Automated Emotion Identification Using Fourier–Bessel Domain-Based Entropies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Description
2.2. Preprocessing
2.3. FBSE-EWT
- 1.
- FBSE spectrum: FBSE has twice the frequency resolution as compared to the Fourier domain. FBSE spectrum of a signal of length S samples can be obtained using zero-order Bessel functions. The magnitude of the FB coefficients can be computed mathematically as follows [39,40,41,42]:For covering whole bandwidth of , i must vary from 1 to S. The FBSE spectrum is the plot of magnitude of the FB coefficient versus frequency .
- 2.
- Scale-space based boundary detection [39,42,43]: For FBSE spectrum, scale-space representation can be obtained by convolving the signal with a kernel of Gaussian type, which is expressed as follows:
- 3.
- EWT filter bank design: After obtaining the filter boundaries, based on these parameters, empirical scaling and wavelet functions are adjusted and different band-pass filters are designed. Wavelets scaling ( and wavelet functions () were constructed, and the mathematical expressions are given by [45],
- 4.
- Filtering: Expression for detailed coefficients from the EWT filter bank for the analyzed signal is given by [45],The approximate coefficients from the EWT filter bank are computed by [45],The empirical mode is obtained by convolving the wavelet function with the detail coefficients, where are different empirical modes. Original signal can be reconstructed by adding all M reconstructed modes and one low-frequency component; mathematically, both are expressed as below [45]
2.4. Feature Extraction
2.4.1. SSE
2.4.2. WE
2.4.3. LEE
2.5. Feature Smoothing
2.6. Classifiers
- Step 1:
- Compute distance between sample data and other sample using anyone of the distance metrics such as Euclidean, Mahalanobis, or Minkowski distance.
- Step 2:
- Rearrange the distant metric obtained from the first step in ascending order and top k values are considered with distance from current sample is minimum.
- Step 3:
- Class is assigned to the sample data depending on the maximum number of nearest neighbors class.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANN | Artificial neural network |
ANOVA | Analysis of variance |
ANS | Autonomous nervous system |
ARF | Autoencoder-based random forest |
BEMD | Bivariate empirical mode decomposition |
DCCA | Deep canonical correlation analysis |
DL | Deep learning |
DWT | Discrete wavelet transform |
ECG | Electrocardiogram |
EEG | Electroencephalogram |
EMD | Empirical mode decomposition |
EWT | Empirical wavelet transform |
FB | Fourier–Bessel |
FBSE | Fourier–Bessel series expansion |
FBSE-EWT | FBSE-based EWT |
FN | False negative |
FP | False positive |
FrFT | Fractional Fourier transform |
GSR | Galvanic skin response |
HA | High arousal |
HCI | Human–computer interaction |
HD | High dominance |
HOC | Higher-order crossing |
HRV | Heart rate variability |
HV | High valence |
ICA | Independent component analysis |
IMF | Intrinsic mode functions |
IP | Information potential |
KNN | K-nearest neighbors |
LA | Low arousal |
LA-LL | Left arm and left leg |
LD | Low dominance |
LEE | Log energy entropy |
LV | Low valence |
MC-LS-SVM | Multiclass least squares support vector machines |
MHMS | Multivariate Hilbert marginal spectrum |
MSST | Multivariate synchrosqueezing transform |
NCA | Neighborhood component analysis |
NMF | Non-negative matrix factorization |
