Advances in Chip-Based Quantum Key Distribution
Abstract
:1. Introduction
1.1. Secure Communication
1.2. Quantum Key Distribution
1.3. Focus and Outline of This Review
Reference | Platform | Encoding Way | Protocol | Encoding | Decoding | Notes |
---|---|---|---|---|---|---|
[55] | Si | Time bin | BB84 | ✔ | ✔ | 98% interference visibility |
[56] | Si | Time bin | BB84 | ✔ | ✔ | Interference visibility is 80% at 150 km |
[57] | Si | Time bin | BB84 | ✔ | ✔ | The lowest bit error rate is 0.7% |
[58] | Si | Time bin | BB84 | ✔ | ✔ | Silicon-based AMZI |
[59] | Si | Time bin | BB84 | ✔ | ✔ | Sifted key rate 2.4 kbps |
[60] | Si | Time bin | BB84 | ✔ | ✔ | 45 km, WDM system |
[61] | Si | Time bin | BB84 | ✔ | ✔ | Stable WDM system for more than 30 days |
[62] | Si | Polarization | BB84 | ✔ | ✔ | Polarization extinction ratio greater than 20 dB |
[63] | Si | Time bin | BB84 | ✔ | ✔ | 98.38% interference visibility |
[64] | Si | Time bin | BB84 | ✔ | ✔ | 98.38% interference visibility |
[65] | Si | Time bin | BB84 | ✔ | ✔ | 98.72% interference visibility |
[66] | Si | Time bin | BB84 | ✔ | ✔ | 96% interference visibility |
[67] | Si | Time bin | BB84 | ✘ | ✔ | Non-blocking matrix switch |
[68] | Si | Time bin | DPS | ✘ | ✔ | 95.8% interference visibility |
[69] | Si | Time bin | BB84 | ✘ | ✔ | 95.8% interference visibility |
[70] | SiO2 | Polarization | BB84 | ✘ | ✔ | Polarization extinction ratio 16 dB |
[71] | SiO2 | Polarization | BB84 | ✘ | ✔ | sifted key rate of 415 kbps |
[72] | FLDW | Polarization | MDI-QKD | ✘ | ✔ | Bell state analyzer |
[73] | Si | Time bin | BB84 | ✘ | ✔ | Complementary decoding system |
[74] | Si | Time bin | BB84 | ✘ | ✔ | Low bit error rate AMZI |
[75] | Si | Time bin | BB84 | ✘ | ✔ | 99% interference visibility |
[76] | Si | Time bin | BB84 | ✘ | ✔ | 98.6% Interference visibility |
[77] | LiNbO3 Si | Time bin | BB84 | ✘ | ✔ | Extinction ratios are 18.65 dB and 15.46 dB |
[78] | Si | OAM | HD-QKD | ✔ | ✘ | Generating three OAM modes |
[79] | Si | Polarization | - | ✔ | ✘ | Polarization extinction ratio greater than 25 dB |
Reference | Platform | Type | Notes |
---|---|---|---|
[80] | InP | weak coherent-state source | 431 MHz HOM interference visibility is 46.5% ± 0.8% |
[81] | InP | coherent-state source | 45 kHz side-mode suppression ratio of 54 dB |
[82] | InP | weak coherent-state source | 100 MHz HOM interference visibility is 46% 2% |
[83] | Si | entangled photon pair source | 431 MHz interference visibility is 92% |
[84] | LiNbO3 Si | entangled photon source | Interference visibility is 94% |
[85] | Si | entangled photon source | High dimensional quantum information processing |
[86] | Si | entangled photon source | Quantum information processing |
[87] | Si | entangled photon source | Quantum information processing |
[88] | hBN | single-photon source | Integrated room temperature single-photon source |
Reference | Platform | Encoding Way | Protocol | Source | Encoding | Decoding | Detection | Notes |
---|---|---|---|---|---|---|---|---|
[89] | Si3N4 | Time bin | BB84 | ✘ | ✘ | ✔ | ✔ | BB84 system |
[90] | Si | Time bin | MDI-QKD | ✘ | ✘ | ✔ | ✔ | MDI-QKD system |
Reference | Platform | Encoding Way | Protocol | Source | Encoding | Decoding | Detection | Clock Rate (Hz) | Distance or Loss | Key Rate (kbit/s) |
---|---|---|---|---|---|---|---|---|---|---|
[91] | Si | Time bin | BB84 | ✘ | ✔ | ✔ | ✘ | 1.25 G | 45 km | 81.7 |
[92] | Si | Time bin | BB84 | ✘ | ✔ | ✔ | ✘ | 1.25 G | 14.5 dB | 200 |
[93] | Si | Polarization | BB84 | ✘ | ✔ | ✔ | ✘ | 10 M | 5 km | 0.95 |
DPS | 1.72 G | 20 km | 565 | |||||||
[94] | InP SiOxNy | Time bin | BB84 | ✔ | ✔ | ✔ | ✘ | 560 M | 20 km | 345 |
COW | 860 M | 20 km | 311 | |||||||
[95] | Si | Polarization Time bin | BB84 | ✘ | ✔ | ✔ | ✘ | 1 G | 20 km | 329 |
Si SiOxNy | Time bin | COW | 1.72 G | 20 km | 916 | |||||
[96] | Si | Polarization | BB84 | ✘ | ✔ | ✘ | ✘ | 625 M | 43 km | 157 |
[97] | Si | Time bin | BB84 | ✘ | ✔ | ✔ | ✘ | 100 M | 20 km | 85.7 |
[98] | Si | Time bin | BB84 | ✔ | ✔ | ✘ | ✘ | 1 G | 100 km | 270 |
DPS | 1 G | 100 km | 400 | |||||||
[99] | Si | Polarization | BB84 | ✘ | ✘ | ✔ | ✘ | 10 M | 20 km | 13.68 |
[100] | Si | Polarization | BB84 | ✘ | ✔ | ✘ | ✘ | 10 M | 145 m | 30 |
DPS | 2 G | 14 dB | 400 | |||||||
[101] | SiOxNy | Time bin | BB84 | ✘ | ✔ | ✘ | ✘ | 2 G | 14 dB | 500 |
COW | 2 G | 14 dB | 2500 | |||||||
[89] | Si3N4 | Time bin | BB84 | ✘ | ✘ | ✔ | ✔ | 2.6 G | 2.5 dB | 1500 |
[102] | Si InP | Time bin | BB84 | ✔ | ✔ | ✔ | ✘ | 1 G | 25 km | 235 |
[103] | Si | Polarization | BB84 | ✘ | ✔ | ✔ | ✘ | 2 G | 20 km | 868 |
[104] | Si | Polarization | BB84 | ✘ | ✔ | ✘ | ✘ | 312.5 M | 100 km | 42.7 |
[105] | Si | Time bin | BB84 | ✘ | ✔ | ✔ | ✘ | 1.25 G | 50 km | 1340 |
[106] | Si | Time bin | DPS | ✘ | ✘ | ✔ | ✘ | 1 G | 20 km | 3.076 |
[107] | Si | Time bin | DPS | ✘ | ✘ | ✔ | ✘ | 1 G | 17.6 km | 120 |
Reference | Platform | Encoding Way | Protocol | Source | Encoding | Decoding | Detection | Clock Rate (Hz) | Distance or Loss | Key Rate (kbit/s) |
---|---|---|---|---|---|---|---|---|---|---|
[108] | Si | Polarization | MDI-QKD | ✘ | ✔ | ✔ | ✘ | 0.5 M | 50 km | |
[109] | InP | Time bin | MDI-QKD | ✔ | ✔ | ✘ | ✘ | 250 M | 100 km | 1 |
[110] | Si | Polarization | MDI-QKD | ✘ | ✔ | ✘ | ✘ | 1.25 G | 36 dB | |
[111] | Si | Polarization | MDI-QKD | ✘ | ✔ | ✘ | ✘ | 1.25 G | 24 dB | |
[90] | Si | Time bin | MDI-QKD | ✘ | ✘ | ✔ | ✔ | 125 M | 39.5 dB |
Reference | Platform | Encoding Way | Protocol | Source | Encoding | Decoding | Detection | Clock Rate (Hz) | Distance or Loss | Key Rate (kbit/s) | Notes |
---|---|---|---|---|---|---|---|---|---|---|---|
[112] | Si | path | HD-QKD | ✘ | ✔ | ✔ | ✘ | 5 k | 4 dB | - | |
[113] | Si | Gaussian-modulated | CV-QKD | ✘ | ✔ | ✔ | ✔ | 250 M | 2 m | 250 | - |
[114] | Si | Gaussian-modulated | CV-QKD | ✘ | ✔ | ✘ | ✘ | - | - | - | Security analysis |
[115] | Si | Polarization | MDI-QKD | ✘ | ✔ | ✘ | ✘ | - | - | - | Security analysis |
[116] | Si | Polarization | BB84 | ✘ | ✔ | ✔ | ✔ | - | - | - | Security analysis |
Reference | Notes |
---|---|
[117] | Quantum communication |
[54] | Silicon quantum photonics |
[118] | Quantum photonic network |
[53] | Photonic quantum information processing |
[119] | Photonic quantum information processing |
[52] | Photonic quantum information processing |
[120] | Hybrid integrated quantum photonic circuits |
[121] | Quantum entanglement on photonic chips |
[122] | Femtosecond laser technology |
[123] | Integrated photon technology |
[124] | Silicon based quantum optical system devices |
[125] | Direct phase modulated laser |
[126] | Development, challenges, and directions of integrated quantum optics |
[127] | Quantum communication and Quantum networks |
[128] | Integrated photon-pair sources with nonlinear optics |
[129] | Status, development and challenges of integrated quantum optics |
[130] | Semiconductor quantum dot source and Quantum communication |
2. Integrated Quantum Photonic Technology
3. QKD Implementation
3.1. Encoding and Decoding
3.2. Photon Source
3.3. Detection
4. QKD Demonstration
4.1. Qubit-Based QKD
4.2. MDI-QKD
4.3. Other Integrated QKDs
5. Conclusions and Outlook
- Security analyses: The unconditional security of QKD is based on the hypothesis that the practical system model is consistent with the theoretical model used in the security proof. In fact, there are ineluctable differences between theoretical and practical system models that lead to security vulnerabilities in the QKD system. See reference [198] for a short overview of this topic. For integrated photonic QKD systems, further security analyses, including calibrations or tests of whether the chips meet the safety assumptions and designs of secure testable systems, are still necessary.
