Complexity of COVID-19 Dynamics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Methodology—False Nearest Neighbor Algorithm
- (i)
- Form the set of reconstructed vectors in the phase space using Equation (1) with embedding dimension m, say, m = 2;
- (ii)
- Identify the nearest vector (in the Euclidean sense) for a given reconstructed vector in the phase space. That is, for the given reconstructed vector Yj, find the vector that has the minimum Euclidean distance with respect to Yj;
- (iii)
- Check whether the loneliness tolerance criterion and the distance tolerance criterion are true or false. If both criteria are true, then the identified neighbor for the re-constructed vector Yj is false;
- (iv)
- Continue the algorithm for the remaining reconstructed vectors. Calculate the total number of false nearest neighbors. The percentage of FNN (%FNN) is obtained by dividing the number of false nearest neighbors for embedding dimension m by the number of false nearest neighbors for embedding dimension 1;
- (v)
- Perform the algorithm for increasing m until the percentage of false nearest neighbors drops to zero. The embedding dimension that yields zero or the lowest %FNN is then chosen as the optimal embedding dimension (mopt) or the “FNN dimension”.
3. Analysis and Results
3.1. Analysis
3.2. Results for Daily COVID-19 Cases
3.3. Results for Daily COVID-19 Deaths
4. Discussion
4.1. Dynamic Complexity of COVID-19 Cases versus COVID-19 Deaths
4.2. Dimension versus Coefficient of Variation for COVID-19 Dynamics
4.3. Data-Related Issues for FNN Dimension Estimation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Availability of Code
References
- World Health Organization (WHO). Novel Coronavirus—China. 2020. Available online: https://www.who.int/csr/don/12-january-2020-novel-coronavirus-china/en/ (accessed on 26 November 2021).
- World Health Organization (WHO). Coronavirus Disease (COVID-19) Pandemic. 2021. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed on 26 November 2021).
- Orcutt, M.; Patel, P.; Burns, R.; Hiam, L.; Aldridge, R.; Devakumar, D.; Kumar, B.; Spiegel, P.; Abubakar, I. Global call to action for inclusion of migrants and refugees in the COVID-19 response. Lancet 2020, 395, 1482–1483. [Google Scholar] [CrossRef]
- Bandala, E.R.; Kruger, B.R.; Cesarino, I.; Leao, A.L.; Wijesiri, B.; Goonetilleke, A. Impacts of COVID-19 pandemic on the wastewater pathway into surface water: A review. Sci. Total. Environ. 2021, 774, 155586. [Google Scholar] [CrossRef]
- Cowie, H.; Myers, C.-A. The impact of the COVID-19 pandemic on the mental health and well-being of children and young people. Child. Soc. 2021, 35, 62–74. [Google Scholar] [CrossRef]
- Day, T.; Chang, I.-C.C.; Chung, C.K.L.; Doolittle, W.E.; Housel, J.; McDaniel, P.N. The immediate impact of COVID-19 on postsecondary teaching and learning. Prof. Geogr. 2021, 73, 1–13. [Google Scholar] [CrossRef]