PCA | Principal component analysis |
PSD | Power spectral density |
RA-LL | Right arm and Left leg |
SDEL | Sparse discriminative ensemble learning |
SODP | Second order difference plot |
SSE | Shannon spectral entropy |
STFT | Short time Fourier transform |
SVM | Support vector machines |
TN | True negative |
TP | True positive |
TQWT | Tunable Q-factor wavelet transform |
WE | Wiener entropy |
WIB | With-in beat |
References
- Ptaszynski, M.; Dybala, P.; Shi, W.; Rzepka, R.; Araki, K. Towards context aware emotional intelligence in machines: Computing contextual appropriateness of affective states. In Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence (IJCAI-09), Pasadena, CA, USA, 11–17 July 2009; AAAI: Menlo Park, CA, USA; pp. 1469–1474. [Google Scholar]
- Vingerhoets, A.; Nyklícek, I.; Denollet, J. Emotion Regulation; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Kroupi, E.; Yazdani, A.; Ebrahimi, T. EEG correlates of different emotional states elicited during watching music videos. In Proceedings of the International Conference on Affective Computing and Intelligent Interaction, Memphis, TN, USA, 9–12 October 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 457–466. [Google Scholar]
- Jin, L.; Kim, E.Y. Interpretable cross-subject EEG-based emotion recognition using channel-wise features. Sensors 2020, 20, 6719. [Google Scholar] [CrossRef] [PubMed]
- Kołakowska, A.; Landowska, A.; Szwoch, M.; Szwoch, W.; Wrobel, M.R. Emotion recognition and its applications. In Human-Computer Systems Interaction: Backgrounds and Applications 3; Springer: Berlin/Heidelberg, Germany, 2014; pp. 51–62. [Google Scholar]
- Šimić, G.; Tkalčić, M.; Vukić, V.; Mulc, D.; Španić, E.; Šagud, M.; Olucha-Bordonau, F.E.; Vukšić, M.; Hof, P.R. Understanding emotions: Origins and roles of the amygdala. Biomolecules 2021, 11, 823. [Google Scholar] [CrossRef] [PubMed]
- Doukas, C.; Maglogiannis, I. Intelligent pervasive healthcare systems. In Advanced Computational Intelligence Paradigms in Healthcare-3; Springer: Berlin/Heidelberg, Germany, 2008; pp. 95–115. [Google Scholar]
- McCraty, R. Science of the Heart: Exploring the Role of the Heart in Human Performance; HeartMath Research Center, Institute of HeartMath: Boulder Creek, CA, USA, 2015. [Google Scholar]
- Filippini, C.; Di Crosta, A.; Palumbo, R.; Perpetuini, D.; Cardone, D.; Ceccato, I.; Di Domenico, A.; Merla, A. Automated affective computing based on bio-signals analysis and deep learning approach. Sensors 2022, 22, 1789. [Google Scholar] [CrossRef]
- Kipli, K.; Latip, A.A.A.; Lias, K.; Bateni, N.; Yusoff, S.M.; Tajudin, N.M.A.; Jalil, M.; Ray, K.; Shamim Kaiser, M.; Mahmud, M. GSR signals features extraction for emotion recognition. Proceedings of Trends in Electronics and Health Informatics, Singapore, 22 March 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 329–338. [Google Scholar]
- Dutta, S.; Mishra, B.K.; Mitra, A.; Chakraborty, A. An analysis of emotion recognition based on GSR signal. ECS Trans. 2022, 107, 12535. [Google Scholar] [CrossRef]
- Panahi, F.; Rashidi, S.; Sheikhani, A. Application of Fractional Fourier Transform in Feature Extraction from Electrocardiogram and Galvanic Skin Response for Emotion Recognition. Biomed. Signal Process. Control 2021, 69, 102863. [Google Scholar]
- Zhang, Q.; Chen, X.; Zhan, Q.; Yang, T.; Xia, S. Respiration-based emotion recognition with deep learning. Comput. Ind. 2017, 92, 84–90. [Google Scholar] [CrossRef]
