The Electrochemical Stability of Starch Carbon as an Important Property in the Construction of a Lithium-Ion Cell
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Preparation of Carbon Material
2.2. Electrochemical Impedance Spectroscopy (EIS)
3. Results and Discussion
3.1. Bode Plots
3.2. Nyquist Plots
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dos Santos, M.C.; Maynart, M.C.; Aveiro, L.R.; da Paz, E.C.; Pinheiro, V.D.S. Carbon-Based Materials: Recent Advances, Challenges, and Perspectives. Ref. Modul. Mater. Sci. Mater. Eng. 2017, 2–8. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, Y.; Song, N.; Li, X. Biomass-derived renewable carbon materials for electrochemical energy storage. Mater. Res. Lett. 2017, 5, 69–88. [Google Scholar] [CrossRef]
- Bakierska, M.; Molenda, M.; Majda, D.; Dziembaj, R. Functional Starch Based Carbon Aerogels for Energy Applications. Proc. Eng. 2014, 98, 14–19. [Google Scholar] [CrossRef] [Green Version]
- Biliaderis, C.G.; BeMiller, E.J.; Whistler, R. Starch Use in Food, Starch Structure, Properties and Physical Methods of Analysis, Structural Transistions and Related Physcial Properties of Starch. In Starch Chemistry and Technology; Academic Press: Cambridge, MA, USA, 2009; pp. 1–22, 186–761. [Google Scholar]
- Kubicka, M.; Bakierska, M.; Chudzik, K.; Rutkowska, M.; Pacek, J.; Molenda, M. Electrochemical Properties and Structure Evolution of Starch-Based Carbon Nanomaterials as Li-Ion Anodes with Regard to Thermal Treatment. Polymers 2019, 11, 1527. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Chen, M.; Wang, C. Spherical hard carbon prepared from potato starch using as anode material for Li-ion batteries. Mater. Lett. 2011, 65, 3368–3370. [Google Scholar] [CrossRef]
- Xijun, L.; Yan, W.; Wei, Z.; Lin, L.; Kunsheng, Z.; Wanyu, W. Retrograded starches as potential anodes in lithium-ion rechargeable batteries. Int. J. Biol. Macromol. 2012, 51, 632–634. [Google Scholar]
- Klapiszewski, Ł.; Szalaty, T.J.; Kurc, B.; Stanisz, M.; Skrzypczak, A.; Jesionowski, T. Functional Hybrid Materials Based on Manganese Dioxide and Lignin Activated by Ionic Liquids and Their Application in the Production of Lithium Ion Batteries. Int. J. Mol. Sci. 2017, 18, 1509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, X.; Liu, H.; Zhang, J. Lithium-Ion Batteries, Advanced Materials and Technologies; CRC Press: Boca Raton, FL, USA, 2011; pp. 198–206. [Google Scholar]
- Korthauer, R. Lithium-Ion Batteries Basics and Applications; Springer: Berlin/Heidelberg, Germany, 2018; pp. 103–292. [Google Scholar]
- Mishra, A.; Mehta, A.; Basu, S.; Malode, S.J.; Shetti, N.P.; Shukla, S.S.; Nadagouda, M.N.; Aminabhavi, T.M. Electrode materials for lithium-ion batteries. Mater. Sci. Energy Technol. 2018, 1, 182–187. [Google Scholar] [CrossRef]
- Aravindan, V.; Gnanaraj, J.; Lee, Y.-S.; Madhavi, S. LiMnPO4—A next generation cathode material for lithium-ion batteries. J. Mater. Chem. A 2013, 1, 3518–3539. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y. Recent Progress of TiO2-Based Anodes for Li Ion Batteries. J. Nanomater. 2016, 2016, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Yue, G.; Wu, J.; Xiao, Y.; Huang, M.; Lin, J.; Lin, J.-Y. High performance platinum-free counter electrode of molybdenum sulfide–carbon used in dye-sensitized solar cells. J. Mater. Chem. A 2012, 1, 1495–1501. [Google Scholar] [CrossRef]
