) |
Subscripts | |
c | cold |
f | fluid |
h | hot |
nf | nanofluid |
p | particle |
References
- Bergman, T.L.; Lavine, A.S.; Incropera, F.P.; Dewitt, D.P. Fundamentals of Heat and Mass Transfer, 7th ed.; Wiley: New York, NY, USA, 2011. [Google Scholar]
- Shenoy, A.; Sheremet, M.; Pop, I. Convective Flow and Heat Transfer from Wavy Surfaces: Viscous Fluids, Porous Media and Nanofluids; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Mahian, O.; Kolsi, L.; Amani, M.; Estelle, P.; Ahmadi, G.; Kleinstreuer, C.; Marshall, J.S.; Siavashi, M.; Taylor, R.A.; Niazmand, H.; et al. Recent advances in modeling and simulation of nanofluid flows—Part I: Fundamentals and theory. Phys. Rep. 2019, 790, 1–48. [Google Scholar] [CrossRef]
- Mahian, O.; Kolsi, L.; Amani, M.; Estelle, P.; Ahmadi, G.; Kleinstreuer, C.; Marshall, J.S.; Taylor, R.A.; Abu-Nada, E.; Rashidi, S.; et al. Recent advances in modeling and simulation of nanofluid flows—Part II: Applications. Phys. Rep. 2019, 791, 1–59. [Google Scholar] [CrossRef]
- Sheikholeslami, M.; Mahian, O. Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems. J. Clean. Prod. 2019, 215, 963–977. [Google Scholar] [CrossRef]
- Gkountas, A.A.; Benos, L.T.; Sofiadis, G.N.; Sarris, I.E. A printed-circuit heat exchanger consideration by exploiting an Al2O3-water nanofluid: Effect of the nanoparticles interfacial layer on heat transfer. Therm. Sci. Eng. Prog. 2021, 22, 100818. [Google Scholar] [CrossRef]
- Kotia, A.; Rajkhowa, P.; Rao, G.S.; Ghosh, S.K. Thermophysical and tribological properties of nanolubricants: A review. Heat Mass Transf. 2018, 54, 3493–3508. [Google Scholar] [CrossRef]
- Gomez-Villarejo, R.; Estelle, P.; Navas, J. Boron nitride nanotubes-based nanofluids with enhanced thermal properties for use as heat transfer fluids in solar thermal applications. Sol. Energy Mater. Sol. Cells 2020, 205, 110266. [Google Scholar] [CrossRef]
- Odenbach, S.; Gerbeth, G. Magnetic flow control. GAMM Mitt. 2007, 30, 110–112. [Google Scholar] [CrossRef]
- Karvelas, E.G.; Lampropoulos, N.K.; Benos, L.T.; Karakasidis, T.; Sarris, I.E. On the magnetic aggregation of Fe3O4 nanoparticles. Comput. Methods Programs Biomed. 2021, 198, 105778. [Google Scholar] [CrossRef]
- Bejan, A. Entropy Generation through Heat and Fluid Flow; Wiley: New York, NY, USA, 1982. [Google Scholar]
- Bejan, A. Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Bejan, A. Advanced Engineering Thermodynamics, 4th ed.; Wiley: New York, NY, USA, 2016. [Google Scholar]
- Mahmoudi, A.H.; Pop, I.; Shahi, M.; Talebi, F. MHD natural convection and entropy generation in a trapezoidal enclosure using Cu–water nanofluid. Comput. Fluids 2013, 72, 46–62. [Google Scholar] [CrossRef]
- Kefayati, G.H.R. Simulation of heat transfer and entropy generation of MHD natural convection of non-Newtonian nanofluid in an enclosure. Int. J. Heat Mass Transf. 2016, 92, 1066–1089. [Google Scholar] [CrossRef]
- Kefayati, G.H.R.; Tang, H. Simulation of natural convection and entropy generation of MHD non-Newtonian nanofluid in a cavity using Buongiorno’s mathematical model. Int. J. Hydroden Energy 2017, 42, 17284–17327. [Google Scholar] [CrossRef]
- Ghasemi, K.; Siavashi, M. MHD nanofluid free convection and entropy generation in porous enclosures with different conductivity ratios. J. Magn. Magn. Mater. 2017, 442, 474–490. [Google Scholar] [CrossRef]
- Khan, A.; Karim, F.; Khan, I.; Alkanhal, T.A.; Ali, F.; Khan, D.; Nisar, K.S. Entropy generation in MHD conjugate flow with wall shear stress over an infinite plate: Exact analysis. Entropy 2019, 21, 359. [Google Scholar] [CrossRef] [Green Version]
- Awad, M.M. A new definition of Bejan number. Therm. Sci. 2012, 16, 1251–1253. [Google Scholar] [CrossRef] [Green Version]
- Awad, M.M.; Lage, J.L. Extending the Bejan number to a general form. Therm. Sci. 2013, 17, 631–633. [Google Scholar] [CrossRef]
- Awad, M.M. Hagen number versus Bejan number. Therm. Sci. 2013, 17, 1245–1250. [Google Scholar] [CrossRef] [Green Version]
- Awad, M.M. An alternative form of the Darcy equation. Therm. Sci. 2014, 18, 617–619. [Google Scholar] [CrossRef]
- Awad, M.M. A review of entropy generation in microchannels. Adv. Mech. Eng. 2015, 7, 1–32. [Google Scholar] [CrossRef]
- Rashad, A.M.; Armaghani, T.; Chamkha, A.J.; Mansour, M.A. Entropy generation and MHD natural convection of a nanofluid in an inclined square porous cavity: Effects of a heat sink and source size and location. Chin. J. Phys. 2018, 56, 193–211. [Google Scholar] [CrossRef]