- Higher-level integrations of quantum photonic systems: We have described some QKD photonic chips in this review, and one can see that there is not a complete integrated system. In the future, complete integrated systems should be realized with the development of hybrid integration technologies.
- Demonstrations of advanced QKD protocols: Previous studies of QKD demonstrations with integrated photonic chips were mostly based on classic protocols like BB84 or MDI. In the future, we should pay attention to combinations of integration technologies and cutting-edge QKD protocols, such as the recently proposed twin-field QKD [199,200], which can break through the PLOB bound [201], as well as its derivative protocols like phase-matching QKD [202], sending-or-not-sending [203], and no-phase-postelection protocols [204].
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cyber-Attack Events. Available online: https://baijiahao.baidu.com/s?id=1721894808280657573&wfr=spider&for=pc (accessed on 28 July 2022).
- Cyber-Attacks to Iranian Gas Station. Available online: https://baijiahao.baidu.com/s?id=1714920135423559999&wfr=spider&for=pc (accessed on 28 July 2022).
- Attack to Florida Drinking Water Treatment Facilities. Available online: https://www.163.com/dy/article/H6EJJK8C05529LO2.html (accessed on 28 July 2022).
- Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J.C.; Barends, R.; Biswas, R.; Boixo, S.; Brandao, F.; Buell, D.A.; et al. Quantum supremacy using a programmable superconducting processor. Nature 2019, 574, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.S.; Wang, H.; Deng, Y.H.; Chen, M.C.; Peng, L.C.; Luo, Y.H.; Qin, J.; Wu, D.; Ding, X.; Hu, Y.; et al. Quantum computational advantage using photons. Science 2020, 370, 1460–1463. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Bao, W.S.; Cao, S.; Chen, F.; Chen, M.C.; Chen, X.; Chung, T.H.; Deng, H.; Du, Y.; Fan, D.; et al. Strong Quantum Computational Advantage Using a Superconducting Quantum Processor. Phys. Rev. Lett. 2021, 127, 180501. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.S.; Deng, Y.H.; Qin, J.; Wang, H.; Chen, M.C.; Peng, L.C.; Luo, Y.H.; Wu, D.; Gong, S.Q.; Su, H.; et al. Phase-Programmable Gaussian Boson Sampling Using Stimulated Squeezed Light. Phys. Rev. Lett. 2021, 127, 180502. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, A.; Mehta, A.; Vincent, T.; Quesada, N.; Hinsche, M.; Ioannou, M.; Madsen, L.; Lavoie, J.; Qi, H.; Eisert, J.; et al. Quantum computational advantage via high-dimensional Gaussian boson sampling. Sci. Adv. 2022, 8, eabi7894. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, D.J. Introduction to post-quantum cryptography. In Post-Quantum Cryptography; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–14. [Google Scholar]
- Long, G.L.; Liu, X.S. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 2002, 65, 032302. [Google Scholar] [CrossRef]
- Deng, F.G.; Long, G.L. Secure direct communication with a quantum one-time pad. Phys. Rev. A 2004, 69, 052319. [Google Scholar] [CrossRef]
- Liu, X.; Li, Z.; Luo, D.; Huang, C.; Ma, D.; Geng, M.; Wang, J.; Zhang, Z.; Wei, K. Practical decoy-state quantum secure direct communication. Sci. China Phys. Mech. Astron. 2021, 64, 120311. [Google Scholar] [CrossRef]
- Sun, S.; Long, G. Deterministic secure quantum communication with practical devices. Quant. Eng. 2021, 3, e86. [Google Scholar] [CrossRef]
- Sheng, Y.B.; Zhou, L.; Long, G.L. One-step quantum secure direct communication. Sci. Bull. 2022, 67, 367–374. [Google Scholar] [CrossRef]
- Qi, R.; Sun, Z.; Lin, Z.; Niu, P.; Hao, W.; Song, L.; Huang, Q.; Gao, J.; Yin, L.; Long, G.L. Implementation and security analysis of practical quantum secure direct communication. Light Sci. Appl. 2019, 8, 22. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.; Lin, Z.; Wu, J.; Zhang, H.; Sun, Z.; Ruan, D.; Yin, L.; Long, G.L. Experimental free-space quantum secure direct communication and its security analysis. Photon. Res. 2020, 8, 1522–1531. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, Z.; Qi, R.; Yin, L.; Long, G.L.; Lu, J. Realization of quantum secure direct communication over 100 km fiber with time-bin and phase quantum states. Light Sci. Appl. 2022, 11, 83. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Sun, X.; Liu, Y.; Wang, W.; Kan, B.; Dong, P.; Zhao, L. Transmission of photonic polarization states from geosynchronous Earth orbit satellite to the ground. Quant. Eng. 2021, 3, e73. [Google Scholar] [CrossRef]
- Bennett, C.H.; Brassard, G. An update on quantum cryptography. In Proceedings of the Workshop on the Theory and Application of Cryptographic Techniques, Paris, France, 9–11 April 1984; Springer: Berlin/Heidelberg, Germany, 1984; pp. 475–480. [Google Scholar]
- Lo, H.K.; Chau, H.F. Unconditional Security of Quantum Key Distribution over Arbitrarily Long Distances. Science 1999, 283, 2050–2056. [Google Scholar] [CrossRef] [PubMed]
- Bennett, C.H. Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 1992, 68, 3121–3124. [Google Scholar] [CrossRef]
- Inoue, K.; Waks, E.; Yamamoto, Y. Differential phase shift quantum key distribution. Phys. Rev. Lett. 2002, 89, 037902. [Google Scholar] [CrossRef]
- Stucki, D.; Brunner, N.; Gisin, N.; Scarani, V.; Zbinden, H. Fast and simple one-way quantum key distribution. Appl. Phys. Lett. 2005, 87, 194108. [Google Scholar] [CrossRef]
- Ekert, A.K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 1991, 67, 661–663. [Google Scholar] [CrossRef]
- Scarani, V.; Bechmann-Pasquinucci, H.; Cerf, N.J.; Dušek, M.; Lütkenhaus, N.; Peev, M. The security of practical quantum key distribution. Rev. Mod. Phys. 2009, 81, 1301–1350. [Google Scholar] [CrossRef] [Green Version]
- Chau, H.F. Quantum key distribution using qudits that each encode one bit of raw key. Phys. Rev. A 2015, 92, 062324. [Google Scholar] [CrossRef]
- Bechmann-Pasquinucci, H.; Peres, A. Quantum cryptography with 3-state systems. Phys. Rev. Lett. 2000, 85, 3313–3316. [Google Scholar] [CrossRef] [PubMed]
- Bechmann-Pasquinucci, H.; Tittel, W. Quantum cryptography using larger alphabets. Phys. Rev. A 2000, 61, 062308. [Google Scholar] [CrossRef]
- Cerf, N.J.; Bourennane, M.; Karlsson, A.; Gisin, N. Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 2002, 88, 127902. [Google Scholar] [CrossRef] [PubMed]
- Chau, H.F. Unconditionally Secure Key Distribution in Higher Dimensions by Depolarization. IEEE Trans. Inf. Theory 2005, 51, 1451–1468. [Google Scholar] [CrossRef]
