Contextuality-by-Default Description of Bell Tests: Contextuality as the Rule and Not as an Exception
Abstract
:1. Introduction
Bohr-contextuality: The output of any quantum observable is indivisibly composed of the contributions of the system and the measurement apparatus.Bohr-complementarity: There exist incompatible observables (complementary experimental contexts).
KS-contextuality: A measurement of an observable does not need to yield the same value independently of what other measurements may be made simultaneously.
2. Contextuality and Non-Contextuality
If not all variables in a set X are commeasurable, then a set X is called contextual, if one may reject a statistical hypothesis that a studied population is described by a joint probability distribution of all these variables. Otherwise, the set is called non-contextual.A set X of dichotomous random variables, taking values ±1, is contextual, if and only if various NCI are significantly violated.
3. Contextuality-by-Default Approach
“A: For any two random variables, sharing content, how different are they when taken in isolation from their contexts?B: Can these differences be preserved when all pairs of content-sharing variables are taken within their contexts (i.e., taking into account their joint distributions with other random variables in their contexts)?”
4. Contextuality-by-Default Description of Bell Tests
- Raw time-tagged data are two samples: SA(x, y) = {(ak, tk)|k = 1…nx} and SB(x, y) = {(bm, t’m)|j = 1…ny}, with ak = ±1 and bm = ±1.
- Using fixed synchronized time-windows of width W and keeping only windows, in which there is no click at all or a click on one of Alice’s or/and BoB′s detectors, new samples are created: SA(x, y, W) = {as|s = 1, … Nx} and, SB(x, y, W) = {bt|t = 1…Ny}, with as = 0, ±1 and bt =0, ±1.
- Now by keeping only synchronized time-windows, in which both Alice and Bob observed a click on one of their detectors, a new sample of paired outcomes is obtained: S’AB(x, y, W) = {(ar, br)|r = 1, … Nxy}, with ar = ±1 and br = ±1.
5. Contextual Locally Causal Probabilistic Model
- Photonic signals arriving to PBS-detector modules are described by variables and p(λ1, λ2).
- In a setting (x, y), Alice’s and BoB′s instruments, at the moment of measurement, are described by variables and probability distributions px(λx) and py(λy).
- Outcomes 0, ±1 are the values of functions Ax (λ1, λx) and By (λ2, λy) = 0, ±1.
6. Contextuality Does Not Restrict Experimenters’ Freedom of Choice
- Realism
- Locality
- Freedom of choice, measurement independence or no-conspiracy
“It has been assumed that the settings of instruments are in some sense free variables—say at the whim of the experimenters—or in any case not determined in the overlap of the backward light cones. Indeed without such freedom I would not know how to formulateanyidea of local causality, even the modest human one.”
7. Discussion
“One could understand Bohr and Bell also by their insistence that the value definite properties (characterizing its physical state) of the object become “amalgamated” with (properties of) the measurement apparatus, so that an observation signals the combined information both of the object as well as of the measurement apparatus.”
What is more important cause of the violation of Bell-type inequalities: a particular entanglement of incoming signals and a choice of particular settings or Bohr- and KS-contextuality and context dependent experimental protocols?