- Umar, M.I.A.; Naumar, F.Y.; Salleh, M.M.; Umar, A.A. Hydrothermally grown of well-aligned ZnONRs: Dependence of alignment ordering upon precursor concentration. J. Mater. Sci. Mater. Electron. 2018, 29, 6892–6897. [Google Scholar] [CrossRef]
- Abderrahmane, A.; Ko, P.J.; Thu, T.V.; Ishizawa, S.; Takamura, T.; Sandhu, A. High photosensitivity few-layered MoSe2 back-gated field-effect phototransistors. Nanotechnology 2014, 25, 365202. [Google Scholar] [CrossRef]
- Lim, A.; Haji, N.; Manaf, K.; Tennakoon, R.; Chandrakanthi, L.B.L.; Lim, J.; Bandara, P. Higher performance of DSSC with dyes from Cladophora sp. as mixed cosen sitizer through synergistic effect. J. Biophys. 2015, 7, 260–265. [Google Scholar]
- Sawatsuk, T.; Chindaduang, A.; Sae-Kung, C.; Pratontep, S.; Tumcharern, G. Dye-sensitized solar cells based on TiO2–MWCNTs composite electrodes: Performance improvement and their mechanisms. Diam. Relat. Mater. 2009, 18, 524–527. [Google Scholar] [CrossRef]
- Ma, N.; Kosassang, S.; Krittayavathananon, A.; Phattharasupakun, N.; Sethuraman, S.; Sawangphruk, M. Effect of intercalated alkaliions in layered manganese oxide nanosheets as neutral electrochemical capacitors. Chem. Commun. 2019, 55, 1213–1216. [Google Scholar] [CrossRef] [PubMed]
- Shinde, P.A.; Lokhande, V.C.; Ji, T.; Lokhande, C.D. Facile synthesis of hierarchical mesoporous weirds-like morphological MnO2 thin films on carbon cloth for high performance supercapacitorapplication. J. Colloid Interface Sci. 2017, 498, 202–209. [Google Scholar] [CrossRef]
- Qi, H.; Bo, Z.; Yang, S.; Duan, L.; Yang, H.; Yan, J.; Cen, K.; Ostrikov, K. Hierarchical nanocarbon–MnO2 electrodes for enhancedelectrochemical capacitor performance. Energy Storage Mater. 2019, 16, 607–618. [Google Scholar] [CrossRef]
- Misnon, I.I.; Aziz, R.A.; Zain, N.K.M.; Vichyadharan, B.; Krishnan, S.G.; Jose, R. High performance MnO2 nanoflower electrode andthe relationship between solvated ion size and specific capacitancein highly conductive electrolytes. Mater. Res. Bull. 2014, 57, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Orazem, M.E.; Tribollet, B. Electrochemical Impedance Spectroscopy; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008. [Google Scholar]
- Martinot, E.; Dienst, C.; Weiliang, L.; Qimin, C. Renewableenergy futures: Targets, scenarios, and pathways. Annu. Rev. Environ. Resour. 2007, 32, 205–239. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Lei, Z.; Jiujun, Z. A review of electrode materials forelectrochemical supercapacitors. Chem. Soc. Rev. 2012, 41, 797–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguiar, P.C.M.; Domínguez, L.A.; Costa, J.C.M.; Passos, R.R.; Pocrifka, L.A. Estudo da eletrodeposição do hidróxido de colbato aplicadoa supercapacitores. J. Eng. Exact Sci. 2017, 3, 696–704. [Google Scholar]
- Fang, D.-L.; Wu, B.-C.; Mao, A.-Q.; Yan, Y.; Zheng, C.-H. Supercapacitive properties of ultra-fine MnO2 prepared by a solid-state coordination reaction. J. Alloys Compd. 2010, 507, 526–530. [Google Scholar] [CrossRef]
- Relekar, B.P.; Mahadik, S.A.; Jadhav, S.T.; Patil, A.S.; Koli, R.R.; Lohar, G.M.; Fulari, V.J. Effect of electrodeposition potential on sur-face free energy and supercapacitance of MnO2 thin films. J. Electron. Mater. 2018, 47, 2731–2738. [Google Scholar] [CrossRef]