- Deb, S.K.; Nafi, S.M. Impact of COVID-19 pandemic on tourism: Recovery proposal for future tourism. Geoj. J. Tour. Geosites 2021, 33, 1486–1492. [Google Scholar] [CrossRef]
- Ibn-Mohammed, T.; Mustapha, K.B.; Godsell, J.; Adamu, Z.; Babatunde, K.A.; Akintade, D.E.; Acquaye, A.; Fujii, H.; Ndiaye, M.M.; Yamoha, F.A.; et al. A critical analysis of the impacts of COVID-19 on the global economy and ecosystems and opportunities for circular economy strategies. Resour. Conserv. Recycl. 2021, 164, 105169. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Fan, Y.V.; Klemeš, J.J. Impacts of COVID-19 on energy demand and consumption: Challenges, lessons and emerging opportunities. Appl. Energy 2021, 285, 116441. [Google Scholar] [CrossRef]
- Sivakumar, B. COVID-19 and water. Stoch. Environ. Res. Risk Assess. 2021, 35, 531–534. [Google Scholar] [CrossRef]
- Schaffer, W.M. Can nonlinear dynamics elucidate mechanisms in ecology and epidemiology? IMA J. Math. Appl. Med. Biol. 1985, 2, 221–252. [Google Scholar]
- Schaffer, W.M.; Kot, M. Nearly one-dimensional dynamics in an epidemic. J. Theor. Biol. 1985, 112, 403–427. [Google Scholar] [CrossRef]
- Olsen, L.F.; Truty, G.L.; Schaffer, W.M. Oscillations and chaos in epidemics: A nonlinear dynamic study of six childhood diseases in Copenhagen, Denmark. Theor. Popul. Biol. 1988, 33, 344–370. [Google Scholar] [CrossRef]
- Hethcote, H.W.; Lewis, M.A.; van den Driessche, P. An epidemiological model with a delay and a nonlinear incidence rate. J. Math. Biol. 1989, 27, 49–64. [Google Scholar] [CrossRef]
- Grenfell, B.T.; Kleczkowski, A.; Gilligan, C.A.; Bolker, B.M. Spatial heterogeneity, nonlinear dynamics and chaos in infectious diseases. Stat. Methods Med. Res. 1995, 4, 160–183. [Google Scholar] [CrossRef]
- Earn, D.J.D.; Rohani, P.; Bolker, B.M.; Grenfell, B.T. A simple model for complex dynamical transitions in epidemics. Science 2000, 287, 667–670. [Google Scholar] [CrossRef] [Green Version]
- Mandal, P.S.; Banerjee, M. Deterministic chaos vs. stochastic fluctuation in an eco-epidemic model. Math. Model. Nat. Phenom. 2012, 7, 99–116. [Google Scholar] [CrossRef]
- Kumar, A.; Srivastava, P.K.; Gupta, R.P. Nonlinear dynamics of infectious diseases via information-induced vaccination and saturated treatment. Math. Comput. Simul. 2019, 157, 77–99. [Google Scholar] [CrossRef]
- Machado, J.A.T.; Rocha-Neves, J.M.; Andrade, J.P. Computational analysis of the SARS-CoV-2 and other viruses based on the Kolmogorov’s complexity and Shannon’s information theories. Nonlinear Dyn. 2020, 101, 1731–1750. [Google Scholar] [CrossRef]
- Machado, J.A.T.; Rocha-Neves, J.M.; Azevedo, F.; Andrade, J.P. Advances in the computational analysis of SARS-CoV2 genome. Nonlinear Dyn. 2021, 106, 1525–1555. [Google Scholar] [CrossRef]
- Lipsitch, M.; Cohen, T.; Cooper, B.; Robins, J.M.; Ma, S.; James, L.; Gopalakrishna, G.; Chew, S.K.; Tan, C.C.; Samore, M.H.; et al. Transmission dynamics and control of severe acute respiratory syndrome. Science 2003, 300, 1966–1970. [Google Scholar] [CrossRef] [Green Version]