“We present a Bell-type polarization experiment using two independent sources of polarized optical photons and detecting the temporal coincidence of pairs of uncorrelated photons which have never been entangled in the apparatus. The outcome of the experiment gives evidence of violation of the Bell-like inequalities”.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bohr, N. The Philosophical Writings of Niels Bohr; Ox Bow Press: Woodbridge, UK, 1987. [Google Scholar]
- Bell, J.S. On the problem of hidden variables in quantum theory. Rev. Mod. Phys. 1966, 38, 450. [Google Scholar] [CrossRef]
- Plotnitsky, A. Niels Bohr and Complementarity: An Introduction; Springer: New York, NY, USA, 2012. [Google Scholar]
- Nieuwenhuizen, T.M.; Kupczynski, M. The contextuality loophole is fatal for derivation of Bell inequalities: Reply to a comment by I. Schmelzer. Found. Phys. 2017, 47, 316–319. [Google Scholar] [CrossRef] [Green Version]
- Kupczynski, M. Bell inequalities, experimental protocols and contextuality. Found. Phys. 2015, 45, 735–753. [Google Scholar] [CrossRef] [Green Version]
- Khrennikov, A. Can there be given any meaning to contextuality without incompatibility? Int. J. Theor. Phys. 2020. [Google Scholar] [CrossRef]
- Kochen, S.; Specker, E.P. The problem of hidden variables in quantum mechanics. J. Math. Mech. 1967, 17, 59–87. [Google Scholar] [CrossRef]
- Greenberger, D.M.; Horne, M.A.; Shimony, A.; Zeilinger, A. Bell’s theorem without inequalities. Am. J. Phys. 1990, 58, 1131–1143. [Google Scholar] [CrossRef]
- Mermin, N.D. Hidden variables and the two theorems of John Bell. Rev. Mod. Phys. 1993, 65, 803–815. [Google Scholar] [CrossRef]
- Peres, A. Quantum Theory: Concepts and Methods; Kluwer: Dordrecht, The Netherlands, 1995. [Google Scholar]
- Cabello, A.; Estebaranz, J.; Garcìa-Alcaine, G. Bell- Kochen-Specker theorem: A proof with 18 vectors. Phys. Lett. A 1996, 212, 183–187. [Google Scholar] [CrossRef] [Green Version]
- Simon, C.; Brukner, C.; Zeilinger, A. Hidden-variable theorems for real experiments. Phys. Rev. Lett. 2001, 86, 4427–4430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabello, A. Experimentally testable state-independent quantum contextuality. Phys. Rev. Lett. 2008, 101, 210401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, S.; Oh, C.H. State-independent proof of Kochen-Specker theorem with 13 rays. Phys. Rev. Lett. 2012, 108, 030402. [Google Scholar] [CrossRef] [PubMed]
- Cabello, A. Simple explanation of the quantum violation of a fundamental inequality. Phys. Rev. Lett. 2013, 110, 060402. [Google Scholar] [CrossRef] [Green Version]
- Winter, A. What does an experimental test of quantum contextuality prove or disprove? J. Phys. A Math. Theor. 2014, 47, 424031. [Google Scholar] [CrossRef] [Green Version]
- Dzhafarov, E.N.; Kujala, J.V. Contextuality is about identity of random variables. Phys. Scr. 2014, T163, 014009. [Google Scholar] [CrossRef] [Green Version]
- Dzhafarov, E.N.; Kujala, J.V.; Larsson, J.-Å. Contextuality in three types of quantum-mechanical systems. Found. Phys. 2015, 7, 762–782. [Google Scholar] [CrossRef] [Green Version]