- Sasaki, T.; Yamamoto, Y.; Koashi, M. Practical quantum key distribution protocol without monitoring signal disturbance. Nature 2014, 509, 475–478. [Google Scholar] [CrossRef]
- Lütkenhaus, N. Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 2000, 61, 052304. [Google Scholar] [CrossRef]
- Inamori, H.; Lütkenhaus, N.; Mayers, D. Unconditional security of practical quantum key distribution. Eur. Phys. J. D 2007, 41, 599–627. [Google Scholar] [CrossRef]
- Gottesman, D.; Lo, H.K.; Lütkenhaus, N.; Preskill, J. Security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 2004, 4, 325–360. [Google Scholar] [CrossRef]
- Hwang, W.Y. Quantum key distribution with high loss: Toward global secure communication. Phys. Rev. Lett. 2003, 91, 057901. [Google Scholar] [CrossRef] [Green Version]
- Lo, H.K.; Ma, X.; Chen, K. Decoy state quantum key distribution. Phys. Rev. Lett. 2005, 94, 230504. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.B. Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 2005, 94, 230503. [Google Scholar] [CrossRef] [PubMed]
- Scarani, V.; Acin, A.; Ribordy, G.; Gisin, N. Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys. Rev. Lett. 2004, 92, 057901. [Google Scholar] [CrossRef] [PubMed]
- Lo, H.K.; Curty, M.; Qi, B. Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 2012, 108, 130503. [Google Scholar] [CrossRef] [PubMed]
- Braunstein, S.L.; Pirandola, S. Side-channel-free quantum key distribution. Phys. Rev. Lett. 2012, 108, 130502. [Google Scholar] [CrossRef]
- Mayers, D.; Yao, A. Quantum cryptography with imperfect apparatus. In Proceedings of the 39th Annual Symposium on Foundations of Computer Science (Cat. No. 98CB36280), Palo Alto, CA, USA, 8–11 November 1998; pp. 503–509. [Google Scholar]
- Barrett, J.; Hardy, L.; Kent, A. No signaling and quantum key distribution. Phys. Rev. Lett. 2005, 95, 010503. [Google Scholar] [CrossRef]
- Acin, A.; Brunner, N.; Gisin, N.; Massar, S.; Pironio, S.; Scarani, V. Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 2007, 98, 230501. [Google Scholar] [CrossRef]
- Xu, F.; Ma, X.; Zhang, Q.; Lo, H.K.; Pan, J.W. Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 2020, 92, 025002. [Google Scholar] [CrossRef]
- Pirandola, S.; Andersen, U.L.; Banchi, L.; Berta, M.; Bunandar, D.; Colbeck, R.; Englund, D.; Gehring, T.; Lupo, C.; Ottaviani, C.; et al. Advances in quantum cryptography. Adv. Opt. Photonics 2020, 12, 1012–1236. [Google Scholar] [CrossRef]
- Wang, S.; Yin, Z.Q.; He, D.Y.; Chen, W.; Wang, R.Q.; Ye, P.; Zhou, Y.; Fan-Yuan, G.J.; Wang, F.X.; Chen, W.; et al. Twin-field quantum key distribution over 830-km fibre. Nat. Photonics 2022, 16, 154–161. [Google Scholar] [CrossRef]
- Liao, S.K.; Cai, W.Q.; Liu, W.Y.; Zhang, L.; Li, Y.; Ren, J.G.; Yin, J.; Shen, Q.; Cao, Y.; Li, Z.P.; et al. Satellite-to-ground quantum key distribution. Nature 2017, 549, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.K.; Cai, W.Q.; Handsteiner, J.; Liu, B.; Yin, J.; Zhang, L.; Rauch, D.; Fink, M.; Ren, J.G.; Liu, W.Y.; et al. Satellite-Relayed Intercontinental Quantum Network. Phys. Rev. Lett. 2018, 120, 030501. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Li, Y.H.; Liao, S.K.; Yang, M.; Cao, Y.; Zhang, L.; Ren, J.G.; Cai, W.Q.; Liu, W.Y.; Li, S.L.; et al. Entanglement-based secure quantum cryptography over 1120 kilometres. Nature 2020, 582, 501–505. [Google Scholar] [CrossRef] [PubMed]
- Dynes, J.F.; Wonfor, A.; Tam, W.W.S.; Sharpe, A.W.; Takahashi, R.; Lucamarini, M.; Plews, A.; Yuan, Z.L.; Dixon, A.R.; Cho, J.; et al. Cambridge quantum network. NPJ Quantum Inf. 2019, 5, 101. [Google Scholar] [CrossRef]
- Chen, Y.A.; Zhang, Q.; Chen, T.Y.; Cai, W.Q.; Liao, S.K.; Zhang, J.; Chen, K.; Yin, J.; Ren, J.G.; Chen, Z.; et al. An integrated space-to-ground quantum communication network over 4,600 kilometres. Nature 2021, 589, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sciarrino, F.; Laing, A.; Thompson, M.G. Integrated photonic quantum technologies. Nat. Photonics 2020, 14, 273–284. [Google Scholar] [CrossRef]
- Flamini, F.; Spagnolo, N.; Sciarrino, F. Photonic quantum information processing: A review. Rep. Prog. Phys. 2019, 82, 016001. [Google Scholar] [CrossRef]
- Silverstone, J.W.; Bonneau, D.; O’Brien, J.L.; Thompson, M.G. Silicon Quantum Photonics. IEEE J. Sel. Top Quantum Electron. 2016, 22, 390–402. [Google Scholar] [CrossRef]
- Nambu, Y.; Hatanaka, T.; Nakamura, K. Planar lightwave circuits for quantum cryptographic systems. arXiv 2003, arXiv:quantph/ 0307074. [Google Scholar]
- Kimura, T.; Nambu, Y.; Hatanaka, T.; Tomita, A.; Kosaka, H.; Nakamura, K. Single-photon Interference over 150 km Transmission Using Silica-based Integrated-optic Interferometers for Quantum Cryptography. Jpn. J. Appl. Phys. 2004, 43, L1217–L1219. [Google Scholar] [CrossRef]
- Yoshino, K.; Tanaka, A.; Nambu, Y.; Tajima, A.; Tomita, A. Dual-mode Time-bin Coding for Quantum Key Distribution Using Dual-drive Mach-Zehnder Modulator. In Proceedings of the 33rd European Conference and Exhibition of Optical Communication, Berlin, Germany, 16–20 September 2007; pp. 1–2. [Google Scholar] [CrossRef]
- Nambu, Y.; Yoshino, K.; Tomita, A. Quantum encoder and decoder for practical quantum key distribution using a planar lightwave circuit. J. Mod. Opt. 2008, 55, 1953–1970. [Google Scholar] [CrossRef]
- Tanaka, A.; Fujiwara, M.; Nam, S.W.; Nambu, Y.; Takahashi, S.; Maeda, W.; Yoshino, K.; Miki, S.; Baek, B.; Zhen, W.; et al. 97-km QKD field trial using PLC-based one-way interferometers, SSPDs and WDM synchronization. In Proceedings of the Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, San Diego, CA, USA, 24–28 February 2008; OSA Technical Digest (CD); Optica Publishing Group: Washington, DC, USA, 2008; p. OWJ2. [Google Scholar] [CrossRef]
- Yoshino, K.I.; Fujiwara, M.; Tanaka, A.; Takahashi, S.; Nambu, Y.; Tomita, A.; Miki, S.; Yamashita, T.; Wang, Z.; Sasaki, M.; et al. High-speed wavelength-division multiplexing quantum key distribution system. Opt. Lett. 2012, 37, 223–225. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, K.i.; Ochi, T.; Fujiwara, M.; Sasaki, M.; Tajima, A. Maintenance-free operation of WDM quantum key distribution system through a field fiber over 30 days. Opt. Express 2013, 21, 31395–31401. [Google Scholar] [CrossRef]
