Toward Learning Trustworthily from Data Combining Privacy, Fairness, and Explainability: An Application to Face Recognition
Abstract
:1. Introduction
2. Related Works
3. Preliminaries
4. Proposed Method
4.1. Making the Model Private
4.2. The Architecture of the Deep Model
4.3. Making the Model Fair
4.4. Making the Model Interpretable
5. Experimental Results
5.1. The Dataset
5.2. Tested Configurations
- The classical VGGNet-16-based face recognition architecture (see Figure 1a) under the following settings:
- –
- The architecture was trained with a random selection of 20,000 training and 10,000 test images from the training and test sets, respectively. We train every model for a total of 10 epochs using the ADADELTA [166] gradient descent method with mini batches of 150 images. The layers before the last convolution one (excluded)were not fine-tuned and would benefit from the parameters pre-trained on the VGG-Face dataset (see Section 4.2);
- –
- We investigated the case when the fairness constraint (see Section 4.3) is or is not imposed in the last convolutional layer;
- –
- We also derived the attention maps and the dimensionality reduction with respect to the last convolutional layer.
- The proposed VGGNet-16-based facial recognition architecture (see Figure 1b) under the following setting:
- –
- The architecture was trained with a random selection of 1000 training (because of the limitation imposed by HE; see Section 4.1) and 10,000 test images from the training and test sets, respectively. We trained every model for a total of 10 epochs using gradient descent [66]. Before the actual training could take place, the embeddings needed to be reduced to a much smaller representation vector due to the computational limitation imposed by HE (see Section 4.1). To perform this task, we trained the architecture depicted in Figure 1b without applying HE. We chose a 32-dimensional representation since it represents a good tradeoff between information compression (due to the HE limitations) and utility (the accuracy of the whole network remains unaltered). This preliminary phase observes the same settings imposed for training the classical architecture. Once the network parameters are trained for extracting the 32-dimensional representation vector, we reset the weights of the last two dense layers following again the original Gaussian distribution . This simulates the case when a new network is trained from scratch by applying privacy guarantees through HE. The layers before the last convolution one (excluded) were fine-tuned and could benefit from the parameters pre-trained on the VGG-Face dataset (see Section 4.2).
- –
- We investigate the case when HE was or was not exploited (see Section 4.1) in the last three layers of the network (see Figure 1b).
- –
- We investigated the case when the fairness constraint (see Section 4.3) was or was not imposed in the last hidden layer;
- –
- We derived the attention map with respect to the last convolutional layer. We applied, instead, the dimensionality reduction to the last hidden layer.
5.3. Accuracy vs. Difference of Demographic Parity
5.4. Computational Requirements
5.5. Attention Maps
5.6. Dimensionality Reduction
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Winfield, A.F.; Michael, K.; Pitt, J.; Evers, V. Machine ethics: The design and governance of ethical AI and autonomous systems. Proc. IEEE 2019, 107, 509–517. [Google Scholar] [CrossRef] [Green Version]
- Schneider, F.B. Trust in Cyberspace; National Academy Press: Washington, DC, USA, 1999. [Google Scholar]
- Jiang, R. A trustworthiness evaluation method for software architectures based on the principle of maximum entropy (POME) and the Grey decision-making method (GDMM). Entropy 2014, 16, 4818–4838. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Ethics Guidelines for Trustworthy AI. Available online: https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai (accessed on 21 June 2021).
- Borrellas, P.; Unceta, I. The Challenges of Machine Learning and Their Economic Implications. Entropy 2021, 23, 275. [Google Scholar] [CrossRef]
- Resource. How Robots are Reshaping ‘Dirty, Dull and Dangerous’ Recycling Jobs. Available online: https://resource.co/article/how-robots-are-reshaping-dirty-dull-and-dangerous-recycling-jobs (accessed on 21 June 2021).
- Smuha, N.A. The EU approach to ethics guidelines for trustworthy artificial intelligence. Comput. Law Rev. Int. 2019, 20, 97–106. [Google Scholar] [CrossRef]
- Mohri, M.; Rostamizadeh, A.; Talwalkar, A. Foundations of Machine Learning; MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Merkert, J.; Mueller, M.; Hubl, M. A Survey of the Application of Machine Learning in Decision Support Systems. In European Conference on Information Systems; Association for Information Systems: Atlanta, GA, USA, 2015. [Google Scholar]
- Hekler, A.; Utikal, J.S.; Enk, A.H.; Solass, W.; Schmitt, M.; Klode, J.; Schadendorf, D.; Sondermann, W.; Franklin, C.; Bestvater, F.; et al. Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images. Eur. J. Cancer 2019, 118, 91–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton, A.; et al. Mastering the game of Go without human knowledge. Nature 2017, 550, 354–359. [Google Scholar] [CrossRef]
- Grace, K.; Salvatier, J.; Dafoe, A.; Zhang, B.; Evans, O. Viewpoint: When Will AI Exceed Human Performance? Evidence from AI Experts. J. Artif. Intell. Res. 2018, 62, 729–754. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Flores, A.W.; Bechtel, K.; Lowenkamp, C.T. False positives, false negatives, and false analyses: A rejoinder to machine bias: There’s software used across the country to predict future criminals. and it’s biased against blacks. Fed. Probat. 2016, 80, 38. [Google Scholar]
- Propublica. Machine Bias. Available online: https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing (accessed on 21 June 2021).