- Kujala, J.V.; Dzhafarov, E.N.; Larsson, J.-Å. Necessary and sufficient conditions for extended noncontextuality in a broad class of quantum mechanical systems. Phys. Rev. Lett. 2015, 115, 150401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cervantes, V.H.; Dzhafarov, E.N. Snow Queen is evil and beautiful: Experimental evidence for probabilistic contextuality in human choices. Decision 2018, 5, 193–204. [Google Scholar] [CrossRef]
- Dzhafarov, E.N. On joint distributions, counterfactual values, and hidden variables in understanding contextuality. Philos. Trans. R. Soc. A 2019, 377, 20190144. [Google Scholar] [CrossRef]
- Kujala, J.V.; Dzhafarov, E.N. Measures of contextuality and noncontextuality. Philos. Trans. R. Soc. A 2019, 377, 20190149. [Google Scholar] [CrossRef] [Green Version]
- Dzhafarov, E.N. Contents, contexts, and basics of contextuality. In From Electrons to Elephants and Elections: Saga of Content and Context; The Frontiers, Collection; Wuppuluri, S., Stewart, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; in press. [Google Scholar]
- Kupczynski, M. Tests for the purity of the initial ensemble of states in scattering experiments. Lett. Nuovo Cim. 1974, 11, 121–124. [Google Scholar] [CrossRef]
- Kupczynski, M. On some new tests of completeness of quantum mechanics. Phys. Lett. A 1986, 116, 417–419. [Google Scholar] [CrossRef]
- Kupczynski, M. Is quantum theory predictably complete? Phys. Scr. 2009, T135, 014005. [Google Scholar] [CrossRef]
- Kupczynski, M. Time series, stochastic processes and completeness of quantum theory. AIP. Conf. Proc. 2011, 1327, 394–400. [Google Scholar]
- Schilpp, P.A. (Ed.) Albert Einstein: Philosopher–Scientist; Harper and Row: New York, NY, USA, 1949. [Google Scholar]
- Einstein, A. Physics and reality. J. Frankl. Inst. 1936, 221, 349. [Google Scholar] [CrossRef]
- Aspect, A.; Grangier, P.; Roger, G. Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 1982, 49, 1804–1807. [Google Scholar] [CrossRef] [Green Version]
- Weihs, G.; Jennewein, T.; Simon, C.; Weinfurther, H.; Zeilinger, A. Violation of Bell’s inequality under strict Einstein locality conditions. Phys. Rev. Lett. 1998, 81, 5039–5043. [Google Scholar] [CrossRef] [Green Version]
- Christensen, B.G.; McCusker, K.T.; Altepeter, J.B.; Calkins, B.; Lim, C.C.W.; Gisin, N.; Kwiat, P.G. Detection-loophole-free test of quantum nonlocality, and applications. Phys. Rev. Lett. 2013, 111, 130406. [Google Scholar] [CrossRef] [Green Version]
- Hensen, B.; Bernien, H.; Dréau, A.E.; Reiserer, A.; Kalb, N.; Blok, M.S.; Ruitenberg, J.; Vermeulen, R.F.L.; Schouten, R.N.; Abellán, C.; et al. Loophole free Bell inequality violation using electron spins separated by 1. 3 kilometres. Nature 2015, 526, 682–686. [Google Scholar] [CrossRef] [PubMed]
- Hensen, B.; Bernien, H.; Dreau, A.E.; Reiserer, A.; Kalb, N.; Blok, M.S.; Ruitenberg, J.; Vermeulen, R.F.L.; Schouten, R.N.; Abellan, C.; et al. Significant-loophole-free test of Bell’s theorem with entangled photons. Phys. Rev. Lett. 2015, 115, 250401. [Google Scholar]
- Shalm, L.K.; Meyer-Scott, E.; Christensen, B.G.; Bierhorst, P.; Wayne, M.A.; Stevens, M.J.; Gerrits, T.; Glancy, S.; Hamel, D.R.; Allman, M.S.; et al. Strong loophole-free test of local realism. Phys. Rev. Lett. 2015, 115, 250402. [Google Scholar] [CrossRef] [PubMed]
- Abellán, C.; Acín, A.; Alarcón, A.; Alibart, O.; Andersen, C.K.; Andreoli, F.; Beckert, A.; Beduini, F.A.; Bendersky, A.; Bentivegna, M.; et al. The BIG Bell Test collaboration challenging local realism with human choices. Nature 2018, 557, 212–216. [Google Scholar] [CrossRef] [Green Version]