- Agrafioti, F.; Hatzinakos, D.; Anderson, A.K. ECG pattern analysis for emotion detection. IEEE Trans. Affect. Comput. 2011, 3, 102–115. [Google Scholar] [CrossRef]
- Cheng, Z.; Shu, L.; Xie, J.; Chen, C.P. A novel ECG-based real-time detection method of negative emotions in wearable applications. In Proceedings of the 2017 International Conference on Security Pattern Analysis and Cybernetics (SPAC), Shenzhen, China, 15–17 December 2017; IEEE: Washington, DC, USA, 2017; pp. 296–301. [Google Scholar]
- Dissanayake, T.; Rajapaksha, Y.; Ragel, R.; Nawinne, I. An ensemble learning approach for electrocardiogram sensor based human emotion recognition. Sensors 2019, 19, 4495. [Google Scholar] [CrossRef]
- Sepúlveda, A.; Castillo, F.; Palma, C.; Rodriguez-Fernandez, M. Emotion recognition from ECG signals using wavelet scattering and machine learning. Appl. Sci. 2021, 11, 4945. [Google Scholar] [CrossRef]
- Anuragi, A.; Sisodia, D.S.; Pachori, R.B. EEG-based cross-subject emotion recognition using Fourier-Bessel series expansion based empirical wavelet transform and NCA feature selection method. Inf. Sci. 2022, 610, 508–524. [Google Scholar] [CrossRef]
- Sharma, R.; Pachori, R.B.; Sircar, P. Automated emotion recognition based on higher order statistics and deep learning algorithm. Biomed. Signal Process. Control. 2020, 58, 101867. [Google Scholar] [CrossRef]
- Bajaj, V.; Pachori, R.B. Human emotion classification from EEG signals using multiwavelet transform. In Proceedings of the 2014 International Conference on Medical Biometrics, Shenzhen, China, 30 May–1 June 2014; IEEE: Washington, DC, USA, 2014; pp. 125–130. [Google Scholar]
- Bajaj, V.; Pachori, R.B. Detection of human emotions using features based on the multiwavelet transform of EEG signals. In Brain-Computer Interfaces; Springer: Berlin/Heidelberg, Germany, 2015; pp. 215–240. [Google Scholar]
- Lin, Y.P.; Wang, C.H.; Jung, T.P.; Wu, T.L.; Jeng, S.K.; Duann, J.R.; Chen, J.H. EEG-based emotion recognition in music listening. IEEE Trans. Biomed. Eng. 2010, 57, 1798–1806. [Google Scholar] [PubMed]
- Liu, Y.; Sourina, O. Real-time subject-dependent EEG-based emotion recognition algorithm. In Transactions on Computational Science XXIII; Springer: Berlin/Heidelberg, Germany, 2014; pp. 199–223. [Google Scholar]
- Mohammadi, Z.; Frounchi, J.; Amiri, M. Wavelet-based emotion recognition system using EEG signal. Neural Comput. Appl. 2017, 28, 1985–1990. [Google Scholar] [CrossRef]
- Mert, A.; Akan, A. Emotion recognition based on time-frequency distribution of EEG signals using multivariate synchrosqueezing transform. Digit. Signal Process. 2018, 81, 106–115. [Google Scholar] [CrossRef]
- Gupta, V.; Chopda, M.D.; Pachori, R.B. Cross-subject emotion recognition using flexible analytic wavelet transform from EEG signals. IEEE Sens. J. 2018, 19, 2266–2274. [Google Scholar] [CrossRef]
- Ullah, H.; Uzair, M.; Mahmood, A.; Ullah, M.; Khan, S.D.; Cheikh, F.A. Internal emotion classification using EEG signal with sparse discriminative ensemble. IEEE Access 2019, 7, 40144–40153. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Tripathy, R.K.; Garg, L.; Pachori, R.B. A novel multivariate-multiscale approach for computing EEG spectral and temporal complexity for human emotion recognition. IEEE Sens. J. 2020, 21, 3579–3591. [Google Scholar] [CrossRef]
- Salankar, N.; Mishra, P.; Garg, L. Emotion recognition from EEG signals using empirical mode decomposition and second-order difference plot. Biomed. Signal Process. Control. 2021, 65, 102389. [Google Scholar] [CrossRef]