- Lum, K.N. Limitations of mitigating judicial bias with machine learning. Nat. Hum. Behav. 2017, 1, 1. [Google Scholar] [CrossRef]
- Ahmed, E.; Jones, M.; Marks, T.K. An improved deep learning architecture for person re-identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Ye, M.; Shen, J.; Lin, G.; Xiang, T.; Shao, L.; Hoi, S.C.H. Deep learning for person re-identification: A survey and outlook. IEEE Trans. Pattern Anal. Mach. Intell. 2021, in press. [Google Scholar] [CrossRef]
- Brundage, M.; Avin, S.; Clark, J.; Toner, H.; Eckersley, P.; Garfinkel, B.; Dafoe, A.; Scharre, P.; Zeitzoff, T.; Filar, B.; et al. The malicious use of artificial intelligence: Forecasting, prevention, and mitigation. arXiv 2018, arXiv:1802.07228. [Google Scholar]
- Finlayson, S.G.; Bowers, J.D.; Ito, J.; Zittrain, J.L.; Beam, A.L.; Kohane, I.S. Adversarial Attacks on Medical Machine Learning. Science 2019, 363, 1287–1289. [Google Scholar] [CrossRef]
- Comiter, M. Attacking Artificial Intelligence. Belfer Center Paper; Belfer Center for Science and International Affairs: Cambridge, MA, USA, 2019. [Google Scholar]
- Microsoft. Failure Modes in Machine Learning. Available online: https://docs.microsoft.com/en-us/security/engineering/failure-modes-in-machine-learning (accessed on 21 June 2021).
- Schneier, B. Attacking Machine Learning Systems. IEEE Ann. Hist. Comput. 2020, 53, 78–80. [Google Scholar] [CrossRef]
- Goodman, B.; Flaxman, S. European Union regulations on algorithmic decision-making and a “right to explanation”. AI Mag. 2017, 38, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Verma, S.; Rubin, J. Fairness definitions explained. In Proceedings of the IEEE/ACM International Workshop on Software Fairness, Gothenburg, Sweden, 29 May 2018; pp. 1–7. [Google Scholar]
- Oneto, L.; Chiappa, S. Fairness in Machine Learning. In Recent Trends in Learning From Data; Oneto, L., Navarin, N., Sperduti, N., Anguita, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Corbett-Davies, S.; Goel, S. The measure and mismeasure of fairness: A critical review of fair machine learning. arXiv 2018, arXiv:1808.00023. [Google Scholar]
- Al-Rubaie, M.; Chang, J.M. Privacy-preserving machine learning: Threats and solutions. IEEE Secur. Priv. 2019, 17, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Biggio, B.; Roli, F. Wild patterns: Ten years after the rise of adversarial machine learning. Pattern Recognit. 2018, 84, 317–331. [Google Scholar] [CrossRef] [Green Version]
- Gunning, D. Explainable artificial intelligence (XAI). Sci. Robot. 2019, 4, eaay7120. [Google Scholar] [CrossRef] [Green Version]
- Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F.; Giannotti, F.; Pedreschi, D. A survey of methods for explaining black box models. ACM Comput. Surv. 2018, 51, 1–42. [Google Scholar] [CrossRef] [Green Version]
- Arrieta, A.B.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; García, S.; Gil-López, S.; Molina, D.; Benjamins, R.; et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 2020, 58, 82–115. [Google Scholar] [CrossRef] [Green Version]
- Oneto, L.; Donini, M.; Pontil, M.; Shawe-Taylor, J. Randomized Learning and Generalization of Fair and Private Classifiers: From PAC-Bayes to Stability and Differential Privacy. Neurocomputing 2020, in press. [Google Scholar] [CrossRef]
- Kilbertus, N.; Gascón, A.; Kusner, M.; Veale, M.; Gummadi, K.; Weller, A. Blind justice: Fairness with encrypted sensitive attributes. In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018. [Google Scholar]
- Jagielski, M.; Kearns, M.; Mao, J.; Oprea, A.; Roth, A.; Sharifi-Malvajerdi, S.; Ullman, J. Differentially private fair learning. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019. [Google Scholar]
- Cummings, R.; Gupta, V.; Kimpara, D.; Morgenstern, J. On the compatibility of privacy and fairness. In Proceedings of the 27th Conference on User Modeling, Adaptation and Personalization, Larnaca, Cyprus, 9–12 June 2019. [Google Scholar]
- Mozannar, H.; Ohannessian, M.; Srebro, N. Fair learning with private demographic data. In Proceedings of the 37th International Conference on Machine Learning, Online, 13–18 July 2020. [Google Scholar]
- Xu, D.; Yuan, S.; Wu, X. Achieving differential privacy and fairness in logistic regression. In Proceedings of the World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019. [Google Scholar]
