Entropy in Brain Networks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Breakspear, M. Dynamic models of large-scale brain activity. Nat. Neurosci. 2017, 20, 340–352. [Google Scholar] [CrossRef] [PubMed]
- Voytek, B.; Knight, R.T. Dynamic network communication as a unifying neural basis for cognition, development, aging, and disease. Biol. Psychiatry 2015, 77, 1089–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waschke, L.; Kloosterman, N.A.; Obleser, J.; Garrett, D.D. Behavior needs neural variability. Neuron 2021, 109, 751–766. [Google Scholar] [CrossRef] [PubMed]
- Alù, F.; Miraglia, F.; Orticoni, A.; Judica, E.; Cotelli, M.; Rossini, P.M.; Vecchio, F. Approximate entropy of brain network in the study of hemispheric differences. Entropy 2020, 22, 1220. [Google Scholar] [CrossRef] [PubMed]
- Maren, A. The 2-D cluster variation method: Topography illustrations and their enthalpy parameter correlations. Entropy 2021, 23, 319. [Google Scholar] [CrossRef] [PubMed]
- Melin, J.; Cano, S.; Pendrill, L. The role of entropy in construct specification equations (CSE) to improve the validity of memory tests. Entropy 2021, 23, 212. [Google Scholar] [CrossRef] [PubMed]
- Revilla-Vallejo, M.; Poza, J.; Gomez-Pilar, J.; Hornero, R.; Tola-Arribas, M.A.; Cano, M.; Gómez, C. Exploring the alterations in the distribution of neural network weights in dementia due to Alzheimer’s disease. Entropy 2021, 23, 500. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wu, X.; Li, M.; Wu, H.; Hancock, E.R. Microcanonical and canonical ensembles for fMRI brain networks in Alzheimer’s disease. Entropy 2021, 23, 216. [Google Scholar]
- Liu, X.; Fu, Z. A novel recognition strategy for epilepsy EEG signals based on conditional entropy of ordinal patterns. Entropy 2020, 22, 1092. [Google Scholar] [CrossRef] [PubMed]
- Jao, C.-W.; Yeh, J.-H.; Wu, Y.-T.; Lien, L.-M.; Tsai, Y.-F.; Chu, K.-E.; Hsiao, C.-Y.; Wang, P.-S.; Lau, C.I. Alteration of the intra- and inter-lobe connectivity of the brain structural network in normal aging. Entropy 2020, 22, 826. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Ma, J.; Zhao, J.; Liu, P.; Cong, F.; Liu, T.; Li, Y.; Sun, L.; Chang, R. Decoding analysis of alpha oscillation networks on maintaining driver alertness. Entropy 2020, 22, 787. [Google Scholar] [CrossRef] [PubMed]
- Fraschini, M.; La Cava, S.M.; Didaci, L.; Barberini, L. On the variability of functional connectivity and network measures in source-reconstructed EEG time-series. Entropy 2021, 23, 5. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poza, J.; García, M.; Gomez-Pilar, J. Entropy in Brain Networks. Entropy 2021, 23, 1157. https://doi.org/10.3390/e23091157
Poza J, García M, Gomez-Pilar J. Entropy in Brain Networks. Entropy. 2021; 23(9):1157. https://doi.org/10.3390/e23091157
Chicago/Turabian StylePoza, Jesús, María García, and Javier Gomez-Pilar. 2021. "Entropy in Brain Networks" Entropy 23, no. 9: 1157. https://doi.org/10.3390/e23091157
APA StylePoza, J., García, M., & Gomez-Pilar, J. (2021). Entropy in Brain Networks. Entropy, 23(9), 1157. https://doi.org/10.3390/e23091157