- Nalwaya, A.; Das, K.; Pachori, R.B. Emotion identification from TQWT-Based EEG rhythms. In AI-Enabled Smart Healthcare Using Biomedical Signals; IGI Global: Hershey, PA, USA, 2022; pp. 195–216. [Google Scholar]
- Marín-Morales, J.; Higuera-Trujillo, J.L.; Greco, A.; Guixeres, J.; Llinares, C.; Scilingo, E.P.; Alcañiz, M.; Valenza, G. Affective computing in virtual reality: Emotion recognition from brain and heartbeat dynamics using wearable sensors. Sci. Rep. 2018, 8, 13657. [Google Scholar] [CrossRef]
- Katsigiannis, S.; Ramzan, N. DREAMER: A database for emotion recognition through EEG and ECG signals from wireless low-cost off-the-shelf devices. IEEE J. Biomed. Health Inform. 2017, 22, 98–107. [Google Scholar] [CrossRef]
- Cheng, J.; Chen, M.; Li, C.; Liu, Y.; Song, R.; Liu, A.; Chen, X. Emotion recognition from multi-channel eeg via deep forest. IEEE J. Biomed. Health Inform. 2020, 25, 453–464. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wang, X.; Xu, X.; Chen, C.P. GCB-Net: Graph convolutional broad network and its application in emotion recognition. IEEE Trans. Affect. Comput. 2019, 13, 379–388. [Google Scholar] [CrossRef]
- Gupta, V.; Bhattacharyya, A.; Pachori, R.B. Automated identification of epileptic seizures from EEG signals using FBSE-EWT method. In Biomedical Signal Processing; Springer: Berlin/Heidelberg, Germany, 2020; pp. 157–179. [Google Scholar]
- Anuragi, A.; Sisodia, D.S.; Pachori, R.B. Epileptic-seizure classification using phase-space representation of FBSE-EWT based EEG sub-band signals and ensemble learners. Biomed. Signal Process. Control. 2022, 71, 103138. [Google Scholar] [CrossRef]
- Khan, S.I.; Qaisar, S.M.; Pachori, R.B. Automated classification of valvular heart diseases using FBSE-EWT and PSR based geometrical features. Biomed. Signal Process. Control. 2022, 73, 103445. [Google Scholar] [CrossRef]
- Khan, S.I.; Pachori, R.B. Derived vectorcardiogram based automated detection of posterior myocardial infarction using FBSE-EWT technique. Biomed. Signal Process. Control. 2021, 70, 103051. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Singh, L.; Pachori, R.B. Fourier-Bessel series expansion based empirical wavelet transform for analysis of non-stationary signals. Digit. Signal Process. 2018, 78, 185–196. [Google Scholar] [CrossRef]
- Schroeder, J. Signal Processing via Fourier-Bessel series expansion. Digit. Signal Process. 1993, 3, 112–124. [Google Scholar] [CrossRef]
- Das, K.; Verma, P.; Pachori, R.B. Assessment of chanting effects using EEG signals. In Proceedings of the 2022 24th International Conference on Digital Signal Processing and Its Applications (DSPA), Moscow, Russia, 30 March–1 April 2022; IEEE: Washington, DC, USA, 2022; pp. 1–5. [Google Scholar]
- Pachori, R.B.; Sircar, P. EEG signal analysis using FB expansion and second-order linear TVAR process. Signal Process. 2008, 88, 415–420. [Google Scholar] [CrossRef]
- Gilles, J.; Heal, K. A parameterless scale-space approach to find meaningful modes in histograms—Application to image and spectrum segmentation. Int. J. Wavelets Multiresolut. Inf. Process. 2014, 12, 1450044. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Gilles, J. Empirical wavelet transform. IEEE Trans. Signal Process. 2013, 61, 3999–4010. [Google Scholar] [CrossRef]