- Cai, H.; Long, C.M.; DeRose, C.T.; Boynton, N.; Urayama, J.; Camacho, R.; Pomerene, A.; Starbuck, A.L.; Trotter, D.C.; Davids, P.S.; et al. Silicon photonic transceiver circuit for high-speed polarization-based discrete variable quantum key distribution. Opt. Express 2017, 25, 12282–12294. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Kadosawa, Y.; Tomita, A.; Ogawa, K.; Okamoto, A. State preparation robust to modulation signal degradation by use of a dual parallel modulator for high-speed BB84 quantum key distribution systems. Opt. Express 2020, 28, 13965–13977. [Google Scholar] [CrossRef]
- Ren, M.; Li, X.; Zhang, J.; Wang, L.; Wang, Y.; Wu, Y.; An, J. Single-photon interference using silica-based AMZI with phase modulation. Opt. Laser Technol. 2020, 122, 105837. [Google Scholar] [CrossRef]
- Li, X.; Ren, M.; Zhang, J.; Wang, L.; Chen, W.; Wang, Y.; Yin, X.; Wu, Y.; An, J. Interference at the single-photon level based on silica photonics robust against channel disturbance. Photonics Res. 2021, 9, 222–228. [Google Scholar] [CrossRef]
- You, J.; Wang, Y.; Cui, P.; Liu, Q.; Wu, D.; Li, S.; Zhang, J.; An, J.; Han, Q. Practical quantum key distribution module based on planar lightwave circuit. IEEE Photon. Technol. Lett. 2022, 34, 529–532. [Google Scholar] [CrossRef]
- Honjo, T.; Inoue, K.; Sahara, A.; Yamazaki, E.; Takahashi, H. Quantum key distribution experiment through a PLC matrix switch. Opt. Commun. 2006, 263, 120–123. [Google Scholar] [CrossRef]
- Yuki, I.; Toshimori, H.; Kyo, I.; Hidehiko, K.; Yoshiki, N.; Osamu, T.; Masaki, A. Polarization independent DPS-QKD system using up-conversion detectors. In Proceedings of the 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science, San Jose, CA, USA, 4–9 May 2008; pp. 1–2. [Google Scholar] [CrossRef]
- Fujiwara, M.; Toyoshima, M.; Sasaki, M.; Yoshino, K.; Nambu, Y.; Tomita, A. Performance of hybrid entanglement photon pair source for quantum key distribution. Appl. Phys. Lett. 2009, 95, 261103. [Google Scholar] [CrossRef]
- Choe, J.S.; Choi, B.S.; Ko, H.; Youn, C.J. Silica PLC-based Polarization Beam Splitter for 780 nm Free-Space Quantum Key Distribution Applications. In Proceedings of the Asia Communications and Photonics Conference, Wuhan, China, 2–5 November 2016; OSA Technical Digest (Online); Optica Publishing Group: Washington, DC, USA, 2016; p. AF2A.45. [Google Scholar] [CrossRef]
- Choe, J.S.; Ko, H.; Choi, B.S.; Kim, K.J.; Youn, C.J. Silica Planar Lightwave Circuit Based Integrated 1 × 4 Polarization Beam Splitter Module for Free-Space BB84 Quantum Key Distribution. IEEE Photon. J. 2018, 10, 1–8. [Google Scholar] [CrossRef]
- Wang, C.Y.; Gao, J.; Jiao, Z.Q.; Qiao, L.F.; Ren, R.J.; Feng, Z.; Chen, Y.; Yan, Z.Q.; Wang, Y.; Tang, H.; et al. Integrated measurement server for measurement-device-independent quantum key distribution network. Opt. Express 2019, 27, 5982–5989. [Google Scholar] [CrossRef] [PubMed]
- You, J.; Wang, Y.; An, J. Balanced pulses in two outputs of quantum photonic chip. Optoelectron. Lett. 2021, 17, 592–597. [Google Scholar] [CrossRef]
- You, J.; Wang, Y.; An, J.M. Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based on silica-based planar lightwave circuit. Chin. Phys. B 2021, 30, 080302. [Google Scholar] [CrossRef]
- Zhang, G.W.; Ding, Y.Y.; Chen, W.; Wang, F.X.; Ye, P.; Huang, G.Z.; Wang, S.; Yin, Z.Q.; An, J.M.; Guo, G.C.; et al. Polarization-insensitive interferometer based on a hybrid integrated planar light-wave circuit. Photonics Res. 2021, 9, 2176–2181. [Google Scholar] [CrossRef]
- You, J.; Wang, Y.; Han, Q.; An, J. Silica-silicon based planar lightwave circuit quantum key distribution decoding chip for multi-protocol. Opt. Laser Technol. 2022, 145, 107505. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.L.; Zhang, J.S.; Chen, W.; Wang, Y.; Wu, D.; An, J.M. Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates. Chin. Phys. B 2022, 31, 064212. [Google Scholar] [CrossRef]
- Zahidy, M.; Liu, Y.; Cozzolino, D.; Ding, Y.; Morioka, T.; Oxenløwe, L.K.; Bacco, D. Photonic integrated chip enabling orbital angular momentum multiplexing for quantum communication. Nanophotonics 2022, 11, 821–827. [Google Scholar] [CrossRef]
- Wang, X.Y.; Jia, Y.X.; Guo, X.B.; Liu, J.Q.; Wang, S.F.; Liu, W.Y.; Sun, F.Y.; Zou, J.; Li, Y.M. Silicon photonics integrated dynamic polarization controller. Chin. Opt. Lett. 2022, 20, 041301. [Google Scholar] [CrossRef]
- Semenenko, H.; Sibson, P.; Thompson, M.G.; Erven, C. Interference between independent photonic integrated devices for quantum key distribution. Opt. Lett. 2019, 44, 275–278. [Google Scholar] [CrossRef]
- Kumar, R.R.; Hansel, A.; Far Brusatori, M.; Nielsen, L.; Augustin, L.M.; Volet, N.; Heck, M.J.R. A 10-kHz intrinsic linewidth coupled extended-cavity DBR laser monolithically integrated on an InP platform. Opt. Lett. 2022, 47, 2346–2349. [Google Scholar] [CrossRef]
- Agnesi, C.; Da Lio, B.; Cozzolino, D.; Cardi, L.; Ben Bakir, B.; Hassan, K.; Della Frera, A.; Ruggeri, A.; Giudice, A.; Vallone, G.; et al. Hong-Ou-Mandel interference between independent III-V on silicon waveguide integrated lasers. Opt. Lett. 2019, 44, 271–274. [Google Scholar] [CrossRef] [PubMed]
- Wakabayashi, R.; Fujiwara, M.; Yoshino, K.i.; Nambu, Y.; Sasaki, M.; Aoki, T. Time-bin entangled photon pair generation from Si micro-ring resonator. Opt. Express 2015, 23, 1103–1113. [Google Scholar] [CrossRef] [PubMed]
- Arahira, S.; Murai, H.; Sasaki, H. Generation of highly stable WDM time-bin entanglement by cascaded sum-frequency generation and spontaneous parametric downconversion in a PPLN waveguide device. Opt. Express 2016, 24, 19581–19591. [Google Scholar] [CrossRef]
- Wang, J.; Paesani, S.; Ding, Y.; Santagati, R.; Skrzypczyk, P.; Salavrakos, A.; Tura, J.; Augusiak, R.; Mancinska, L.; Bacco, D.; et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 2018, 360, 285–291. [Google Scholar] [CrossRef]
- Silverstone, J.W.; Santagati, R.; Bonneau, D.; Strain, M.J.; Sorel, M.; O’Brien, J.L.; Thompson, M.G. Qubit entanglement between ring-resonator photon-pair sources on a silicon chip. Nat. Commun. 2015, 6, 7948. [Google Scholar] [CrossRef]
- Paesani, S.; Gentile, A.A.; Santagati, R.; Wang, J.; Wiebe, N.; Tew, D.P.; O’Brien, J.L.; Thompson, M.G. Experimental Bayesian Quantum Phase Estimation on a Silicon Photonic Chip. Phys. Rev. Lett. 2017, 118, 100503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, H.Z.J.; Ngyuen, M.A.P.; Ai, X.; Bennet, A.; Solnstev, A.S.; Laucht, A.; Al-Juboori, A.; Toth, M.; Mildren, R.P.; Malaney, R.; et al. Integrated room temperature single-photon source for quantum key distribution. Opt. Lett. 2022, 47, 1673–1676. [Google Scholar] [CrossRef]