- Wang, C.; Jiao, Y.; Liang, D.; Wu, Y.; Li, J. A high-performance, all-textile and spirally wound asymmetric supecapacitors based oncore–sheath structured MnO2 nanoribbons and cotton–derived carbon cloth. Electrochim. Acta 2018, 285, 262–271. [Google Scholar]
- Shi, X.; Li, Y.; Chen, R.; Hongwei, N.; Zhan, W.; Zhang, B.; Zheng, F.; Dong, S. Defective carbon nanotube forest grown on stainless steelencapsulated in MnO2 nanosheets for supercapacitors. Electrochim. Acta 2018, 278, 61–71. [Google Scholar] [CrossRef]
- Xie, W.; Sun, M.; Li, Y.; Zhang, B.; Lang, X.; Zhu, Y.; Jiang, Q. Three-dimensional Ni/MnO2 nanocylinder array with high capacitance for supercapacitors. Results Phys. 2019, 12, 1411–1416. [Google Scholar] [CrossRef]
- Sanchez, J.S.; Pendashteh, A.; Palma, J.; Anderson, M.; Marcilla, R. Porous NiCoMn ternary metal oxide/graphene nanocomposites for high performance hybrid energy storage devices. Electochim. Acta 2018, 279, 44–56. [Google Scholar] [CrossRef]
- Yeh, J.-W.; Chen, S.K.; Lin, S.-J.; Gan, J.-Y.; Chin, T.-S.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Senkov, O.; Wilks, G.; Miracle, D.; Chuang, C.; Liaw, P. Refractory high-entropy alloys. Intermetallics 2010, 18, 1758–1765. [Google Scholar] [CrossRef]
- Hsu, C.-Y.; Yeh, J.-W.; Chen, S.-K.; Shun, T.-T. Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition. Met. Mater. Trans. A 2004, 35, 1465–1469. [Google Scholar] [CrossRef]
- Wen, L.; Kou, H.; Li, J.; Chang, H.; Xue, X.; Zhou, L. Effect of aging temperature on microstructure and properties of AlCoCrCuFeNi high-entropy alloy. Intermetallics 2009, 17, 266–269. [Google Scholar] [CrossRef]
- Thurston, K.V.; Gludovatz, B.; Hohenwarter, A.; Laplanche, G.; George, E.; Ritchie, R.O. Effect of temperature on the fatigue-crack growth behavior of the high-entropy alloy CrMnFeCoNi. Intermetallics 2017, 88, 65–72. [Google Scholar] [CrossRef]
- Yeh, J.-W. Alloy Design Strategies and Future Trends in High-Entropy Alloys. JOM 2013, 65, 1759–1771. [Google Scholar] [CrossRef]
- Turulski, J. Dimension of the Gibbs function topological manifold: 3. Configuration entropy determined by the isotopic composition of binary quasicrystals. J. Math. Chem. 2017, 55, 436–454. [Google Scholar] [CrossRef]
- Yeh, J.-W. Physical Metallurgy of High-Entropy Alloys. JOM 2015, 67, 2254–2261. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, X.; Liaw, P.K. Alloy Design and Properties Optimization of High-Entropy Alloys. JOM 2012, 64, 830–838. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Y.; Hui, X.; Wang, M.; Chen, G.; Zhang, A. Minor alloying behavior in bulk metallic glasses and high-entropy alloys. Sci. China Ser. G Phys. Mech. Astron. 2008, 51, 427–437. [Google Scholar] [CrossRef]
- Wang, J.; Cui, C.; Gao, G.; Zhou, X.; Wu, J.; Yang, H.; Li, Q.; Wu, G. A new method to prepare vanadium oxide nano-urchins as a cathode for lithium ion batteries. RSC Adv. 2015, 5, 47522–47528. [Google Scholar] [CrossRef]
- Amanor-Boadu, J.M.; Guiseppi-Elie, A.; Sánchez-Sinencio, E. The Impact of Pulse Charging Parameters on the Life Cycle of Lithium-Ion Polymer Batteries. Energies 2018, 11, 2162. [Google Scholar] [CrossRef] [Green Version]
- Pigłowska, M.; Kurc, B.; Kubiak, A. Physicochemical properties of raw starches and their impact on electrochemical activity—Biomolecule-based anode material. Bioelectrochemistry 2020, 136, 107619–107625. [Google Scholar] [CrossRef]