- Accardi, L. Topics in quantum probability. Phys. Rep. 1981, 77, 169–192. [Google Scholar] [CrossRef]
- Accardi, L. Some loopholes to save quantum nonlocality. AIP. Conf. Proc. 2005, 750, 1–19. [Google Scholar]
- Aerts, D. A possible explanation for the probabilities of quantum mechanics. J. Math. Phys. 1986, 27, 202–210. [Google Scholar] [CrossRef]
- Czachor, M. On some class of random variables leading to violation of the Bell inequality. Phys. Lett. A 1988, 129, 291, new version (2017) arXiv:1710.06126 [quant-ph]. [Google Scholar] [CrossRef]
- Czachor, M. Arithmetic loophole in Bell’s Theorem: Overlooked threat to entangled-state quantum cryptography. Acta Phys. Polon. A 2021, 139, 70–83. [Google Scholar] [CrossRef]
- Fine, A. Hidden variables, joint probability and the Bell inequalities. Phys. Rev. Lett. 1982, 48, 291–295. [Google Scholar] [CrossRef]
- Fine, A. Joint distributions, quantum correlations, and commuting observables. J. Math. Phys. 1982, 23, 1306–1310. [Google Scholar] [CrossRef]
- Hess, K.; Philipp, W. Bell’s theorem: Critique of proofs with and without inequalities. AIP Conf. Proc. 2005, 750, 150–157. [Google Scholar]
- Hess, K.; De Raedt, H.; Michielsen, K. Hidden assumptions in the derivation of the theorem of Bell. Phys. Scr. 2012, T151, 014002. [Google Scholar] [CrossRef] [Green Version]
- Hess, K.; Michielsen, K.; De Raedt, H. From Boole to Leggett-Garg: Epistemology of Bell-type Inequalities. Adv. Math. Phys. 2016, 2016, 4623040. [Google Scholar] [CrossRef]
- Jaynes, E.T. Clearing up mysteries—The original goal. In Maximum Entropy and Bayesian Methods; Skilling, J., Ed.; Kluwer: Dordrecht, The Netherlands, 1989; Volume 36, pp. 1–27. [Google Scholar] [CrossRef]
- Khrennikov, A. Interpretations of Probability; VSP Int.: Tokyo, Japan; Sc. Publishers: Utrecht, The Netherlands, 1999. [Google Scholar]
- Khrennikov, A. Bell-boole inequality: Nonlocality or probabilistic incompatibility of random variables? Entropy 2008, 10, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Khrennikov, A. Contextual Approach to Quantum Formalism; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar]
- Khrennikov, A. Ubiquitous Quantum Structure; Springer: Berlin, Germany, 2010. [Google Scholar]
- Khrennikov, A. CHSH inequality: Quantum probabilities as classical conditional probabilities. Found. Phys. 2015, 45, 711. [Google Scholar] [CrossRef] [Green Version]
- Khrennikov, A. Get rid of nonlocality from quantum physics. Entropy 2019, 21, 806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khrennikov, A. Two Faced Janus of Quantum Nonlocality. Entropy 2020, 22, 303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khrennikov, A. Quantum versus classical entanglement: Eliminating the issue of quantum nonlocality. Found. Phys 2020, 50, 1762–1780. [Google Scholar] [CrossRef] [Green Version]
- Kupczynski, M. New test of Completeness of Quantum Mechanics; International Atomic Energy Agency: Trieste, Italy, 1984. [Google Scholar]
- Kupczynski, M. Pitovsky model and complementarity. Phys. Lett. A 1987, 121, 51–53. [Google Scholar] [CrossRef]
- Kupczynski, M. Bertrand’s paradox and Bell’s inequalities. Phys. Lett. A 1987, 121, 205–207. [Google Scholar] [CrossRef]
- Kupczynski, M. Entanglement and Bell inequalities. J. Russ. Laser Res. 2005, 26, 514–523. [Google Scholar] [CrossRef] [Green Version]