- Beutel, F.; Gehring, H.; Wolff, M.A.; Schuck, C.; Pernice, W. Detector-integrated on-chip QKD receiver for GHz clock rates. NPJ Quantum Inf. 2021, 7, 40. [Google Scholar] [CrossRef]
- Zheng, X.D.; Zhang, P.Y.; Ge, R.Y.; Lu, L.L.; He, G.L.; Chen, Q.; Qu, F.C.; Zhang, L.B.; Cai, X.L.; Lu, Y.Q.; et al. Heterogeneously integrated, superconducting silicon-photonic platform for measurement-device-independent quantum key distribution. Adv. Photonics 2021, 3, 055002. [Google Scholar] [CrossRef]
- Sasaki, M.; Fujiwara, M.; Ishizuka, H.; Klaus, W.; Wakui, K.; Takeoka, M.; Miki, S.; Yamashita, T.; Wang, Z.; Tanaka, A.; et al. Field test of quantum key distribution in the Tokyo QKD Network. Opt. Express 2011, 19, 10387–10409. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, A.; Fujiwara, M.; Yoshino, K.I.; Takahashi, S.; Nambu, Y.; Tomita, A.; Miki, S.; Yamashita, T.; Wang, Z.; Sasaki, M.; et al. High-Speed Quantum Key Distribution System for 1-Mbps Real-Time Key Generation. IEEE J. Quantum Electron. 2012, 48, 542–550. [Google Scholar] [CrossRef]
- Ma, C.; Sacher, W.D.; Tang, Z.; Mikkelsen, J.C.; Yang, Y.; Xu, F.; Thiessen, T.; Lo, H.K.; Poon, J.K.S. Silicon photonic transmitter for polarization-encoded quantum key distribution. Optica 2016, 3, 1274–1278. [Google Scholar] [CrossRef]
- Sibson, P.; Kennard, J.E.; Stanisic, S.; Erven, C.; O’Brien, J.L.; Thompson, M.G. Integrated silicon photonics for high-speed quantum key distribution. Optica 2017, 4, 172–177. [Google Scholar] [CrossRef]
- Sibson, P.; Erven, C.; Godfrey, M.; Miki, S.; Yamashita, T.; Fujiwara, M.; Sasaki, M.; Terai, H.; Tanner, M.G.; Natarajan, C.M.; et al. Chip-based quantum key distribution. Nat. Commun. 2017, 8, 13984. [Google Scholar] [CrossRef]
- Bunandar, D.; Lentine, A.; Lee, C.; Cai, H.; Long, C.M.; Boynton, N.; Martinez, N.; DeRose, C.; Chen, C.; Grein, M.; et al. Metropolitan Quantum Key Distribution with Silicon Photonics. Phys. Rev. X 2018, 8, 021009. [Google Scholar] [CrossRef]
- Geng, W.; Zhang, C.; Zheng, Y.; He, J.; Zhou, C.; Kong, Y. Stable quantum key distribution using a silicon photonic transceiver. Opt. Express 2019, 27, 29045–29054. [Google Scholar] [CrossRef]
- Paraïso, T.K.; De Marco, I.; Roger, T.; Marangon, D.G.; Dynes, J.F.; Lucamarini, M.; Yuan, Z.; Shields, A.J. A modulator-free quantum key distribution transmitter chip. NPJ Quantum Inf. 2019, 5, 42. [Google Scholar] [CrossRef]
- Kong, L.; Li, Z.; Li, C.; Cao, L.; Xing, Z.; Cao, J.; Wang, Y.; Cai, X.; Zhou, X. Photonic integrated quantum key distribution receiver for multiple users. Opt. Express 2020, 28, 18449–18455. [Google Scholar] [CrossRef]
- Avesani, M.; Calderaro, L.; Schiavon, M.; Stanco, A.; Agnesi, C.; Santamato, A.; Zahidy, M.; Scriminich, A.; Foletto, G.; Contestabile, G.; et al. Full daylight quantum-key-distribution at 1550 nm enabled by integrated silicon photonics. NPJ Quantum Inf. 2021, 7, 93. [Google Scholar] [CrossRef]
- De Marco, I.; Woodward, R.I.; Roberts, G.L.; Paraïso, T.K.; Roger, T.; Sanzaro, M.; Lucamarini, M.; Yuan, Z.; Shields, A.J. Real-time operation of a multi-rate, multi-protocol quantum key distribution transmitter. Optica 2021, 8, 911–915. [Google Scholar] [CrossRef]
- Paraïso, T.K.; Roger, T.; Marangon, D.G.; De Marco, I.; Sanzaro, M.; Woodward, R.I.; Dynes, J.F.; Yuan, Z.; Shields, A.J. A photonic integrated quantum secure communication system. Nat. Photonics 2021, 15, 850–856. [Google Scholar] [CrossRef]
- Zhang, G.; Zhao, Z.; Dai, J.; Yang, S.; Fu, X.; Yang, L. Polarization-based Quantum Key Distribution Encoder and Decoder on Silicon Photonics. J. Light. Technol. 2021, 40, 2052–2059. [Google Scholar] [CrossRef]
- Zhu, C.X.; Chen, Z.Y.; Li, Y.; Wang, X.Z.; Wang, C.Z.; Zhu, Y.L.; Liang, F.T.; Cai, W.Q.; Jin, G.; Liao, S.K.; et al. Experimental Quantum Key Distribution with Integrated Silicon Photonics and Electronics. Phys. Rev. Appl. 2022, 17, 064034. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, W.; Fan-yuan, g.j.; Zhang, L.; Wang, F.; Wang, S.; Yin, Z.Q.; He, D.; Liu, W.; An, J.; et al. Polarization-insensitive quantum key distribution using planar lightwave circuit chips. Sci. China Inf. Sci. 2022, 65, 200506. [Google Scholar] [CrossRef]
- Honjo, T.; Inoue, K.; Takahashi, H. Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach–Zehnder interferometer. Opt. Lett. 2004, 29, 2797–2799. [Google Scholar] [CrossRef]
- Honjo, T.; Yamamoto, S.; Yamamoto, T.; Kamada, H.; Nishida, Y.; Tadanaga, O.; Asobe, M.; Inoue, K. Field trial of differential-phase-shift quantum key distribution using polarization independent frequency up-conversion detectors. Opt. Express 2007, 15, 15920–15927. [Google Scholar] [CrossRef]
- Cao, L.; Luo, W.; Wang, Y.X.; Zou, J.; Yan, R.D.; Cai, H.; Zhang, Y.; Hu, X.L.; Jiang, C.; Fan, W.J.; et al. Chip-Based Measurement-Device-Independent Quantum Key Distribution Using Integrated Silicon Photonic Systems. Phys. Rev. Appl. 2020, 14, 011001. [Google Scholar] [CrossRef]
- Semenenko, H.; Sibson, P.; Hart, A.; Thompson, M.G.; Rarity, J.G.; Erven, C. Chip-based measurement-device-independent quantum key distribution. Optica 2020, 7, 238–242. [Google Scholar] [CrossRef]
- Wei, K.; Li, W.; Tan, H.; Li, Y.; Min, H.; Zhang, W.J.; Li, H.; You, L.; Wang, Z.; Jiang, X.; et al. High-Speed Measurement-Device-Independent Quantum Key Distribution with Integrated Silicon Photonics. Phys. Rev. X 2020, 10, 031030. [Google Scholar] [CrossRef]
- Li, W.; Zapatero, V.; Tan, H.; Wei, K.; Min, H.; Liu, W.Y.; Jiang, X.; Liao, S.K.; Peng, C.Z.; Curty, M.; et al. Experimental Quantum Key Distribution Secure Against Malicious Devices. Phys. Rev. Appl. 2021, 15, 034081. [Google Scholar] [CrossRef]
- Ding, Y.; Bacco, D.; Dalgaard, K.; Cai, X.; Zhou, X.; Rottwitt, K.; Oxenløwe, L.K. High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits. NPJ Quantum Inf. 2017, 3, 25. [Google Scholar] [CrossRef]
- Zhang, G.; Haw, J.Y.; Cai, H.; Xu, F.; Assad, S.M.; Fitzsimons, J.F.; Zhou, X.; Zhang, Y.; Yu, S.; Wu, J.; et al. An integrated silicon photonic chip platform for continuous-variable quantum key distribution. Nat. Photonics 2019, 13, 839–842. [Google Scholar] [CrossRef]
- Li, L.; Huang, P.; Wang, T.; Zeng, G. Practical security of a chip-based continuous-variable quantum-key-distribution system. Phys. Rev. A 2021, 103, 032611. [Google Scholar] [CrossRef]