- Bagdasaryan, E.; Poursaeed, O.; Shmatikov, V. Differential privacy has disparate impact on model accuracy. Adv. Neural Inf. Process. Syst. 2019, 32, 15479–15488. [Google Scholar]
- Ding, J.; Zhang, X.; Li, X.; Wang, J.; Yu, R.; Pan, M. Differentially private and fair classification via calibrated functional mechanism. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020. [Google Scholar]
- Lyu, L.; Li, Y.; Nandakumar, K.; Yu, J.; Ma, X. How to democratise and protect AI: Fair and differentially private decentralised deep learning. IEEE Trans. Dependable Secur. Comput. 2020, in press. [Google Scholar] [CrossRef]
- Adel, T.; Valera, I.; Ghahramani, Z.; Weller, A. One-network adversarial fairness. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019. [Google Scholar]
- Xu, D.; Yuan, S.; Zhang, L.; Wu, X. Fairgan: Fairness-aware generative adversarial networks. In Proceedings of the IEEE International Conference on Big Data, Seattle, WA, USA, 10–13 December 2018. [Google Scholar]
- Wadsworth, C.; Vera, F.; Piech, C. Achieving fairness through adversarial learning: An application to recidivism prediction. arXiv 2018, arXiv:1807.00199. [Google Scholar]
- Franco, D.; Navarin, N.; Donini, M.; Anguita, D.; Oneto, L. Deep Fair Models for Complex Data: Graphs Labeling and Explainable Face Recognition. Neurocomputing 2021, in press. [Google Scholar] [CrossRef]
- Fu, Z.; Xian, Y.; Gao, R.; Zhao, J.; Huang, Q.; Ge, Y.; Xu, S.; Geng, S.; Shah, C.; Zhang, Y.; et al. Fairness-aware explainable recommendation over knowledge graphs. In Proceedings of the International ACM SIGIR Conference on Research and Development in Information Retrieval, Xi’an, China, 25–30 July 2020. [Google Scholar]
- Schumann, C.; Foster, J.; Mattei, N.; Dickerson, J. We need fairness and explainability in algorithmic hiring. In Proceedings of the International Conference on Autonomous Agents and Multi-Agent Systems, Auckland, New Zealand, 9–13 May 2020. [Google Scholar]
- Fidel, G.; Bitton, R.; Shabtai, A. When explainability meets adversarial learning: Detecting adversarial examples using SHAP signatures. In Proceedings of the International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020. [Google Scholar]
- Goldberg, S.; Pinsky, E.; Galitsky, B. A bi-directional adversarial explainability for decision support. Hum.-Intell. Syst. Integr. 2021, 3, 1–14. [Google Scholar] [CrossRef]
- Huang, C.; Kairouz, P.; Chen, X.; Sankar, L.; Rajagopal, R. Context-aware generative adversarial privacy. Entropy 2017, 19, 656. [Google Scholar] [CrossRef] [Green Version]
- Lecuyer, M.; Atlidakis, V.; Geambasu, R.; Hsu, D.; Jana, S. Certified robustness to adversarial examples with differential privacy. In Proceedings of the Symposium on Security and Privacy (SP), San Francisco, CA, USA, 19–23 May 2019. [Google Scholar]
- Nasr, M.; Shokri, R.; Houmansadr, A. Machine learning with membership privacy using adversarial regularization. In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security, Toronto, ON, Canada, 15–19 October 2018. [Google Scholar]
- Wu, Z.; Wang, Z.; Wang, Z.; Jin, H. Towards privacy-preserving visual recognition via adversarial training: A pilot study. In Proceedings of the European Conference on Computer Vision (ECCV 2018), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Meden, B.; Emeršič, Ž.; Štruc, V.; Peer, P. k-Same-Net: K-Anonymity with generative deep neural networks for face deidentification. Entropy 2018, 20, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitzsimons, J.; Al Ali, A.; Osborne, M.; Roberts, S. A general framework for fair regression. Entropy 2019, 21, 741. [Google Scholar] [CrossRef] [Green Version]
- Cooley, E.; Hester, N.; Cipolli, W.; Rivera, L.I.; Abrams, K.; Pagan, J.; Sommers, S.R.; Payne, K. Racial biases in officers’ decisions to frisk are amplified for Black people stopped among groups leading to similar biases in searches, arrests, and use of force. Soc. Psychol. Personal. Sci. 2020, 11, 761–769. [Google Scholar] [CrossRef]
- Adadi, A.; Berrada, M. Peeking inside the black-box: A survey on explainable artificial intelligence (XAI). IEEE Access 2018, 6, 52138–52160. [Google Scholar] [CrossRef]
- Cox, L.A. Information Structures for Causally Explainable Decisions. Entropy 2021, 23, 601. [Google Scholar] [CrossRef] [PubMed]