- Kupczynski, M. Seventy years of the EPR paradox. AIP Conf. Proc. 2006, 861, 516–523. [Google Scholar]
- Kupczynski, M. EPR paradox, locality and completeness of quantum. AIP Conf. Proc. 2007, 962, 274–285. [Google Scholar]
- Kupczynski, M. Entanglement and quantum nonlocality demystified. AIP Conf. Proc. 2012, 1508, 253–264. [Google Scholar]
- Kupczynski, M. Causality and local determinism versus quantum nonlocality. J. Phys. Conf. Ser. 2014, 504, 012015. [Google Scholar] [CrossRef] [Green Version]
- Kupczynski, M. EPR paradox, quantum nonlocality and physical reality. J. Phys. Conf. Ser. 2016, 701, 012021. [Google Scholar] [CrossRef] [Green Version]
- Kupczynski, M. On operational approach to entanglement and how to certify it. Int. J. Quantum Inf. 2016, 14, 1640003. [Google Scholar] [CrossRef]
- Kupczynski, M. Can we close the Bohr-Einstein quantum debate? Philos. Trans. R. Soc. A 2017. [Google Scholar] [CrossRef] [Green Version]
- Kupczynski, M. Is Einsteinian no-signalling violated in Bell tests? Open Phys. 2017, 15, 739–753. [Google Scholar] [CrossRef]
- Kupczynski, M. Quantum mechanics and modeling of physical reality. Phys. Scr. 2018, 93, 123001. [Google Scholar] [CrossRef] [Green Version]
- Kupczynski, M. Closing the Door on Quantum Nonlocality. Entropy 2018, 20, 877. [Google Scholar] [CrossRef] [Green Version]
- Kupczynski, M. Is the Moon there when nobody looks: Bell inequalities and physical reality. Front. Phys. 2020. [Google Scholar] [CrossRef]
- De Muynck, V.M.; De Baere, W.; Martens, H. Interpretations of quantum mechanics, joint measurement of incompatible observables and counterfactual definiteness. Found. Phys. 1994, 24, 1589–1664. [Google Scholar] [CrossRef]
- De Muynck, W.M. Foundations of Quantum Mechanics; Kluver Academic: Dordrecht, The Netherlands, 2002. [Google Scholar]
- Nieuwenhuizen, T.M. Where Bell went wrong. AIP Conf. Proc. 2009, 1101, 127–133. [Google Scholar]
- Nieuwenhuizen, T.M. Is the contextuality loophole fatal for the derivation of Bell inequalities. Found. Phys. 2011, 41, 580–591. [Google Scholar] [CrossRef] [Green Version]
- Pearle, P. Hidden-variable example based upon data rejection. Phys. Rev. D 1970, 2, 1418–1425. [Google Scholar] [CrossRef]
- Peres, A. Unperformed experiments have no results. Am. J. Phys. 1978, 46, 745–747. [Google Scholar] [CrossRef]
- Pitovsky, I. George Boole’s conditions of possible experience and the quantum puzzle. Br. J. Philos. Sci. 1994, 45, 95–125. [Google Scholar] [CrossRef]
- De la Peña, L.; Cetto, A.M.; Brody, T.A. On hidden variable theories and Bell’s inequality. Lett. Nuovo Cimento 1972, 5, 177. [Google Scholar] [CrossRef]
- Cetto, A.M.; Valdes-Hernandez, A.; de la Pena, L. On the spin projection operator and the probabilistic meaning of the bipartite correlation function. Found. Phys. 2020, 50, 27–39. [Google Scholar] [CrossRef] [Green Version]
- De Raedt, H.; De Raedt, K.; Michielsen, K.; Keimpema, K.; Miyashita, S. Event-based computer simulation model of Aspect-type experiments strictly satisfying Einstein’s locality conditions. J. Phys. Soc. Jpn. 2007, 76, 104005. [Google Scholar] [CrossRef] [Green Version]