- Gumel, A.B.; Ruan, S.; Day, T.; Watmough, J.; Brauer, F.; van den Driessche, P.; Gabrielson, D.; Bowman, C.; Alexander, M.E.; Ardal, S.; et al. Modelling strategies for controlling SARS outbreaks. Proc. Biol. Sci. 2004, 271, 2223–2232. [Google Scholar] [CrossRef] [Green Version]
- Masuda, N.; Konno, N.; Aihara, K. Transmission of severe acute respiratory syndrome in dynamical small-world networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2004, 69, 031917. [Google Scholar] [CrossRef] [Green Version]
- Bauch, C.T.; Lloyd-Smith, J.O.; Coffee, M.P.; Galvani, A.P. Dynamically modeling SARS and other newly emerging respiratory illnesses: Past, present, and future. Epidemiology 2005, 16, 791–801. [Google Scholar] [CrossRef] [Green Version]
- Bandt, C. Entropy ratio and entropy concentration coefficient, with application to the COVID-19 pandemic. Entropy 2020, 22, 1315. [Google Scholar] [CrossRef]
- Bashir, M.F.; Ma, B.; Bilal Komal, B.; Bashir, M.A.; Tan, D.; Bashir, M. Correlation between climate indicators and COVID-19 pandemic in New York, USA. Sci. Total Environ. 2000, 728, 138835. [Google Scholar] [CrossRef] [PubMed]
- Chinazzi, M.; Davis, J.T.; Ajelli, M.; Gioannini, C.; Litvinova, M.; Merler, S.; Piontti, A.P.; Mu, K.; Rossi, L.; Sun, K.; et al. The effect of travel restrictions on the spread of the novel 2019 coronavirus (COVID-19) outbreak. Science 2020, 368, 395–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giordano, G.; Blanchini, F.; Bruno, R.; Colaneri, P.; Di Filippo, A.; Di Matteo, A.; Colaneri, M. Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy. Nat. Med. 2020, 26, 855–860. [Google Scholar] [CrossRef]
- Jia, J.S.; Lu, X.; Yuan, Y.; Xu, G.; Jia, J.; Christakis, N.A. Population flow drives spatio-temporal distribution of COVID-19 in China. Nature 2020, 582, 389–394. [Google Scholar] [CrossRef]
- Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med. 2020, 382, 1199–1207. [Google Scholar] [CrossRef] [PubMed]
- Namazi, H.; Krejcar, O.; Subasi, A. Complexity and information-based analysis of the variations of the SARS-CoV-2 genome in the United States of America (USA). Fractals 2020, 28, 2150023. [Google Scholar] [CrossRef]
- Namazi, H.; Selamat, A.; Krejcar, O. Complexity-based analysis of the alterations in the structure of coronaviruses. Fractals 2021, 29, 2150123. [Google Scholar] [CrossRef]
- Wilder-Smith, A.; Chiew, C.J.; Lee, V.J. Can we contain the COVID-19 outbreak with the same measures as for SARS? Lancet Infect. Dis. 2020, 20, e102–e107. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Jing, W.; Liu, J.; Ma, Q.; Yuan, J.; Wang, Y.; Du, M.; Liu, M. Effects of temperature and humidity on the new daily cases and deaths of COVID-19 in 166 countries. Sci. Total Environ. 2020, 729, 3905. [Google Scholar] [CrossRef] [PubMed]
- Bajíc, D.; Ðajíc, V.; Milovanovíc, B. Entropy analysis of COVID-19 cardiovascular signals. Entropy 2021, 23, 87. [Google Scholar] [CrossRef] [PubMed]