- Kowalski, A.; Martín, M.; Plastino, A.; Rosso, O. Bandt-Pompe approach to the classical-quantum transition. Phys. D Nonlinear Phenom. 2007, 233, 21–31. [Google Scholar] [CrossRef]
- Zheng, W.L.; Lu, B.L. Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks. IEEE Trans. Auton. Ment. Dev. 2015, 7, 162–175. [Google Scholar] [CrossRef]
- Pachori, R.B.; Hewson, D.; Snoussi, H.; Duchêne, J. Analysis of center of pressure signals using empirical mode decomposition and Fourier-Bessel expansion. In Proceedings of the TENCON 2008—2008 IEEE Region 10 Conference, Hyderabad, India, 19–21 November 2008; IEEE: Washington, DC, USA, 2008; pp. 1–6. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. ACM SIGMOB. Mob. Comput. Commun. Rev. 2001, 5, 3–55. [Google Scholar] [CrossRef]
- Dubnov, S. Generalization of spectral flatness measure for non-Gaussian linear processes. IEEE Signal Process. Lett. 2004, 11, 698–701. [Google Scholar] [CrossRef]
- Aydın, S.; Saraoğlu, H.M.; Kara, S. Log energy entropy-based EEG classification with multilayer neural networks in seizure. Ann. Biomed. Eng. 2009, 37, 2626–2630. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Tiwari, P.; Song, D.; Hu, B.; Yang, M.; Zhao, Z.; Kumar, N.; Marttinen, P. EEG based emotion recognition: A tutorial and review. ACM Comput. Surv. (CSUR) 2022. [Google Scholar] [CrossRef]
- Sebastiani, F. Machine learning in automated text categorization. ACM Comput. Surv. (CSUR) 2002, 34, 1–47. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Fukunaga, K. Introduction to Statistical Pattern Recognition, 2nd ed.; Academic Press: Cambridge, CA, USA, 1990; pp. 300–361. [Google Scholar]
- Muralidharan, N.; Gupta, S.; Prusty, M.R.; Tripathy, R.K. Detection of COVID19 from X-ray Images Using Multiscale Deep Convolutional Neural Network. Appl. Soft Comput. 2022, 119, 108610. [Google Scholar] [CrossRef]
- Siddharth, S.; Jung, T.P.; Sejnowski, T.J. Utilizing deep learning towards multi-modal bio-sensing and vision-based affective computing. IEEE Trans. Affect. Comput. 2019, 13, 96–107. [Google Scholar] [CrossRef] [Green Version]
- Topic, A.; Russo, M.; Stella, M.; Saric, M. Emotion recognition using a reduced set of EEG channels based on holographic feature maps. Sensors 2022, 22, 3248. [Google Scholar] [CrossRef] [PubMed]
- Gu, T.; Wang, Z.; Xu, X.; Li, D.; Yang, H.; Du, W. Frame-Level Teacher-Student Learning with Data Privacy for EEG emotion recognition. IEEE Trans. Neural Netw. Learn. Syst. 2022. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Qiu, J.L.; Zheng, W.L.; Lu, B.L. Comparing recognition performance and robustness of multimodal deep learning models for multimodal emotion recognition. IEEE Trans. Cogn. Develop. Syst. 2021, 14, 715–729. [Google Scholar] [CrossRef]
- Cui, H.; Liu, A.; Zhang, X.; Chen, X.; Wang, K.; Chen, X. EEG-based emotion recognition using an end-to-end regional-asymmetric convolutional neural network. Knowl. Based Syst. 2020, 205, 106243. [Google Scholar] [CrossRef]
- Song, T.; Zheng, W.; Song, P.; Cui, Z. EEG emotion recognition using dynamical graph convolutional neural networks. IEEE Trans. Affect. Comput. 2018, 11, 532–541. [Google Scholar] [CrossRef]
- Kamble, K.S.; Sengupta, J. Ensemble machine learning-based affective computing for emotion recognition using dual-decomposed EEG signals. IEEE Sens. J. 2021, 22, 2496–2507. [Google Scholar] [CrossRef]
- Li, D.; Chai, B.; Wang, Z.; Yang, H.; Du, W. EEG emotion recognition based on 3-D feature representation and dilated fully convolutional networks. IEEE Trans. Cogn. Develop. Syst. 2021, 13, 885–897. [Google Scholar] [CrossRef]