- Tan, H.; Li, W.; Zhang, L.; Wei, K.; Xu, F. Chip-Based Quantum Key Distribution against Trojan-Horse Attack. Phys. Rev. Appl. 2021, 15, 064038. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Y.; Jin, L.; Geng, M.; Wang, J.; Zhang, Z.; Wei, K. Experimental secure quantum key distribution in the presence of polarization-dependent loss. Phys. Rev. A 2022, 105, 012421. [Google Scholar] [CrossRef]
- Orieux, A.; Diamanti, E. Recent advances on integrated quantum communications. J. Opt. 2016, 18, 083002. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.Y.; Xu, P.; Zhu, S.N. Quantum photonic network on chip. Chin. Phys. B 2018, 27, 054207. [Google Scholar] [CrossRef]
- Slussarenko, S.; Pryde, G.J. Photonic quantum information processing: A concise review. Appl. Phys. Rev. 2019, 6, 041303. [Google Scholar] [CrossRef]
- Elshaari, A.W.; Pernice, W.; Srinivasan, K.; Benson, O.; Zwiller, V. Hybrid integrated quantum photonic circuits. Nat. Photonics 2020, 14, 285–298. [Google Scholar] [CrossRef]
- Chen, X.; Fu, Z.; Gong, Q.; Wang, J. Quantum entanglement on photonic chips: A review. Adv. Photonics 2021, 3, 064002. [Google Scholar] [CrossRef]
- Corrielli, G.; Crespi, A.; Osellame, R. Femtosecond laser micromachining for integrated quantum photonics. Nanophotonics 2021, 10, 3789–3812. [Google Scholar] [CrossRef]
- Hao, Y.; Xiang, S.; Han, G.; Zhang, J.; Ma, X.; Zhu, Z.; Guo, X.; Zhang, Y.; Han, Y.; Song, Z.; et al. Recent progress of integrated circuits and optoelectronic chips. Sci. China Inf. Sci. 2021, 64, 201401. [Google Scholar] [CrossRef]
- Lu, L.; Zheng, X.; Lu, Y.; Zhu, S.; Ma, X. Advances in Chip-Scale Quantum Photonic Technologies. Adv. Quantum Technol. 2021, 4, 2100068. [Google Scholar] [CrossRef]
- Paraïso, T.K.; Woodward, R.I.; Marangon, D.G.; Lovic, V.; Yuan, Z.; Shields, A.J. Advanced Laser Technology for Quantum Communications (Tutorial Review). Adv. Quantum Technol. 2021, 4, 2100062. [Google Scholar] [CrossRef]
- Pelucchi, E.; Fagas, G.; Aharonovich, I.; Englund, D.; Figueroa, E.; Gong, Q.; Hannes, H.; Liu, J.; Lu, C.Y.; Matsuda, N.; et al. The potential and global outlook of integrated photonics for quantum technologies. Nat. Rev. Phys. 2021, 4, 194–208. [Google Scholar] [CrossRef]
- Wang, Q.; Zheng, Y.; Zhai, C.; Li, X.; Gong, Q.; Wang, J. Chip-based quantum communications. J. Semicond. 2021, 42, 091901. [Google Scholar] [CrossRef]
- Wang, Y.; Jöns, K.D.; Sun, Z. Integrated photon-pair sources with nonlinear optics. Appl. Phys. Rev. 2021, 8, 011314. [Google Scholar] [CrossRef]
- Moody, G.; Sorger, V.J.; Blumenthal, D.J.; Juodawlkis, P.W.; Loh, W.; Sorace-Agaskar, C.; Jones, A.E.; Balram, K.C.; Matthews, J.C.F.; Laing, A.; et al. 2022 Roadmap on integrated quantum photonics. J. Phys. Photonics 2022, 4, 012501. [Google Scholar] [CrossRef]
- Vajner, D.A.; Rickert, L.; Gao, T.; Kaymazlar, K.; Heindel, T. Quantum Communication Using Semiconductor Quantum Dots. Adv. Quantum Technol. 2022, 5, 2100116. [Google Scholar] [CrossRef]
- Thew, R.; Acin, A.; Zbinden, H.; Gisin, N. Experimental realization of entangled qutrits for quantum communication. Quantum Inf. Comput. 2004, 4, 93–101. [Google Scholar] [CrossRef]
- Richart, D.; Fischer, Y.; Weinfurter, H. Experimental implementation of higher dimensional time–energy entanglement. Appl. Phys. B 2012, 106, 543–550. [Google Scholar] [CrossRef]
- Kues, M.; Reimer, C.; Roztocki, P.; Cortes, L.R.; Sciara, S.; Wetzel, B.; Zhang, Y.; Cino, A.; Chu, S.T.; Little, B.E.; et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature 2017, 546, 622–626. [Google Scholar] [CrossRef] [PubMed]
- Imany, P.; Jaramillo-Villegas, J.A.; Odele, O.D.; Han, K.; Leaird, D.E.; Lukens, J.M.; Lougovski, P.; Qi, M.; Weiner, A.M. 50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator. Opt. Express 2018, 26, 1825–1840. [Google Scholar] [CrossRef] [PubMed]
- Schaeff, C.; Polster, R.; Huber, M.; Ramelow, S.; Zeilinger, A. Experimental access to higher-dimensional entangled quantum systems using integrated optics. Optica 2015, 2, 523–529. [Google Scholar] [CrossRef]
- Dada, A.C.; Leach, J.; Buller, G.S.; Padgett, M.J.; Andersson, E. Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities. Nat. Phys. 2011, 7, 677–680. [Google Scholar] [CrossRef]
- Wang, X.L.; Cai, X.D.; Su, Z.E.; Chen, M.C.; Wu, D.; Li, L.; Liu, N.L.; Lu, C.Y.; Pan, J.W. Quantum teleportation of multiple degrees of freedom of a single photon. Nature 2015, 518, 516–519. [Google Scholar] [CrossRef]
- Reimer, C.; Sciara, S.; Roztocki, P.; Islam, M.; Cortes, L.R.; Zhang, Y.B.; Fischer, B.; Loranger, S.; Kashyap, R.; Cino, A.; et al. High-dimensional one-way quantum processing implemented on d-level cluster states. Nat. Phys. 2019, 15, 148–153. [Google Scholar] [CrossRef]
- Matthews, J.C.F.; Politi, A.; Stefanov, A.; O’Brien, J.L. Manipulation of multiphoton entanglement in waveguide quantum circuits. Nat. Photonics 2009, 3, 346–350. [Google Scholar] [CrossRef]
- Laing, A.; Peruzzo, A.; Politi, A.; Verde, M.R.; Halder, M.; Ralph, T.C.; Thompson, M.G.; O’Brien, J.L. High-fidelity operation of quantum photonic circuits. Appl. Phys. Lett. 2010, 97, 211109. [Google Scholar] [CrossRef]
- Shadbolt, P.J.; Verde, M.R.; Peruzzo, A.; Politi, A.; Laing, A.; Lobino, M.; Matthews, J.C.F.; Thompson, M.G.; O’Brien, J.L. Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit. Nat. Photonics 2012, 6, 45–49. [Google Scholar] [CrossRef]
- Takesue, H.; Tokura, Y.; Fukuda, H.; Tsuchizawa, T.; Watanabe, T.; Yamada, K.; Itabashi, S.i. Entanglement generation using silicon wire waveguide. Appl. Phys. Lett. 2007, 91, 201108. [Google Scholar] [CrossRef]
- Pernice, W.H.; Schuck, C.; Minaeva, O.; Li, M.; Goltsman, G.N.; Sergienko, A.V.; Tang, H.X. High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat. Commun. 2012, 3, 1325. [Google Scholar] [CrossRef] [PubMed]
- Bonneau, D.; Engin, E.; Ohira, K.; Suzuki, N.; Yoshida, H.; Iizuka, N.; Ezaki, M.; Natarajan, C.M.; Tanner, M.G.; Hadfield, R.H.; et al. Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits. New J. Phys. 2012, 14, 045003. [Google Scholar] [CrossRef]
- Silverstone, J.W.; Bonneau, D.; Ohira, K.; Suzuki, N.; Yoshida, H.; Iizuka, N.; Ezaki, M.; Natarajan, C.M.; Tanner, M.G.; Hadfield, R.H.; et al. On-chip quantum interference between silicon photon-pair sources. Nat. Photonics 2013, 8, 104–108. [Google Scholar] [CrossRef]