- Käding, C.; Rodner, E.; Freytag, A.; Denzler, J. Fine-tuning deep neural networks in continuous learning scenarios. In Proceedings of the Asian Conference on Computer Vision (ACCV 2016), Taipei, Taiwan, 20–24 November 2016. [Google Scholar]
- Peters, M.E.; Ruder, S.; Smith, N.A. To tune or not to tune? Adapting pretrained representations to diverse tasks. arXiv 2019, arXiv:1903.05987. [Google Scholar]
- Rivest, R.L.; Adleman, L.; Dertouzos, M.L. On data banks and privacy homomorphisms. Found. Secur. Comput. 1978, 4, 169–180. [Google Scholar]
- Zemel, R.; Wu, Y.; Swersky, K.; Pitassi, T.; Dwork, C. Learning fair representations. In Proceedings of the International Conference on Machine Learning (ICML 2013), Atlanta, GA, USA, 16–21 June 2013. [Google Scholar]
- McNamara, D.; Ong, C.S.; Williamson, B. Costs and Benefits of Fair Representation Learning. In Proceedings of the AAAI/ACM Conference on Artificial Intelligence, Ethics and Society, Honolulu, HI, USA, 27–28 January 2019. [Google Scholar]
- Oneto, L.; Donini, M.; Luise, G.; Ciliberto, C.; Maurer, A.; Pontil, M. Exploiting MMD and Sinkhorn Divergences for Fair and Transferable Representation Learning. In Proceedings of the Advances in Neural Information Processing Systems, Online, 6–12 December 2020. [Google Scholar]
- Kärkkäinen, K.; Joo, J. Fairface: Face attribute dataset for balanced race, gender, and age. arXiv 2019, arXiv:1908.04913. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Hutchinson, M.L.; Antono, E.; Gibbons, B.M.; Paradiso, S.; Ling, J.; Meredig, B. Overcoming data scarcity with transfer learning. arXiv 2017, arXiv:1711.05099. [Google Scholar]
- Wu, Y.; Ji, Q. Constrained deep transfer feature learning and its applications. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 5101–5109. [Google Scholar]
- Gentry, C. Computing arbitrary functions of encrypted data. Commun. ACM 2010, 53, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Acar, A.; Aksu, H.; Uluagac, A.S.; Conti, M. A survey on homomorphic encryption schemes: Theory and implementation. ACM Comput. Surv. 2018, 51, 1–35. [Google Scholar] [CrossRef]
- Naehrig, M.; Lauter, K.; Vaikuntanathan, V. Can homomorphic encryption be practical? In Proceedings of the ACM Workshop on Cloud Computing Security Workshop, Chicago, IL, USA, 21 October 2011.
- Gilad-Bachrach, R.; Dowlin, N.; Laine, K.; Lauter, K.; Naehrig, M.; Wernsing, J. Cryptonets: Applying neural networks to encrypted data with high throughput and accuracy. In Proceedings of the International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016. [Google Scholar]
- Pulido-Gaytan, B.; Tchernykh, A.; Cortés-Mendoza, J.M.; Babenko, M.; Radchenko, G.; Avetisyan, A.; Drozdov, A.Y. Privacy-preserving neural networks with Homomorphic encryption: C hallenges and opportunities. Peer- Netw. Appl. 2021, 14, 1666–1691. [Google Scholar] [CrossRef]
- Kleinberg, J.; Ludwig, J.; Mullainathan, S.; Rambachan, A. Algorithmic Fairness. AEA Pap. Proc. 2018, 108, 22–27. [Google Scholar] [CrossRef]
- McNamara, D.; Ong, C.S.; Williamson, R.C. Provably fair representations. arXiv 2017, arXiv:1710.04394. [Google Scholar]
- Obla, S.; Gong, X.; Aloufi, A.; Hu, P.; Takabi, D. Effective activation functions for homomorphic evaluation of deep neural networks. IEEE Access 2020, 8, 153098–153112. [Google Scholar] [CrossRef]
- Donini, M.; Oneto, L.; Ben-David, S.; Shawe-Taylor, J.; Pontil, M. Empirical risk minimization under fairness constraints. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December 2018. [Google Scholar]
- Calders, T.; Kamiran, F.; Pechenizkiy, M. Building classifiers with independency constraints. In Proceedings of the 2009 IEEE International Conference on Data Mining Workshops, Miami, FL, USA, 6 December 2009. [Google Scholar]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV 2017), Venice, Italy, 27–29 October 2017. [Google Scholar]
- Hinton, G.; Roweis, S.T. Stochastic neighbor embedding. In Proceedings of the Neural Information Processing Systems, Vancouver, BC, Canada, 9–14 December 2002. [Google Scholar]
- Maaten, L.V.D.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Chouldechova, A.; Roth, A. A snapshot of the frontiers of fairness in machine learning. Commun. ACM 2020, 63, 82–89. [Google Scholar] [CrossRef]