- De Raedt, H.; De Raedt, K.; Michielsen, K.; Keimpema, K.; Miyashita, S. Event-by-event simulation of quantum phenomena: Application to Einstein-Podolsky-Rosen-Bohm experiments. J. Comput. Theor. Nanosci. 2007, 4, 957–991. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; De Raedt, H.; Michielsen, K. Event-by-event simulation model of Einstein-Podolsky-Rosen-Bohm experiments. Found. Phys. 2008, 38, 322–347. [Google Scholar] [CrossRef] [Green Version]
- De Raedt, H.; Hess, K.; Michielsen, K. Extended Boole-Bell inequalities applicable to quantum theory. J. Comput. Theor. Nanosci. 2011, 8, 10119. [Google Scholar] [CrossRef] [Green Version]
- De Raedt, H.; Michielsen, K.; Jin, F. Einstein-Podolsky-Rosen-Bohm laboratory experiments: Data analysis and simulation. AIP Conf. Proc. 2012, 1424, 55–66. [Google Scholar]
- De Raedt, H.; Jin, F.; Michielsen, K. Data analysis of Einstein-Podolsky-Rosen-Bohm laboratory experiments. Proc. SPIE 2013, 8832, N1–N11. [Google Scholar]
- De Raedt, H.; Michielsen, K.; Hess, K. The photon identification loophole in EPRB experiments: Computer models with single-wing selection. Open Phys. 2017, 15, 713–733. [Google Scholar] [CrossRef] [Green Version]
- Thompson, C.H. The chaotic ball: An intuitive analogy for EPR experiments. Found. Phys. Lett. 1996, 9, 357–382. [Google Scholar] [CrossRef] [Green Version]
- Wigner, E.P. On hidden variables and quantum mechanical probabilities. Am. J. Phys. 1970, 38, 1005. [Google Scholar] [CrossRef]
- Żukowski, M.; Brukner, Č. Quantum non-locality—It ain’t necessarily so. J. Phys. A Math. Theor. 2014, 47, 424009. [Google Scholar] [CrossRef]
- Svozil, K. Quantum hocus-pocus. Ethics Sci. Environ. Politics 2016, 16, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Khrennikov, A. Bohr against Bell: Complementarity versus nonlocality. Open Phys. 2017, 15, 734–738. [Google Scholar] [CrossRef]
- Kracklauer, A.F. Bell’s “Theorem”: Loopholes vs. conceptual flaws. Open Phys. 2017, 15. [Google Scholar] [CrossRef] [Green Version]
- Boughn, S. Making sense of Bell’s theorem and quantum nonlocality. Found. Phys. 2017, 47, 640–657. [Google Scholar] [CrossRef]
- Hess, K. Bell’s Theorem and instantaneous influences at a distance. J. Mod. Phys. 2018, 9, 1573–1590. [Google Scholar] [CrossRef] [Green Version]
- Jung, K. Violation of Bell’s inequality: Must the Einstein locality really be abandoned? J. Phys. Conf. Ser. 2017, 880, 012065. [Google Scholar] [CrossRef] [Green Version]
- Jung, K. Polarization correlation of entangled photons derived without using non-local interactions. Front. Phys. 2020. [Google Scholar] [CrossRef]
- Griffiths, R.B. Nonlocality claims are inconsistent with Hilbert-space quantum mechanics. Phys. Rev A 2020, 101, 022117. [Google Scholar] [CrossRef] [Green Version]
- Basieva, I.; Cervantes, V.H.; Dzhafarov, E.N.; Khrennikov, A. True contextuality beats direct influences in human decision making. J. Exp. Psychol. Gen. 2019, 148, 1925–1937. [Google Scholar] [CrossRef] [Green Version]
- Cervantes, V.H.; Dzhafarov, E.N. True contextuality in a psychophysical experiment. J. Math. Psychol. 2019, 91, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Aerts, D.; Argüelles, J.; Beltran, L.; Geriente, S.; Sassoli de Bianchi, M.; Sozzo, S.; Veloz, T. Quantum entanglement in physical and cognitive systems: A conceptual analysis and a general representation. Eur. Phys. J. Plus 2019, 134, 493. [Google Scholar] [CrossRef]