- Zhang, M.; Feng, L.T.; Zhou, Z.Y.; Chen, Y.; Wu, H.; Li, M.; Gao, S.M.; Guo, G.P.; Guo, G.C.; Dai, D.X.; et al. Generation of multiphoton quantum states on silicon. Light Sci. Appl. 2019, 8, 41. [Google Scholar] [CrossRef]
- Dutt, A.; Luke, K.; Manipatruni, S.; Gaeta, A.L.; Nussenzveig, P.; Lipson, M. On-Chip Optical Squeezing. Phys. Rev. Appl. 2015, 3, 044005. [Google Scholar] [CrossRef] [Green Version]
- Schuck, C.; Guo, X.; Fan, L.; Ma, X.; Poot, M.; Tang, H.X. Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip. Nat. Commun. 2016, 7, 10352. [Google Scholar] [CrossRef]
- Zhang, X.; Bell, B.A.; Mahendra, A.; Xiong, C.; Leong, P.H.W.; Eggleton, B.J. Integrated silicon nitride time-bin entanglement circuits. Opt. Lett. 2018, 43, 3469–3472. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Li, Q.; Westly, D.A.; Moille, G.; Singh, A.; Anant, V.; Srinivasan, K. Chip-integrated visible-telecom photon pair sources for quantum communication. Nat. Phys. 2019, 15, 373–381. [Google Scholar] [CrossRef]
- Guidry, M.A.; Yang, K.Y.; Lukin, D.M.; Markosyan, A.; Yang, J.; Fejer, M.M.; Vučković, J. Optical parametric oscillation in silicon carbide nanophotonics. Optica 2020, 7, 1139–1142. [Google Scholar] [CrossRef]
- Tanzilli, S.; Tittel, W.; De Riedmatten, H.; Zbinden, H.; Baldi, P.; De Micheli, M.; Ostrowsky, D.B.; Gisin, N. PPLN waveguide for quantum communication. Eur. Phys. J. D 2002, 18, 155–160. [Google Scholar] [CrossRef]
- Jin, H.; Liu, F.M.; Xu, P.; Xia, J.L.; Zhong, M.L.; Yuan, Y.; Zhou, J.W.; Gong, Y.X.; Wang, W.; Zhu, S.N. On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits. Phys. Rev. Lett. 2014, 113, 103601. [Google Scholar] [CrossRef]
- Höpker, J.P.; Bartnick, M.; Meyer-Scott, E.; Thiele, F.; Krapick, S.; Montaut, N.; Santandrea, M.; Herrmann, H.; Lengeling, S.; Ricken, R. Towards integrated superconducting detectors on lithium niobate waveguides. In Quantum Photonic Devices; SPIE: Bellingham, WA, USA, 2017; Volume 10358, pp. 21–27. [Google Scholar] [CrossRef]
- Sprengers, J.P.; Gaggero, A.; Sahin, D.; Jahanmirinejad, S.; Frucci, G.; Mattioli, F.; Leoni, R.; Beetz, J.; Lermer, M.; Kamp, M.; et al. Waveguide superconducting single-photon detectors for integrated quantum photonic circuits. Appl. Phys. Lett. 2011, 99, 181110. [Google Scholar] [CrossRef]
- Horn, R.; Abolghasem, P.; Bijlani, B.J.; Kang, D.; Helmy, A.S.; Weihs, G. Monolithic source of photon pairs. Phys. Rev. Lett. 2012, 108, 153605. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Santamato, A.; Jiang, P.; Bonneau, D.; Engin, E.; Silverstone, J.W.; Lermer, M.; Beetz, J.; Kamp, M.; Höfling, S.; et al. Gallium arsenide (GaAs) quantum photonic waveguide circuits. Opt. Commun. 2014, 327, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Abellan, C.; Amaya, W.; Domenech, D.; Muñoz, P.; Capmany, J.; Longhi, S.; Mitchell, M.W.; Pruneri, V. Quantum entropy source on an InP photonic integrated circuit for random number generation. Optica 2016, 3, 989–994. [Google Scholar] [CrossRef]
- Sipahigil, A.; Evans, R.E.; Sukachev, D.D.; Burek, M.J.; Borregaard, J.; Bhaskar, M.K.; Nguyen, C.T.; Pacheco, J.L.; Atikian, H.A.; Meuwly, C.; et al. An integrated diamond nanophotonics platform for quantum-optical networks. Science 2016, 354, 847–850. [Google Scholar] [CrossRef]
- Meany, T.; Gräfe, M.; Heilmann, R.; Perez-Leija, A.; Gross, S.; Steel, M.J.; Withford, M.J.; Szameit, A. Laser written circuits for quantum photonics. Laser Photonics Rev. 2015, 9, 363–384. [Google Scholar] [CrossRef]
- Boada, O.; Novo, L.; Sciarrino, F.; Omar, Y. Quantum walks in synthetic gauge fields with three-dimensional integrated photonics. Phys. Rev. A 2017, 95, 013830. [Google Scholar] [CrossRef]
- Tang, H.; Lin, X.F.; Feng, Z.; Chen, J.Y.; Gao, J.; Sun, K.; Wang, C.Y.; Lai, P.C.; Xu, X.Y.; Wang, Y.; et al. Experimental two-dimensional quantum walk on a photonic chip. Sci. Adv. 2018, 4, eaat3174. [Google Scholar] [CrossRef] [PubMed]
- Zeuner, J.; Pitsios, I.; Tan, S.H.; Sharma, A.N.; Fitzsimons, J.F.; Osellame, R.; Walther, P. Experimental quantum homomorphic encryption. NPJ Quantum Inf. 2021, 7, 25. [Google Scholar] [CrossRef]
- Wang, J.; Bonneau, D.; Villa, M.; Silverstone, J.W.; Santagati, R.; Miki, S.; Yamashita, T.; Fujiwara, M.; Sasaki, M.; Terai, H.; et al. Chip-to-chip quantum photonic interconnect by path-polarization interconversion. Optica 2016, 3, 407–413. [Google Scholar] [CrossRef]
- Kwek, L.C.; Cao, L.; Luo, W.; Wang, Y.; Sun, S.; Wang, X.; Liu, A.Q. Chip-based quantum key distribution. AAPPS Bull. 2021, 31, 15. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, M.; Chen, X.; Bertrand, M.; Shams-Ansari, A.; Chandrasekhar, S.; Winzer, P.; Loncar, M. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 2018, 562, 101–104. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Xu, M.; Ren, Y.; Jian, J.; Ruan, Z.; Xu, Y.; Gao, S.; Sun, S.; Wen, X.; Zhou, L.; et al. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbits s-1 and beyond. Nat. Photonics 2019, 13, 359–364. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Itzler, M.A.; Zbinden, H.; Pan, J.W. Advances in InGaAs/InP single-photon detector systems for quantum communication. Light-Sci. Appl. 2015, 4, e286. [Google Scholar] [CrossRef]
- Comandar, L.C.; Fröhlich, B.; Dynes, J.F.; Sharpe, A.W.; Lucamarini, M.; Yuan, Z.L.; Penty, R.V.; Shields, A.J. Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550 nm. J. Appl. Phys. 2015, 117, 083109. [Google Scholar] [CrossRef]
- Amri, E.; Boso, G.; Korzh, B.; Zbinden, H. Temporal jitter in free-running InGaAs/InP single-photon avalanche detectors. Opt. Lett. 2016, 41, 5728–5731. [Google Scholar] [CrossRef]
- Hadfield, R.H. Single-photon detectors for optical quantum information applications. Nat. Photonics 2009, 3, 696–705. [Google Scholar] [CrossRef]
- Natarajan, C.M.; Tanner, M.G.; Hadfield, R.H. Superconducting nanowire single-photon detectors: Physics and applications. Supercond. Sci. Technol. 2012, 25, 063001. [Google Scholar] [CrossRef]
- You, L. Superconducting nanowire single-photon detectors for quantum information. Nanophotonics 2020, 9, 2673–2692. [Google Scholar] [CrossRef]
- Caloz, M.; Perrenoud, M.; Autebert, C.; Korzh, B.; Weiss, M.; Schönenberger, C.; Warburton, R.J.; Zbinden, H.; Bussières, F. High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors. Appl. Phys. Lett. 2018, 112, 061103. [Google Scholar] [CrossRef]