- Shalev-Shwartz, S.; Ben-David, S. Understanding Machine Learning: From Theory to Algorithms; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Lahoti, P.; Gummadi, K.P.; Weikum, G. iFair: Learning individually fair data representations for algorithmic decision making. In Proceedings of the 2019 IEEE 35th International Conference on Data Engineering (ICDE), Macao, China, 8–11 April 2019. [Google Scholar]
- Moyer, D.; Gao, S.; Brekelmans, R.; Galstyan, A.; Ver Steeg, G. Invariant representations without adversarial training. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December 2018. [Google Scholar]
- Xie, Q.; Dai, Z.; Du, Y.; Hovy, E.; Neubig, G. Controllable invariance through adversarial feature learning. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Liu, B.; Ding, M.; Shaham, S.; Rahayu, W.; Farokhi, F.; Lin, Z. When machine learning meets privacy: A survey and outlook. ACM Comput. Surv. 2021, 54, 1–36. [Google Scholar] [CrossRef]
- De Cristofaro, E. An overview of privacy in machine learning. arXiv 2020, arXiv:2005.08679. [Google Scholar]
- Sweeney, L. k-anonymity: A model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 2002, 10, 557–570. [Google Scholar] [CrossRef] [Green Version]
- Machanavajjhala, A.; Kifer, D.; Gehrke, J.; Venkitasubramaniam, M. l-diversity: Privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data (TKDD) 2007, 1, 3-es. [Google Scholar] [CrossRef]
- Li, N.; Li, T.; Venkatasubramanian, S. t-closeness: Privacy beyond k-anonymity and l-diversity. In Proceedings of the IEEE 23rd International Conference on Data Engineering, Istanbul, Turkey, 15–20 April 2007. [Google Scholar]
- Dwork, C.; Roth, A. The algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci. 2014, 9, 211–407. [Google Scholar] [CrossRef]
- Thorgeirsson, A.T.; Gauterin, F. Probabilistic Predictions with Federated Learning. Entropy 2021, 23, 41. [Google Scholar] [CrossRef]
- Li, T.; Sahu, A.K.; Talwalkar, A.; Smith, V. Federated learning: Challenges, methods, and future directions. IEEE Signal Process. Mag. 2020, 37, 50–60. [Google Scholar] [CrossRef]
- Asad, M.; Moustafa, A.; Ito, T. FedOpt: Towards communication efficiency and privacy preservation in federated learning. Appl. Sci. 2020, 10, 2864. [Google Scholar] [CrossRef] [Green Version]
- Hao, M.; Li, H.; Xu, G.; Liu, S.; Yang, H. Towards efficient and privacy-preserving federated deep learning. In Proceedings of the ICC 2019—2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019. [Google Scholar]
- Fang, H.; Qian, Q. Privacy Preserving Machine Learning with Homomorphic Encryption and Federated Learning. Future Internet 2021, 13, 94. [Google Scholar] [CrossRef]
- Cai, Y.; Tang, C.; Xu, Q. Two-Party Privacy-Preserving Set Intersection with FHE. Entropy 2020, 22, 1339. [Google Scholar] [CrossRef]
- Rivest, R.L.; Shamir, A.; Adleman, L. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 1978, 21, 120–126. [Google Scholar] [CrossRef]
- Paillier, P. Public-key cryptosystems based on composite degree residuosity. classes. In International Conference on the Theory and Applications of Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Fan, J.; Vercauteren, F. Somewhat practical fully homomorphic encryption. IACR Cryptol. EPrint Arch. 2012, 2012, 144. [Google Scholar]
- Cheon, J.H.; Kim, A.; Kim, M.; Song, Y. Homomorphic encryption for arithmetic of approximate numbers. In International Conference on the Theory and Application of Cryptology and Information Security; Springer: Cham, Switzerlans, 2017; pp. 409–437. [Google Scholar]
- Gentry, C. A Fully Homomorphic Encryption Scheme; Stanford University: Stanford, CA, USA, 2009. [Google Scholar]
- Li, J.; Li, Y.; Xiang, X.; Xia, S.; Dong, S.; Cai, Y. TNT: An Interpretable Tree-Network-Tree Learning Framework Using Knowledge Distillation. Entropy 2020, 22, 1203. [Google Scholar] [CrossRef]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why should I trust you?” Explaining the predictions of any classifier. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisc, CA, USA, 13–17 August 2016; pp. 1135–1144. [Google Scholar]
- Barocas, S.; Selbst, A.D. Big data’s disparate impact. Calif. Law Rev. 2016, 104, 671. [Google Scholar] [CrossRef]
- Valiant, L.G. A theory of the learnable. Commun. ACM 1984, 27, 1134–1142. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhang, Z.; Xiao, X.; Yang, Y.; Winslett, M. Functional mechanism: Regression analysis under differential privacy. arXiv 2012, arXiv:1208.0219. [Google Scholar] [CrossRef]