- Salini, G.A.; Pacheco, P.R.; Mera, E.; Parodi, M.C. Probable Relationship between COVID-19, Pollutants and Meteorology: A Case Study at Santiago, Chile. Aerosol Air Qual. Res. 2021, 21, 200434. [Google Scholar] [CrossRef]
- Mangiarotti, S.; Peyre, M.; Huc, M. A chaotic model for the epidemic of Ebola virus disease in West Africa (2013–2016). Chaos 2016, 26, 113112. [Google Scholar] [CrossRef] [Green Version]
- Mangiarotti, S.; Peyre, M.; Zhang, Y.; Huc, M.; Roger, F.; Kerr, Y. Chaos theory applied to the outbreak of COVID-19: An ancillary approach to decision-making in pandemic context. Epidemiol. Infect. 2020, 148, e95. [Google Scholar] [CrossRef] [PubMed]
- Kennel, M.B.; Brown, R.; Abarbanel, H.D.I. Determining embedding dimension for phase space reconstruction using a geometric method. Phys. Rev. A 1992, 45, 3403–3411. [Google Scholar] [CrossRef] [Green Version]
- Packard, N.B.; Crutchfield, J.P.; Farmer, J.D.; Shaw, R.S. Geometry from a time series. Phys. Rev. Lett. 1980, 45, 712–716. [Google Scholar] [CrossRef]
- Takens, F. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Lecture Notes in Mathematics; Rand, D.A., Young, L.S., Eds.; Springer: Berlin/Heidelberg, Germany, 1981; pp. 366–381. [Google Scholar]
- Kantz, H.; Schreiber, T. Nonlinear Time Series Analysis; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Broomhead, D.S.; King, G.P. Extracting qualitative dynamics from experimental data. Physica D 1986, 20, 217–236. [Google Scholar] [CrossRef]
- Sauer, T.; Yorke, J.; Casdagli, M. Embeddology. J. Stat. Phys. 1991, 65, 579–616. [Google Scholar] [CrossRef]
- Elsner, J.B.; Tsonis, A.A. Singular Spectrum Analysis: A New Tool in Time Series Analysis; Plenum Press: New York, NY, USA, 1996. [Google Scholar]
- Sangoyomi, T.B.; Lall, U.; Abarbanel, H.D.I. Nonlinear dynamics of Great Salt Lake: Dimension estimation. Water Resour. Res. 1996, 32, 149–159. [Google Scholar] [CrossRef]
- Fredkin, D.R.; Rice, J.A. Method of false nearest neighbors: A cautionary note. Phys. Rev. E 1995, 51, 2950–2954. [Google Scholar] [CrossRef] [PubMed]
- Cao, L. Practical method for determining the minimum embedding dimension of a scalar time series. Physica D 1997, 110, 43–50. [Google Scholar] [CrossRef]
- Hegger, R.; Kantz, H. Improved false nearest neighbor method to detect determinism in time series data. Phys. Rev. E 1999, 60, 4970–4973. [Google Scholar] [CrossRef]
- Kennel, M.B.; Abarbanel, H.D.I. False nearest neighbors and false strands: A reliable minimum embedding dimension algorithm. Phys. Rev. E 2002, 66, 1–19. [Google Scholar]
- Kennel, M.B.; Buhl, M. Estimating good discrete partitions from observed data: Symbolic fast nearest neighbors. Phys. Rev. Lett. 2003, 91, 084102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sivakumar, B. Rainfall dynamics at different temporal scales: A chaotic perspective. Hydrol. Earth Syst. Sci. 2001, 5, 645–651. [Google Scholar] [CrossRef]