Modality | Model | Accuracy * | Sensitivity * | Specificity * | Precision * | F1 Score * |
---|---|---|---|---|---|---|
EEG | KNN (k = 1) | 97.50 | 97.89 | 97.01 | 97.67 | 97.78 |
SVM (Cubic) | 81.53 | 82.04 | 80.81 | 86.02 | 83.98 | |
ECG | KNN (k = 1) | 69.94 | 73.17 | 65.73 | 73.56 | 73.37 |
SVM (Cubic) | 63.84 | 65.09 | 61.35 | 77.11 | 70.59 | |
Multimodal | KNN (k = 1) | 97.84 | 98.10 | 97.51 | 98.06 | 98.08 |
SVM (Cubic) | 84.54 | 84.75 | 84.24 | 88.45 | 86.56 |
Modality | Model | Accuracy * | Sensitivity * | Specificity * | Precision * | F1 Score * |
---|---|---|---|---|---|---|
EEG | KNN (k = 1) | 97.68 | 97.89 | 97.44 | 97.63 | 97.76 |
SVM (Cubic) | 81.53 | 82.04 | 80.81 | 86.02 | 83.98 | |
ECG | KNN (k = 1) | 69.25 | 70.33 | 68.08 | 70.57 | 70.45 |
SVM (Cubic) | 62.30 | 62.90 | 61.56 | 66.81 | 64.80 | |
Multimodal | KNN (k = 1) | 97.91 | 97.95 | 97.86 | 98.02 | 97.99 |
SVM (Cubic) | 84.12 | 83.74 | 84.55 | 86.15 | 84.93 |
Modality | Model | Accuracy * | Sensitivity * | Specificity * | Precision * | F1 Score * |
---|---|---|---|---|---|---|
EEG | KNN (k = 1) | 97.55 | 97.97 | 96.89 | 97.98 | 97.98 |
SVM (Cubic) | 81.49 | 82.03 | 80.47 | 88.97 | 85.36 | |
ECG | KNN (k = 1) | 68.82 | 74.59 | 60.22 | 73.69 | 74.13 |
SVM (Cubic) | 63.31 | 66.03 | 55.28 | 81.31 | 72.88 | |
Multimodal | KNN (k = 1) | 97.86 | 98.29 | 97.19 | 98.17 | 98.23 |
SVM (Cubic) | 84.10 | 84.77 | 82.90 | 89.93 | 87.28 |
Authors (Year) | Methodology | Modality | Accuracy (%) | ||
---|---|---|---|---|---|
LA-HA | LD-HD | LV-HV | |||
Katsigiannis et al. [32] (2018) | PSD features and SVM classifier | EEG & ECG | 62.32 | 61.84 | 62.49 |
Song et al. [62] (2018) | DGCNN | EEG | 84.54 | 85.02 | 86.23 |
Zhang et al. [34] (2019) | PSD features and GCB-net classifier | EEG | 89.32 | 89.20 | 86.99 |
Bhattacharyya et al. [28] (2020) | MFBSE-EWT based entropy features and ARF classifier | EEG | 85.4 | 86.2 | 84.5 |
Cui et al. [61] (2020) | RACNN | EEG | 97.01 | - | 95.55 |
Kamble et al. [63] (2021) | DWT, EMD-based features, and CML and EML-based classifier | EEG | 93.79 | - | 94.5 |
Li et al. [64] (2021) | 3DFR-DFCN | EEG | 75.97 | 85.14 | 82.68 |
Siddharth et al. [57] (2022) | PSD, HRV, entropy, DL based feature, and LSTM based classifier | EEG & ECG | 79.95 | - | 79.95 |
Topic et al. [58] (2022) | Holographic features and CNN | EEG | 92.92 | 92.97 | 90.76 |
Gu et al. [59] (2022) | FLTSDP | EEG | 90.61 | 91.00 | 91.54 |
Liu et al. [60] (2022) | DCCA | EEG & ECG | 89.00 | 90.7 | 90.6 |
Proposed work | FBSE-EWT-based entropy featuresand KNN classifier | EEG&ECG | 97.84 | 97.91 | 97.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nalwaya, A.; Das, K.; Pachori, R.B. Automated Emotion Identification Using Fourier–Bessel Domain-Based Entropies. Entropy 2022, 24, 1322. https://doi.org/10.3390/e24101322
Nalwaya A, Das K, Pachori RB. Automated Emotion Identification Using Fourier–Bessel Domain-Based Entropies. Entropy. 2022; 24(10):1322. https://doi.org/10.3390/e24101322
Chicago/Turabian StyleNalwaya, Aditya, Kritiprasanna Das, and Ram Bilas Pachori. 2022. "Automated Emotion Identification Using Fourier–Bessel Domain-Based Entropies" Entropy 24, no. 10: 1322. https://doi.org/10.3390/e24101322
APA StyleNalwaya, A., Das, K., & Pachori, R. B. (2022). Automated Emotion Identification Using Fourier–Bessel Domain-Based Entropies. Entropy, 24(10), 1322. https://doi.org/10.3390/e24101322