- Mai, S.; Wessel, J.; Dimitrova, A.; Stich, M.; Ivanov, S.; Krischok, S.; Bund, A. Nanoscale Morphological Changes at Lithium Interface, Triggered by the Electrolyte Composition and Electrochemical Cycling. J. Chem. 2019, 2019, 1–13. [Google Scholar] [CrossRef]
- Lijewski, P.; Kozak, M.; Fuć, P.; Rymaniak, Ł.; Ziółkowski, A. Exhaust emissions generated under actual operating conditions from a hybrid vehicle and an electric one fitted with a range extender. Transp. Res. Part D Transp. Environ. 2020, 78, 102183. [Google Scholar] [CrossRef]
- Ziolkowski, A. Automotive Thermoelectric Generator impact on the efficiency of a drive system with a combustion engine. MATEC Web Conf. 2017, 118, 00024. [Google Scholar] [CrossRef] [Green Version]
- Rymaniak, Ł.; Lijewski, P.; Kamińska, M.; Fuć, P.; Kurc, B.; Siedlecki, M.; Kalociński, T.; Jagielski, A. The role of real power output from farm tractor engines in determining their environmental performance in actual operating conditions. Comput. Electron. Agric. 2020, 173, 105405. [Google Scholar] [CrossRef]
- Merkisz, J.; Gallas, D.; Siedlecki, M.; Szymlet, N.; Sokolnicka, B. Exhaust emissions of an LPG powered vehicle in real operating conditions. In Proceedings of the E3S Web of Conferences, Warsaw, Poland, 3–6 December 2019; Volume 100, p. 00053. [Google Scholar]
Temperature (°C) | Min. Phase Angle for CSC (°) | Min. Phase Angle for Graphene (°) |
---|---|---|
25 | −34.8 (1 kHz) | −34.4 (0.013 Hz) and −34.2 (3.98 kHz) |
30 | −28.8 (2 kHz) | −41.2 (0.01 Hz) and −27.3 (3.98 kHz) |
35 | −25.7 (2.51 kHz) | −38.7 (0.026 Hz) and −26.2 (5.01 kHz) |
40 | −22.9 (3.16 kHz) | −42.2 (0.01 Hz) and −31.6 (3.98 kHz) |
45 | −19.7 (3.98 kHz) | −49.3 (0.026 Hz) and −27.4 (5.01 kHz) |
50 | −17.1 (5.01 kHz) | −52.4 (0.01 Hz) and −27.3 (6.31 kHz) |
Parameter | Rel (Ω) | RSEI (Ω) | Rct (Ω) |
Sample | |||
G25 | 13.68 | 152.9 | 44.44 × 10−1 |
G30 | 13.37 | 113.30 | 48.81 × 10−1 |
G35 | 13.30 | 96.86 | 183.30 × 10−1 |
G40 | 12.01 | 89.13 | 1.28 × 102 |
G45 | 10.20 | 83.46 | 9.17 × 102 |
G50 | 8.92 | 66.07 | 8.79 × 102 |
CSC25 | 15.14 | 58.30 | 1.42 × 10−1 |
CSC30 | 12.62 | 51.87 | 43.33 × 10−1 |
CSC35 | 11.50 | 36.28 | 93.11 × 10−1 |
CSC40 | 10.67 | 26.64 | 99.07 × 10−1 |
CSC45 | 9.81 | 18.46 | 135.9 × 10−1 |
CSC50 | 9.21 | 13.21 | 566.8 × 10−1 |
Parameter | CSC | Graphene |
---|---|---|
ESEI (kJ mol−1) | 25.33 | 24.06 |
Eel (kJ mol−1) | 15.22 | 13.84 |
Ect (kJ mol−1) | 68.18 | 118.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurc, B.; Pigłowska, M.; Rymaniak, Ł. The Electrochemical Stability of Starch Carbon as an Important Property in the Construction of a Lithium-Ion Cell. Entropy 2021, 23, 861. https://doi.org/10.3390/e23070861
Kurc B, Pigłowska M, Rymaniak Ł. The Electrochemical Stability of Starch Carbon as an Important Property in the Construction of a Lithium-Ion Cell. Entropy. 2021; 23(7):861. https://doi.org/10.3390/e23070861
Chicago/Turabian StyleKurc, Beata, Marita Pigłowska, and Łukasz Rymaniak. 2021. "The Electrochemical Stability of Starch Carbon as an Important Property in the Construction of a Lithium-Ion Cell" Entropy 23, no. 7: 861. https://doi.org/10.3390/e23070861
APA StyleKurc, B., Pigłowska, M., & Rymaniak, Ł. (2021). The Electrochemical Stability of Starch Carbon as an Important Property in the Construction of a Lithium-Ion Cell. Entropy, 23(7), 861. https://doi.org/10.3390/e23070861