- Araujo, M.; Quintino, M.T.; Budroni, C.; Cunha, M.T.; Cabello, A. All noncontextuality inequalities for the n-cycle scenario. Phys. Rev. A 2013, 88, 022118. [Google Scholar] [CrossRef] [Green Version]
- Boole, G. On the theory of probabilities. Philos. Trans. R. Soc. Lond. 1862, 152, 225–252. [Google Scholar]
- Suppes, P.; Zanotti, M. When are probabilistic explanations possible? Synthese 1981, 48, 191–199. [Google Scholar] [CrossRef]
- Leggett, A.J.; Garg, A. Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks. Phys. Rev. Lett. 1985, 9, 857–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clauser, J.F.; Horne, M.A.; Shimony, A.; Holt, R.A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 1969, 23, 880. [Google Scholar] [CrossRef] [Green Version]
- Klyachko, A.A.; Can, M.A.; Binicioglu, S.; Shumovsky, A.S. Simple test for hidden variables in spin-1 systems. Phys. Rev. Lett. 2008, 101, 020403. [Google Scholar] [CrossRef] [Green Version]
- Lapkiewicz, R.; Li, P.; Schaeff, C.; Langford, N.K.; Ramelow, S.; Wiesniak, M.; Zeilinger, A. Experimental nonclassicality of an indivisible quantum system. Nature 2011, 474, 490–493. [Google Scholar] [CrossRef]
- Bohm, D. Quantum Theory; Prentice Hall: New York, NY, USA, 1989; ISBN 0486659690. [Google Scholar]
- Bell, J.S. On the Einstein-Podolsky-Rosen paradox. Physics 1964, 1, 195–200. [Google Scholar] [CrossRef] [Green Version]
- Adenier, G.; Khrennikov, A. Is the fair sampling assumption supported by EPR experiments? J. Phys. B Atom. Mol. Opt. Phys. 2007, 40, 131–141. [Google Scholar] [CrossRef]
- Adenier, G.; Khrennikov, A. Test of the no-signaling principle in the Hensen loophole-free CHSH experiment. Fortschr. Der Phys. 2017. [Google Scholar] [CrossRef] [Green Version]
- Bednorz, A. Analysis of assumptions of recent tests of local realism. Phys. Rev. A 2017, 95, 042118. [Google Scholar] [CrossRef] [Green Version]
- Lin, P.S.; Rosset, D.; Zhang, Y.; Bancal, J.D.; Liang, Y.C. Device-independent point estimation from finite data and its application to device-independent property estimation. Phys. Rev. A 2018, 97, 032309. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Glancy, S.; Knill, E. Asymptotically optimal data analysis for rejecting local realism. Phys. Rev. A 2011, 84, 062118. [Google Scholar] [CrossRef] [Green Version]
- Christensen, B.G.; Liang, Y.-C.; Brunner, N.; Gisin, N.; Kwiat, P. Exploring the limits of quantum nonlocality with entangled photons. Phys. Rev. X 2015, 5, 041052. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.C.; Zhang, Y. Bounding the plausibility of physical theories in a device-independent setting via hypothesis testing. Entropy 2019, 21, 185. [Google Scholar] [CrossRef] [Green Version]
- Kupczynski, M. Significance tests and sample homogeneity loophole. arXiv 2015, arXiv:1505.06349. [Google Scholar]
- Kupczynski, M.; De Raedt, H. Breakdown of statistical inference from some random experiments. Comput. Phys. Commun. 2016, 200, 168. [Google Scholar] [CrossRef] [Green Version]
- Larsson, J.-A. Loopholes in Bell inequality tests of local realism. J. Phys. A Math. Theor. 2014, 47, 424003. [Google Scholar] [CrossRef] [Green Version]
- Myrvold, W.; Genovese, M.; Shimony, A. Bell’s Theorem. In The Stanford Encyclopedia of Philosophy (Fall 2020 Editon). Zalta, E.N., Ed.; Available online: https://plato.stanford.edu/archives/fall2020/entries/bell-theorem/ (accessed on 17 May 2021).