- Vignesh, R.; Jothiprakash, V.; Sivakumar, B. Streamflow variability and classification using false nearest neighbour method. J. Hydrol. 2015, 531, 706–715. [Google Scholar] [CrossRef]
- Fraser, A.M.; Swinney, H.L. Independent coordinates for strange attractors from mutual information. Phys. Rev. A 1986, 33, 1134–1140. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, C.; Morari, M. False-nearest-neighbor algorithm and noise-corrupted time series. Phys. Rev. E 1997, 55, 6162–6170. [Google Scholar] [CrossRef]
- Sivakumar, B. Correlation dimension estimation of hydrologic series and data size requirement: Myth and reality. Hydrol. Sci. J. 2005, 50, 591–604. [Google Scholar] [CrossRef]
- Sivakumar, B. Chaos in Hydrology: Bridging Determinism and Stochasticity; Springer Science+Business Media: Dordrecht, The Netherlands, 2017. [Google Scholar]
- Schreiber, T. Determination of the noise level of chaotic time series. Phys. Rev. E 1993, 48, R13–R16. [Google Scholar] [CrossRef]
- Heald, J.P.M.; Stark, J. Estimation of noise levels for models of chaotic dynamical systems. Phys. Rev. Lett. 2000, 84, 2366–2369. [Google Scholar] [CrossRef] [PubMed]
- Kostelich, E.J.; Schreiber, T. Noise reduction in chaotic timeseries data: A survey of common methods. Phys. Rev. E. 1993, 48, 1752–1763. [Google Scholar] [CrossRef] [PubMed]
- Davies, M. Noise reduction schemes for chaotic time series. Physica D 1994, 79, 174–192. [Google Scholar] [CrossRef]
- Sivakumar, B.; Phoon, K.K.; Liong, S.Y.; Liaw, C.Y. A systematic approach to noise reduction in chaotic hydrological time series. J. Hydrol. 1999, 219, 103–135. [Google Scholar] [CrossRef]
- Havstad, J.W.; Ehlers, C.L. Attractor dimension of nonstationary dynamical systems from small data sets. Phys. Rev. A 1989, 39, 845–853. [Google Scholar] [CrossRef]
- Holzfuss, J.; Mayer-Kress, G. An approach to error-estimation in the application of dimension algorithms. In Dimensions and Entropies in Chaotic Systems; Mayer-Kress, G., Ed.; Springer: New York, NY, USA, 1986; pp. 114–122. [Google Scholar]
- Liebert, W.; Schuster, H.G. Proper choice of the time delay for the analysis of chaotic time series. Phys. Lett. A 1989, 141, 386–390. [Google Scholar] [CrossRef]
- Martinerie, J.M.; Albano, A.M.; Mees, A.I.; Rapp, P.E. Mutual information, strange attractors, and the optimal estimation of dimension. Phys. Rev. A 1992, 45, 7058–7064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.S.; Eykholt, R.; Salas, J.D. Delay time window and plateau onset of the correlation dimension for small data sets. Phys. Rev. E 1998, 58, 5676–5682. [Google Scholar] [CrossRef]
- Jones, R.P. Low COVID-19 testing in the majority of nations has resulted in gross undercounting of infections and deaths. J. Health Care Financ. 2021, 1–10. [Google Scholar]
- Godlee, F. COVID 19: A strong pandemic response relies on good data. BMJ 2021, 375, n2668. [Google Scholar] [CrossRef]