- Astanina, M.S.; Sheremet, M.A.; Oztop, H.F.; Abu-Hamdeh, N. MHD natural convection and entropy generation of ferrofluid in an open trapezoidal cavity partially filled with a porous medium. Int. J. Mech. Sci. 2018, 136, 493–502. [Google Scholar] [CrossRef]
- Parveen, R.; Mahapatra, T.R. Numerical simulation of MHD double diffusive natural convection and entropy generation in a wavy enclosure filled with nanofluid with discrete heating. Heliyon 2019, 5, e02496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elshehabey, H.M.; Raizah, Z.; Oztop, H.F.; Ahmed, S.E. MHD natural convective flow of Fe3O4-H2O ferrofluids in an inclined partial open complex-wavy-walls ringed enclosures using non-linear Boussinesq approximation. Int. J. Mech. Sci. 2020, 170, 105352. [Google Scholar] [CrossRef]
- Afsana, S.; Molla, M.M.; Nag, P.; Saha, L.K.; Siddiqa, S. MHD natural convection and entropy generation of non-Newtonian ferrofluid in a wavy enclosure. Int. J. Mech. Sci. 2021, 198, 106350. [Google Scholar] [CrossRef]
- Jang, S.P.; Choi, S.U.S. Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl. Phys. Lett. 2004, 84, 4316. [Google Scholar] [CrossRef]
- Yu, W.; Choi, S.U.S. The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model. J. Nanoparticle Res. 2003, 5, 167–171. [Google Scholar] [CrossRef]
- Benos, L.T.; Karvelas, E.G.; Sarris, I.E. Crucial effect of aggregations in CNT-water nanofluid magnetohydrodynamic natural convection. Therm. Sci. Eng. Prog. 2019, 11, 263–271. [Google Scholar] [CrossRef]
- Xie, H.; Fujii, M.; Zhang, X. Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. Int. J. Heat Mass Transf. 2005, 48, 2926–2932. [Google Scholar] [CrossRef]
- Sivaraj, C.; Sheremet, M.A. MHD natural convection and entropy generation of ferrofluids in a cavity with a non-uniformly heated horizontal plate. Int. J. Mech. Sci. 2018, 149, 326–337. [Google Scholar] [CrossRef]
- Patankar, S.V. Numerical Heat Transfer and Fluid Flow; Hemisphere Publishing Corporation: New York, NY, USA, 1980. [Google Scholar]
- Hayase, T.; Humphrey, J.A.C.; Greif, R. A consistently formulated QUICK scheme for fast and stable convergence using finite-volume iterative calculation procedures. J. Comput. Phys. 1992, 98, 108–118. [Google Scholar] [CrossRef]
- Ghasemi, B.; Aminossadati, S.M.; Raisi, A. Magnetic field effect on natural convection in a nanofluid-filled square enclosure. Int. J. Therm. Sci. 2011, 50, 1748–1756. [Google Scholar] [CrossRef]
- Famouri, M.; Hooman, K. Entropy generation for natural convection by heated partitions in a cavity. Int. Commun. Heat Mass Transf. 2008, 35, 492–502. [Google Scholar] [CrossRef] [Green Version]
φ = 0 | φ = 0.02 | φ = 0.04 | φ = 0.06 | |
---|---|---|---|---|
Data [36] | 4.738 | 4.820 | 4.896 | 4.968 |
Obtained outcomes | 4.7306 | 4.8133 | 4.8908 | 4.9633 |
Ω | 0.02 | 0.04 | 0.06 | 0.08 | 0.1 |
---|---|---|---|---|---|
Data [37] | 6.701 | 6.576 | 6.457 | 6.342 | 6.231 |
Obtained outcomes | 6.8539 | 6.7219 | 6.5952 | 6.4733 | 6.3558 |
Grid | 103 × 103 | 203 × 203 | 303 × 303 | 403 × 403 |
---|---|---|---|---|
26.0023 | 25.8046 | 25.7620 | 25.7431 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sivaraj, C.; Gubin, V.E.; Matveev, A.S.; Sheremet, M.A. Impacts of Uniform Magnetic Field and Internal Heated Vertical Plate on Ferrofluid Free Convection and Entropy Generation in a Square Chamber. Entropy 2021, 23, 709. https://doi.org/10.3390/e23060709
Sivaraj C, Gubin VE, Matveev AS, Sheremet MA. Impacts of Uniform Magnetic Field and Internal Heated Vertical Plate on Ferrofluid Free Convection and Entropy Generation in a Square Chamber. Entropy. 2021; 23(6):709. https://doi.org/10.3390/e23060709
Chicago/Turabian StyleSivaraj, Chinnasamy, Vladimir E. Gubin, Aleksander S. Matveev, and Mikhail A. Sheremet. 2021. "Impacts of Uniform Magnetic Field and Internal Heated Vertical Plate on Ferrofluid Free Convection and Entropy Generation in a Square Chamber" Entropy 23, no. 6: 709. https://doi.org/10.3390/e23060709
APA StyleSivaraj, C., Gubin, V. E., Matveev, A. S., & Sheremet, M. A. (2021). Impacts of Uniform Magnetic Field and Internal Heated Vertical Plate on Ferrofluid Free Convection and Entropy Generation in a Square Chamber. Entropy, 23(6), 709. https://doi.org/10.3390/e23060709