- Kairouz, P.; Oh, S.; Viswanath, P. Extremal Mechanisms for Local Differential Privacy. J. Mach. Learn. Res. 2016, 17, 1–51. [Google Scholar]
- Abadi, M.; Chu, A.; Goodfellow, I.; McMahan, H.B.; Mironov, I.; Talwar, K.; Zhang, L. Deep learning with differential privacy. In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016. [Google Scholar]
- Choraś, M.; Pawlicki, M.; Puchalski, D.; Kozik, R. Machine learning—The results are not the only thing that matters! what about security, explainability and fairness? In Proceedings of the International Conference on Computational Science, Amsterdam, The Netherlands, 3–5 June 2020. [Google Scholar]
- Vellido, A. Societal issues concerning the application of artificial intelligence in medicine. Kidney Dis. 2019, 5, 11–17. [Google Scholar] [CrossRef]
- Bonnefon, J.; Černy, D.; Danaher, J.; Devillier, N.; Johansson, V.; Kovacikova, T.; Martens, M.; Mladenovic, M.; Palade, P.; Reed, N. Ethics of Connected and Automated Vehicles: Recommendations on Road Safety, Privacy, Fairness, Explainability and Responsibility; EU Commission: Brussels, Belgium, 2020. [Google Scholar]
- New York Times. A Case for Banning Facial Recognition. Available online: https://www.nytimes.com/2020/06/09/technology/facial-recognition-software.html (accessed on 21 June 2021).
- Buolamwini, J.; Gebru, T. Gender shades: Intersectional accuracy disparities in commercial gender classification. In Proceedings of the Conference on Fairness, Accountability and Transparency, New York, NY, USA, 23–24 February 2018. [Google Scholar]
- Raji, I.D.; Buolamwini, J. Actionable auditing: Investigating the impact of publicly naming biased performance results of commercial AI products. In Proceedings of the AAAI/ACM Conference on AI Ethics and Society, Honolulu, HI, USA, 27–28 January 2019. [Google Scholar]
- The Verge. A Black Man Was Wrongfully Arrested Because of Facial Recognition. Available online: https://www.theverge.com/2020/6/24/21301759/facial-recognition-detroit-police-wrongful-arrest-robert-williams-artificial-intelligence (accessed on 21 June 2021).
- CNN. Portland Passes Broadest Facial Recognition Ban in the US. Available online: https://edition.cnn.com/2020/09/09/tech/portland-facial-recognition-ban/index.html (accessed on 21 June 2021).
- Viola, P.; Jones, M. Rapid object detection using a boosted cascade of simple features. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001), Kauai, HI, USA, 8–14 December 2001. [Google Scholar]
- Liu, C.; Wechsler, H. Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Trans. Image Process. 2002, 11, 467–476. [Google Scholar]
- Ahonen, T.; Hadid, A.; Pietikainen, M. Face description with local binary patterns: Application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 2037–2041. [Google Scholar] [CrossRef]
- Wang, M.; Deng, W. Deep face recognition: A survey. Neurocomputing 2021, 429, 215–244. [Google Scholar] [CrossRef]
- Jayaraman, U.; Gupta, P.; Gupta, S.; Arora, G.; Tiwari, K. Recent development in face recognition. Neurocomputing 2020, 408, 231–245. [Google Scholar] [CrossRef]
- Dhillon, A.; Verma, G.K. Convolutional neural network: A review of models, methodologies and applications to object detection. Prog. Artif. Intell. 2020, 9, 85–112. [Google Scholar] [CrossRef]
- Adjabi, I.; Ouahabi, A.; Benzaoui, A.; Taleb-Ahmed, A. Past, present, and future of face recognition: A review. Electronics 2020, 9, 1188. [Google Scholar] [CrossRef]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016. [Google Scholar]
- Masi, I.; Wu, Y.; Hassner, T.; Natarajan, P. Deep Face Recognition: A Survey. In Proceedings of the Conference on Graphics, Patterns and Images, Paraná, Brazil, 29 October–1 November 2018. [Google Scholar]
- Guo, G.; Zhang, N. A survey on deep learning based face recognition. Comput. Vis. Image Underst. 2019, 189, 102805. [Google Scholar] [CrossRef]
- Du, H.; Shi, H.; Zeng, D.; Mei, T. The Elements of End-to-end Deep Face Recognition: A Survey of Recent Advances. arXiv 2020, arXiv:2009.13290. [Google Scholar]
- Dwork, C.; Immorlica, N.; Kalai, A.T.; Leiserson, M.D.M. Decoupled Classifiers for Group-Fair and Efficient Machine Learning. In Proceedings of the Conference on Fairness, Accountability and Transparency, New York, NY, USA, 23–24 February 2018. [Google Scholar]
- Oneto, L.; Donini, M.; Elders, A.; Pontil, M. Taking Advantage of Multitask Learning for Fair Classification. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, Honolulu, HI, USA, 27–28 January 2019. [Google Scholar]