- Blasiak, P.; Pothos, E.M.; Yearsley, J.M.; Gallus, C.; Borsuk, E. Violations of locality and free choice are equivalent resources in Bell experiments. Proc. Natl. Acad. Sci. USA 2021, 118, e2020569118. [Google Scholar] [CrossRef]
- Bell, J.S. The theory of local beables. Epistemol. Lett. 1976, 9, 11–24. [Google Scholar]
- Bell, J.S. Speakable and Unspeakable in Quantum Mechanics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Kupczynski, M. A comment on: The violations of locality and free choice are equivalent resources in Bell experiments. arXiv 2021, arXiv:2105.14279. [Google Scholar]
- Kofler, J.; Giustina, M.; Larsson, J.-Å.; Mitchel, M.W. Requirements for loophole-free photonic Bell test using imperfect generators. Phys. Rev. A 2016, 93, 032115. [Google Scholar] [CrossRef] [Green Version]
- Svozil, K. Quantum violation of the Suppes-Zanotti inequalities and “contextuality”. Int. J. Theor. Phys. 2021, 60, 2300–2310. [Google Scholar] [CrossRef]
- Calude, C.S.; Dinneen, M.J.; Dumitrescu, M.; Svozil, K. Experimental evidence of quantum randomness incomputability. Phys. Rev. A 2010, 82, 022102. [Google Scholar] [CrossRef] [Green Version]
- Martínez, A.C.; Solis, A.; Rojas, R.D.H.; U’Ren, A.B.; Hirsch, J.G.; Castillo, I.P. Advanced statistical testing of quantum random number generators. Entropy 2018, 20, 886. [Google Scholar] [CrossRef] [Green Version]
- Iannuzzi, M.; Francini, R.; Messi, R.; Moricciani, D. Bell-type polarization experiment with pairs of uncorrelated optical photons. Phys. Lett. A 2020, 384, 126200. [Google Scholar] [CrossRef] [Green Version]
- Raussendorf, R. Contextuality in measurement-based quantum computation. Phys. Rev. A 2013, 88, 022322. [Google Scholar] [CrossRef] [Green Version]
- Howard, M.; Wallman, J.; Veitch, V.; Emerson, J. Contextuality supplies the ‘magic’ for quantum computation. Nat. Cell Biol. 2014, 510, 351–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abramsky, S.; Barbosa, R.S.; Mansfield, S. Contextual fraction as a measure of contextuality. Phys. Rev. Lett. 2017, 119, 050504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abramsky, S.; Brandenburger, A. The sheaf-theoretic structure of non-locality and contextuality. New J. Phys. 2011, 13, 113036. [Google Scholar] [CrossRef]
- Cabello, A.; Severini, S.; Winter, A. Graph-Theoretic Approach to Quantum Correlations. Phys. Rev. Lett. 2014, 112, 040401. [Google Scholar] [CrossRef] [Green Version]
- Acín, A.; Fritz, T.; Leverrier, A.; Sainz, A.B. A combinatorial approach to nonlocality and contextuality. Commun. Math. Phys. 2015, 334, 533–628. [Google Scholar] [CrossRef] [Green Version]
- Spekkens, R.W. Contextuality for preparations, transformations, and unsharp measurements. Phys. Rev. A 2005, 71, 052108. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kupczynski, M. Contextuality-by-Default Description of Bell Tests: Contextuality as the Rule and Not as an Exception. Entropy 2021, 23, 1104. https://doi.org/10.3390/e23091104
Kupczynski M. Contextuality-by-Default Description of Bell Tests: Contextuality as the Rule and Not as an Exception. Entropy. 2021; 23(9):1104. https://doi.org/10.3390/e23091104
Chicago/Turabian StyleKupczynski, Marian. 2021. "Contextuality-by-Default Description of Bell Tests: Contextuality as the Rule and Not as an Exception" Entropy 23, no. 9: 1104. https://doi.org/10.3390/e23091104
APA StyleKupczynski, M. (2021). Contextuality-by-Default Description of Bell Tests: Contextuality as the Rule and Not as an Exception. Entropy, 23(9), 1104. https://doi.org/10.3390/e23091104