- Ioannidis, J.P.A. Over- and under-estimation of COVID-19 deaths. Eur. J. Epidemiol. 2021, 36, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, C.; Walker, P.G.T.; Alhaffar, M.; Hamlet, A.; Djaafara, B.A.; Ghani, A.; Ferguson, N.; Dahab, M.; Checchi, F.; Watson, O.J. Under-reporting of deaths limits our understanding of true burden of COVID-19. BMJ 2021, 375, n2239. [Google Scholar] [CrossRef] [PubMed]
S. No. | Country/Region | Starting Date | Cases | Deaths | ||||
---|---|---|---|---|---|---|---|---|
Total | Daily Mean | Daily Std. Dev. | Total | Daily Mean | Daily Std. Dev. | |||
(×105) | ||||||||
1 | Africa | 13 February 2020 | 40.97 | 10,192 | 7706 | 109,674 | 272.8 | 230.3 |
2 | Argentina | 1 January 2020 | 22.5 | 5875 | 4615 | 54,595 | 144.4 | 207.9 |
3 | Asia | 22 January 2020 | 260.32 | 61,396 | 41,137 | 415,596 | 980.2 | 589.5 |
4 | Austria | 25 February 2020 | 5.11 | 1311 | 1741 | 9056 | 24.2 | 34.2 |
5 | Bangladesh | 3 March 2020 | 5.69 | 1484 | 1041 | 8668 | 23.6 | 13.8 |
6 | Belgium | 2 April 2020 | 8.36 | 2035 | 3306 | 22,268 | 59.5 | 73.2 |
7 | Brazil | 26 February 2020 | 121.15 | 31,143 | 22,131 | 292,742 | 793.3 | 492.4 |
8 | Canada | 26 January 2020 | 9.36 | 2228 | 2401 | 22,635 | 60 | 56.9 |
9 | Chile | 23 February 2020 | 9.01 | 2298 | 1615 | 22,180 | 60.9 | 76.9 |
10 | Colombia | 3 June 2020 | 23.31 | 6134 | 4628 | 61,907 | 170.1 | 110.6 |
11 | Czechia | 2 February 2020 | 14.59 | 3800 | 4792 | 24,735 | 68 | 78.5 |
12 | Europe | 23 January 2020 | 375.9 | 88,865 | 92,386 | 880,187 | 2082 | 2003 |
13 | European Union | 23 January 2020 | 249.81 | 59,055 | 65,546 | 592,818 | 1401 | 1412 |
14 | France | 24 January 2020 | 43.58 | 10,326 | 13,774 | 93,092 | 232.7 | 273.7 |
15 | Germany | 27 January 2020 | 27.44 | 6548 | 8306 | 73,740 | 195.6 | 278.9 |
16 | Hungary | 3 April 2020 | 5.61 | 1468 | 2100 | 18,068 | 48.7 | 58.6 |
17 | India | 30 January 2020 | 115.74 | 27,889 | 27,319 | 160,230 | 427.3 | 365.4 |
18 | Indonesia | 3 February 2020 | 14.56 | 3791 | 3459 | 39,447 | 105.2 | 80.2 |
19 | Iran | 19 February 2020 | 17.94 | 4529 | 3411 | 61,724 | 155.9 | 113.2 |
20 | Iraq | 24 February 2020 | 7.89 | 2018 | 1613 | 13,969 | 36.6 | 32.7 |
21 | Israel | 20 February 2020 | 8.31 | 2108 | 2410 | 6116 | 16.7 | 16.5 |
22 | Italy | 31 January 2020 | 33.57 | 8088 | 9868 | 104,704 | 265.7 | 254.2 |
23 | Jordan | 3 March 2020 | 5.27 | 1375 | 2036 | 5788 | 16.1 | 22.5 |
24 | Mexico | 1 January 2020 | 21.85 | 5645 | 4389 | 197,141 | 537.2 | 391.5 |
25 | Netherlands | 2 September 2020 | 12.12 | 3122 | 3288 | 16,473 | 43.4 | 44.3 |
26 | North America | 22 January 2020 | 343.16 | 80,933 | 76,104 | 789,790 | 1862 | 1395 |
27 | Pakistan | 25 February 2020 | 6.38 | 1640 | 1345 | 13,971 | 38 | 31.4 |
28 | Philippines | 30 January 2020 | 6.56 | 1577 | 1411 | 12,934 | 31.3 | 35.7 |
29 | Poland | 3 April 2020 | 20.37 | 5331 | 7179 | 49,159 | 131.4 | 176.1 |
30 | Portugal | 3 January 2020 | 8.17 | 2128 | 3096 | 16,762 | 45.4 | 64.1 |