- Edwards, H.; Storkey, A.J. Censoring Representations with an Adversary. In Proceedings of the International Conference on Learning Representations (ICLR 2016), San Juan, Puerto Rico, 2–4 May 2016. [Google Scholar]
- Louizos, C.; Swersky, K.; Li, Y.; Welling, M.; Zemel, R.S. The Variational Fair Autoencoder. In Proceedings of the International Conference on Learning Representations (ICLR 2016), San Juan, Puerto Rico, 2–4 May 2016. [Google Scholar]
- Madras, D.; Creager, E.; Pitassi, T.; Zemel, R. Learning Adversarially Fair and Transferable Representations. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018. [Google Scholar]
- Johansson, F.; Shalit, U.; Sontag, D. Learning representations for counterfactual inference. In Proceedings of the International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016. [Google Scholar]
- Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2009, 22, 1345–1359. [Google Scholar] [CrossRef]
- Hardt, M.; Price, E.; Srebro, N. Equality of opportunity in supervised learning. In Proceedings of the Advances in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016. [Google Scholar]
- Oneto, L. Model Selection and Error Estimation in a Nutshell; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Lyubashevsky, V.; Peikert, C.; Regev, O. On ideal lattices and learning with errors over rings. In Annual International Conference on the Theory and Applications of Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Rosasco, L.; De Vito, E.; Caponnetto, A.; Piana, M.; Verri, A. Are loss functions all the same? Neural Comput. 2004, 16, 1063–1076. [Google Scholar] [CrossRef] [Green Version]
- Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747. [Google Scholar]
- Orlandi, C.; Piva, A.; Barni, M. Oblivious neural network computing via homomorphic encryption. EURASIP J. Inf. Secur. 2007, 2007, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Benaissa, A.; Retiat, B.; Cebere, B.; Belfedhal, A.E. TenSEAL: A Library for Encrypted Tensor Operations Using Homomorphic Encryption. arXiv 2021, arXiv:2104.03152. [Google Scholar]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Proceedings of the Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019. [Google Scholar]
- Microsoft Research. Microsoft SEAL. 2020. Available online: https://github.com/Microsoft/SEAL (accessed on 11 August 2021).
- Halevi, S.; Shoup, V. Algorithms in helib. In Proceedings of the Annual Cryptology Conference, Santa Barbara, CA, USA, 17–21 August 2014. [Google Scholar]
- Parkhi, O.M.; Vedaldi, A.; Zisserman, A. Deep Face Recognition. In Proceedings of the British Machine Vision Conference (BMVC 2015), Swansea, UK, 7–10 September 2015. [Google Scholar]
- Ivanov, V.V. The Theory of Approximate Methods and Their Application to the Numerical Solution of Singular Integral Equations; Springer: Berlin/Heidelberg, Germany, 1976. [Google Scholar]
- Oneto, L.; Ridella, S.; Anguita, D. Tikhonov, Ivanov and Morozov regularization for support vector machine learning. Mach. Learn. 2015, 103, 103–136. [Google Scholar] [CrossRef] [Green Version]
- Gretton, A.; Borgwardt, K.; Rasch, M.; Schölkopf, B.; Smola, A. A kernel method for the two-sample-problem. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 4–7 December 2006. [Google Scholar]
- Cuturi, M. Sinkhorn distances: Lightspeed computation of optimal transport. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 5–8 December 2013. [Google Scholar]
- Wang, H.; Wang, Z.; Du, M.; Yang, F.; Zhang, Z.; Ding, S.; Mardziel, P.; Hu, X. Score-cam: Score-weighted visual explanations for convolutional neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 14–19 June 2020. [Google Scholar]
- Desai, S.; Ramaswamy, H.G. Ablation-CAM: Visual Explanations for Deep Convolutional Network via Gradient-free Localization. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2020), Snowmass Village, CO, USA, 1–5 March 2020. [Google Scholar]
- Rebuffi, S.; Fong, R.; Ji, X.; Vedaldi, A. There and Back Again: Revisiting Backpropagation Saliency Methods. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020. [Google Scholar]
- Taha, A.; Yang, X.; Shrivastava, A.; Davis, L. A Generic Visualization Approach for Convolutional Neural Networks. In Proceedings of the IEEE European Conference on Computer Vision (ECCV 2020), Online, 23–28 August 2020. [Google Scholar]