- Ferrari, S.; Schuck, C.; Pernice, W. Waveguide-integrated superconducting nanowire single-photon detectors. Nanophotonics 2018, 7, 1725–1758. [Google Scholar] [CrossRef]
- Tang, G.; Li, C.; Wang, M. Polarization discriminated time-bin phase-encoding measurement-device-independent quantum key distribution. Quant. Eng. 2021, 3, e79. [Google Scholar] [CrossRef]
- Guo, H.; Li, Z.; Yu, S.; Zhang, Y. Toward practical quantum key distribution using telecom components. Fundam. Res. 2021, 1, 96–98. [Google Scholar] [CrossRef]
- Grosshans, F.; Grangier, P. Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 2002, 88, 057902. [Google Scholar] [CrossRef]
- Weedbrook, C.; Lance, A.M.; Bowen, W.P.; Symul, T.; Ralph, T.C.; Lam, P.K. Quantum cryptography without switching. Phys. Rev. Lett. 2004, 93, 170504. [Google Scholar] [CrossRef]
- Cerf, N.J.; Lévy, M.; Assche, G.V. Quantum distribution of Gaussian keys using squeezed states. Phys. Rev. A 2001, 63, 052311. [Google Scholar] [CrossRef]
- Ralph, T.C. Continuous variable quantum cryptography. Phys. Rev. A 1999, 61, 010303. [Google Scholar] [CrossRef]
- Gisin, N.; Fasel, S.; Kraus, B.; Zbinden, H.; Ribordy, G. Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 2006, 73, 022320. [Google Scholar] [CrossRef]
- Li, H.W.; Wang, S.; Huang, J.Z.; Chen, W.; Yin, Z.Q.; Li, F.Y.; Zhou, Z.; Liu, D.; Zhang, Y.; Guo, G.C.; et al. Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources. Phys. Rev. A 2011, 84, 062308. [Google Scholar] [CrossRef]
- Sajeed, S.; Radchenko, I.; Kaiser, S.; Bourgoin, J.P.; Pappa, A.; Monat, L.; Legré, M.; Makarov, V. Attacks exploiting deviation of mean photon number in quantum key distribution and coin tossing. Phys. Rev. A 2015, 91, 032326. [Google Scholar] [CrossRef]
- Qi, B.; Fred, F.C.h.; Lo, H.K.; Ma, X. Time-shift attack in practical quantum cryptosystems. Quant. Inf. Comput. 2007, 7, 73–82. [Google Scholar] [CrossRef]
- Yoshino, K.i.; Fujiwara, M.; Nakata, K.; Sumiya, T.; Sasaki, T.; Takeoka, M.; Sasaki, M.; Tajima, A.; Koashi, M.; Tomita, A. Quantum key distribution with an efficient countermeasure against correlated intensity fluctuations in optical pulses. Npj Quantum Inf. 2018, 4, 8. [Google Scholar] [CrossRef]
- Lydersen, L.; Wiechers, C.; Wittmann, C.; Elser, D.; Skaar, J.; Makarov, V. Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics 2010, 4, 686–689. [Google Scholar] [CrossRef] [Green Version]
- Henning, W.; Harald, K.; Markus, R.; Martin, F.; Sebastian, N.; Harald, W. Quantum eavesdropping without interception: An attack exploiting the dead time of single-photon detectors. New J. Phys. 2011, 13, 073024. [Google Scholar]
- Wei, K.; Liu, H.; Ma, H.; Yang, X.; Zhang, Y.; Sun, Y.; Xiao, J.; Ji, Y. Feasible attack on detector-device-independent quantum key distribution. Sci. Rep. 2017, 7, 449. [Google Scholar] [CrossRef]
- Wei, K.; Zhang, W.; Tang, Y.L.; You, L.; Xu, F. Implementation security of quantum key distribution due to polarization-dependent efficiency mismatch. Phys. Rev. A 2019, 100, 022325. [Google Scholar] [CrossRef]
- Xu, F.; Wei, K.; Sajeed, S.; Kaiser, S.; Sun, S.; Tang, Z.; Qian, L.; Makarov, V.; Lo, H.K. Experimental quantum key distribution with source flaws. Phys. Rev. A 2015, 92, 032305. [Google Scholar] [CrossRef]
- Tang, Z.; Wei, K.; Bedroya, O.; Qian, L.; Lo, H.K. Experimental measurement-device-independent quantum key distribution with imperfect sources. Phys. Rev. A 2016, 93, 042308. [Google Scholar] [CrossRef]
- Tamaki, K.; Curty, M.; Lucamarini, M. Decoy-state quantum key distribution with a leaky source. New J. Phys. 2016, 18, 065008. [Google Scholar] [CrossRef]
- Lucamarini, M.; Choi, I.; Ward, M.; Dynes, J.; Yuan, Z.; Shields, A. Practical Security Bounds Against the Trojan-Horse Attack in Quantum Key Distribution. Phys. Rev. X 2015, 5, 031030. [Google Scholar] [CrossRef]
- Pereira, M.; Kato, G.; Mizutani, A.; Curty, M.; Tamaki, K. Quantum key distribution with correlated sources. Sci. Adv. 2020, 6, eaaz4487. [Google Scholar] [CrossRef]
- Zhang, Y.; Coles, P.J.; Winick, A.; Lin, J.; Lütkenhaus, N. Security proof of practical quantum key distribution with detection-efficiency mismatch. Phys. Rev. Res. 2021, 3, 013076. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, C.; Chen, Z.; He, W.; Zhang, C.; Sun, S.; Wei, K. Experimental study of secure quantum key distribution with source and detection imperfections. Phys. Rev. A 2022, 106, 022614. [Google Scholar] [CrossRef]
- Lo, H.K.; Curty, M.; Tamaki, K. Secure quantum key distribution. Nat. Photonics 2014, 8, 595–604. [Google Scholar] [CrossRef] [Green Version]
- Lucamarini, M.; Yuan, Z.L.; Dynes, J.F.; Shields, A.J. Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 2018, 557, 400–403. [Google Scholar] [CrossRef]
- Yin, Z.Q.; Lu, F.Y.; Teng, J.; Wang, S.; Chen, W.; Guo, G.C.; Han, Z.F. Twin-field protocols: Towards intercity quantum key distribution without quantum repeaters. Fundam. Res. 2021, 1, 93–95. [Google Scholar] [CrossRef]
- Pirandola, S.; Laurenza, R.; Ottaviani, C.; Banchi, L. Fundamental limits of repeaterless quantum communications. Nat. Commun. 2017, 8, 15043. [Google Scholar] [CrossRef]
- Ma, X.F.; Zeng, P.; Zhou, H.Y. Phase-Matching Quantum Key Distribution. Phys. Rev. X 2018, 8, 031043. [Google Scholar] [CrossRef]
- Wang, X.B.; Yu, Z.W.; Hu, X.L. Twin-field quantum key distribution with large misalignment error. Phys. Rev. A 2018, 98, 062323. [Google Scholar] [CrossRef]
- Wang, S.; He, D.Y.; Yin, Z.Q.; Lu, F.Y.; Cui, C.H.; Chen, W.; Zhou, Z.; Guo, G.C.; Han, Z.F. Beating the Fundamental Rate-Distance Limit in a Proof-of-Principle Quantum Key Distribution System. Phys. Rev. X 2019, 9, 021046. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Huang, Y.; Du, Y.; Zhao, Z.; Geng, M.; Zhang, Z.; Wei, K. Advances in Chip-Based Quantum Key Distribution. Entropy 2022, 24, 1334. https://doi.org/10.3390/e24101334
Liu Q, Huang Y, Du Y, Zhao Z, Geng M, Zhang Z, Wei K. Advances in Chip-Based Quantum Key Distribution. Entropy. 2022; 24(10):1334. https://doi.org/10.3390/e24101334
Chicago/Turabian StyleLiu, Qiang, Yinming Huang, Yongqiang Du, Zhengeng Zhao, Minming Geng, Zhenrong Zhang, and Kejin Wei. 2022. "Advances in Chip-Based Quantum Key Distribution" Entropy 24, no. 10: 1334. https://doi.org/10.3390/e24101334
APA StyleLiu, Q., Huang, Y., Du, Y., Zhao, Z., Geng, M., Zhang, Z., & Wei, K. (2022). Advances in Chip-Based Quantum Key Distribution. Entropy, 24(10), 1334. https://doi.org/10.3390/e24101334