31 | Romania | 26 February 2020 | 8.93 | 2295 | 2481 | 22,132 | 60.8 | 48.6 |
32 | Russia | 31 January 2020 | 43.98 | 10,597 | 8425 | 93,090 | 253.7 | 183.8 |
33 | Serbia | 26 February 2020 | 5.49 | 1444 | 2007 | 4906 | 13.4 | 16.1 |
34 | South Africa | 2 July 2020 | 15.37 | 3766 | 4606 | 52,082 | 145.1 | 156.6 |
35 | South America | 22 February 2020 | 199.17 | 50,679 | 32,165 | 516,083 | 1313 | 854.3 |
36 | Turkey | 3 November 2020 | 21.99 | 5866 | 8021 | 29,959 | 81.2 | 64.9 |
37 | Ukraine | 3 March 2020 | 43.05 | 10,373 | 13,770 | 126,359 | 332.5 | 378.2 |
38 | United Kingdom | 31 January 2020 | 15.85 | 4138 | 4294 | 31,352 | 84.1 | 82.5 |
39 | United States | 22 January 2020 | 297.83 | 70,242 | 68,664 | 541,914 | 1404 | 993.6 |
40 | World | 22 January 2020 | 1219.8 | 287,706 | 220,234 | 2,709,610 | 6391 | 4074 |
S. No. | Country | Cases | Deaths | ||
---|---|---|---|---|---|
FNN Dimension | CV | FNN Dimension | CV | ||
1 | Africa | 5 | 0.76 | 4 | 0.84 |
2 | Argentina | 4 | 0.79 | 4 | 1.44 |
3 | Asia | 5 | 0.67 | 4 | 0.60 |
4 | Austria | 4 | 1.33 | 7 | 1.41 |
5 | Bangladesh | 6 | 0.70 | 6 | 0.58 |
6 | Belgium | 3 | 1.62 | 4 | 1.23 |
7 | Brazil | 5 | 0.71 | 4 | 0.62 |
8 | Canada | 4 | 1.08 | 5 | 0.95 |
9 | Chile | 4 | 0.7 | 4 | 1.26 |
10 | Colombia | 4 | 0.75 | 6 | 0.65 |
11 | Czechia | 5 | 1.26 | 7 | 1.15 |
12 | Europe | 4 | 1.04 | 7 | 0.96 |
13 | European Union | 4 | 1.11 | 7 | 1.01 |
14 | France | 4 | 1.33 | 4 | 1.18 |
15 | Germany | 7 | 1.27 | 4 | 1.43 |
16 | Hungary | 4 | 1.43 | 13 | 1.20 |
17 | India | 6 | 0.98 | 4 | 0.86 |
18 | Indonesia | 4 | 0.91 | 3 | 0.76 |
19 | Iran | 3 | 0.75 | 4 | 0.73 |
20 | Iraq | 4 | 0.80 | 7 | 0.89 |
21 | Israel | 4 | 1.14 | 4 | 0.99 |
22 | Italy | 7 | 1.22 | 9 | 0.96 |
23 | Jordan | 4 | 1.48 | 7 | 1.40 |
24 | Mexico | 4 | 0.78 | 5 | 0.73 |
25 | Netherlands | 4 | 1.05 | 4 | 1.02 |
26 | North America | 6 | 0.94 | 6 | 0.75 |
27 | Pakistan | 4 | 0.82 | 3 | 0.83 |
28 | Philippines | 6 | 0.9 | 4 | 1.14 |
29 | Poland | 4 | 1.35 | 6 | 1.34 |
30 | Portugal | 3 | 1.45 | 5 | 1.41 |
31 | Romania | 5 | 1.08 | 7 | 0.8 |
32 | Russia | 4 | 0.80 | 5 | 0.72 |
33 | Serbia | 5 | 1.39 | 12 | 1.20 |
34 | South Africa | 4 | 1.22 | 4 | 1.08 |
35 | South America | 4 | 0.63 | 4 | 0.65 |
36 | Turkey | 7 | 1.37 | 6 | 0.80 |
37 | Ukraine | 4 | 1.33 | 9 | 1.14 |
38 | United Kingdom | 4 | 1.04 | 6 | 0.98 |
39 | United States | 7 | 0.98 | 6 | 0.71 |
40 | World | 5 | 0.77 | 7 | 0.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sivakumar, B.; Deepthi, B. Complexity of COVID-19 Dynamics. Entropy 2022, 24, 50. https://doi.org/10.3390/e24010050
Sivakumar B, Deepthi B. Complexity of COVID-19 Dynamics. Entropy. 2022; 24(1):50. https://doi.org/10.3390/e24010050
Chicago/Turabian StyleSivakumar, Bellie, and Bhadran Deepthi. 2022. "Complexity of COVID-19 Dynamics" Entropy 24, no. 1: 50. https://doi.org/10.3390/e24010050
APA StyleSivakumar, B., & Deepthi, B. (2022). Complexity of COVID-19 Dynamics. Entropy, 24(1), 50. https://doi.org/10.3390/e24010050