- Samek, W.; Montavon, G.; Lapuschkin, S.; Anders, C.J.; Müller, K. Toward Interpretable Machine Learning: Transparent Deep Neural Networks and Beyond. arXiv 2020, arXiv:2003.07631. [Google Scholar]
- Sattarzadeh, S.; Sudhakar, M.; Lem, A.; Mehryar, S.; Plataniotis, K.; Jang, J.; Kim, H.; Jeong, Y.; Lee, S.; Bae, K. Explaining Convolutional Neural Networks through Attribution-Based Input Sampling and Block-Wise Feature Aggregation. arXiv 2020, arXiv:2010.00672. [Google Scholar]
- Lee, S.; Lee, H.; Abbeel, P.; Ng, A.Y. Efficient L1 Regularized Logistic Regression; AAAI: Menlo Park, CA, USA, 2006. [Google Scholar]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Wold, S.; Esbensen, K.; Geladi, P. Principal Component Analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Thomee, B.; Shamma, D.A.; Friedland, G.; Elizalde, B.; Ni, K.; Poland, D.; Borth, D.; Li, L. YFCC100M: The new data in multimedia research. Commun. ACM 2016, 59, 64–73. [Google Scholar] [CrossRef]
- Zeiler, M.D. Adadelta: An adaptive learning rate method. arXiv 2012, arXiv:1212.5701. [Google Scholar]
- Merler, M.; Ratha, N.; Feris, R.S.; Smith, J.R. Diversity in faces. arXiv 2019, arXiv:1901.10436. [Google Scholar]
- Van Loan, C.F.; Golub, G.H. Matrix Computations; Johns Hopkins University Press: Baltimore, MD, USA, 1983. [Google Scholar]
- Peacock, J.A. Two-dimensional goodness-of-fit testing in astronomy. Mon. Not. R. Astron. Soc. 1983, 202, 615–627. [Google Scholar] [CrossRef] [Green Version]
- Fasano, G.; Franceschini, A. A multidimensional version of the Kolmogorov–Smirnov test. Mon. Not. R. Astron. Soc. 1987, 225, 155–170. [Google Scholar] [CrossRef]
Symbol | Description |
---|---|
General input space of RGB images | |
h | RGB images height |
w | RGB images width |
Binary sensitive attribute space | |
s | s sensitive group |
Binary label space | |
Full dataset | |
Samples from in the s sensitive group | |
Model input space that may (or not) contain the sensitive attribute | |
Z | Model input |
General end-to-end model | |
Learned end-to-end model | |
Sub-model that learn the data representation (embedding layers) | |
Sub-model that learn the task from the representation (task specific layers) | |
General utility measure | |
Accuracy Measure | |
Homomophic map | |
, | Sets with same algebraic structure |
p | Degree of the encoded cyclotomic polynomial |
General fairness measure | |
Fairness regularization hyper-parameter (Tikhonov formulation) | |
Fairness regularization hyper-parameter (Ivanov formulation) | |
Demographic Parity | |
Difference of Demographic Parity | |
First order (convex and differentiable) approximation of the | |
y | Classification prediction target |
Non-normalised classification model prediction for y | |
A | Convolutional layer output |
Matrix relative to channel k in layer output A | |
Gradients matrix of w.r.t. | |
Importance weight of w.r.t. the target y | |
Grad-CAM map w.r.t. the target y | |
Dataset average Grad-CAM for the s sensitive group | |
Frobenius distance | |
Kolmogorov–Smirnov distance |
Age | Age | Sensitive Marginals | |
---|---|---|---|
Females | 18.60% 18,174 | 28.40% 27,746 | 47.00% 45,920 |
Males | 27.21% 26,587 | 25.79% 25,191 | 53.00% 51,778 |
Class Marginals | 45.82% 44,761 | 54.18% 52,937 | 97,698 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franco, D.; Oneto, L.; Navarin, N.; Anguita, D. Toward Learning Trustworthily from Data Combining Privacy, Fairness, and Explainability: An Application to Face Recognition. Entropy 2021, 23, 1047. https://doi.org/10.3390/e23081047
Franco D, Oneto L, Navarin N, Anguita D. Toward Learning Trustworthily from Data Combining Privacy, Fairness, and Explainability: An Application to Face Recognition. Entropy. 2021; 23(8):1047. https://doi.org/10.3390/e23081047
Chicago/Turabian StyleFranco, Danilo, Luca Oneto, Nicolò Navarin, and Davide Anguita. 2021. "Toward Learning Trustworthily from Data Combining Privacy, Fairness, and Explainability: An Application to Face Recognition" Entropy 23, no. 8: 1047. https://doi.org/10.3390/e23081047
APA StyleFranco, D., Oneto, L., Navarin, N., & Anguita, D. (2021). Toward Learning Trustworthily from Data Combining Privacy, Fairness, and Explainability: An Application to Face Recognition. Entropy, 23(8), 1047. https://doi.org/10.3390/e23081047