Selection of Optimal Palmer Predictors for Increasing the Predictability of the Danube Discharge: New Findings Based on Information Theory and Partial Wavelet Coherence Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Methods
2.2.1. Elements of Information Theory
2.2.2. Multivariate Wavelet Approach
- (a)
- The wavelet must have a mean value of 0:
- (b)
- The wavelet must have a final amount of energy:
- (c)
- It must have the condition of an inverse transform, where denotes the Fourier transform of the function :
3. Results and Discussion
3.1. Testing the Linearity/Nonlinear Connections by Means of Mutual Information
- (a)
- PDSI: there are two significant cases of nonlinearity: WIN with SPR (Q) and SPR with SUM (Q); an insignificant case from any point of view, i.e., PDSI in winter is not a good predictor for Q in FALL.
- (b)
- PHDI: there is only one case when NLR is almost significantly correlated with the chosen criterion (99%), and it is higher than |R|, namely, SPR with SUM (Q); there are two cases when this predictor has no significant connections with the predictor in any sense (linear or nonlinear), namely, WIN with FALL (Q) and SPR with FALL (Q).
- (c)
- WPLM: as in the case of PHDI, we can consider a nonlinearity for the combination of SPR with SUM (Q). There is only one situation in which there is no significant connection (linear or nonlinear) between WIN and FALL (Q).
- (d)
- ZIND: significant nonlinearity occurs in the case of the WIN predictor with SPR (Q). In two cases, there is no significant connection: ZIND from WIN with Q in SUM and FALL. Therefore, ZIND from winter does not provide any information for Q in summer and fall.
3.2. Analysis by Means of Multi-Information and Redundancy–Synergy Index
3.3. Applications of Partial Wavelet Coherence
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hasselmann, K. Optimal Fingerprints for the Detection of Time Dependent Climate Change. J. Clim. 1993, 6, 1957–1971. [Google Scholar] [CrossRef]
- Weijs, S.V.; Foroozand, H.; Kumar, A. Dependency and redundancy:How information theory untangles three variable interactions in environmental data. Wat. Resour. Res. 2018, 54, 7143–7148. [Google Scholar] [CrossRef]
- Hu, W.; Si, B.C. Technical Note: Multiple wavelet coherence for untangling scale-specific and localized multivariate relationships in geosciences. Hydrol. Earth Syst. Sci. 2016, 20, 3183–3191. [Google Scholar] [CrossRef]
- Hu, W.; Si, B.C.; Biswas, A.; Chau, H.W. Temporally stable patterns but seasonal dependent controls of soil water content: Evidence from wavelet analyses. Hydrol. Process. 2017, 31, 3697–3707. [Google Scholar] [CrossRef]
- Ball, K.R.; Grant, C.; Mundy, W.R.; Shafer, T.J. A multivariate extensionof mutual information for growing neural networks. Neural Netw. 2017, 95, 29–43. [Google Scholar] [CrossRef] [PubMed]
- Goodwell, A.E.; Kumar, P. Temporal information partitioning: Characterizing synergy, uniqueness, and redundancy in interacting environmental variables. Water Resour. Res. 2017, 53, 5920–5942. [Google Scholar] [CrossRef]
- Goodwell, A.E.; Kumar, P. A Changing Climatology of Precipitation Persistence across the United States Using Information-Based Measures. J. Hydrometeorol. 2019, 20, 1649–1666. [Google Scholar] [CrossRef]
- Foroozand, H.; Radić, V.; Weijs, S.V. Application of Entropy Ensemble Filter in Neural Network Forecasts of Tropical Pacific Sea Surface Temperatures. Entropy 2018, 20, 207. [Google Scholar] [CrossRef]
- Foroozand, H.; Weijs, S.V. Objective functions for information-theoretical monitoring network design: What is optimal? Hydrol. Earth Syst. Sci. 2020, 25, 831–850. [Google Scholar] [CrossRef]
- Goodwell, A.E.; Jiang, P.; Ruddell, B.L.; Kumar, P. Debates-Does information theory provide a new paradigm for Earth science? Causality, interaction, and feedback. Water Resour. Res. 2020, 56, e2019WR024940. [Google Scholar] [CrossRef]
- Goodwell, A.E. ‘‘It’s Raining Bits’’: Patterns in Directional Precipitation Persistence across the United States. J. Hydrometeorol. 2020, 21, 2907–2921. [Google Scholar] [CrossRef]
- Hu, W.; Si, B.C. Technical Note: Improved partial wavelet coherency for understanding scale- specific and localized bivariate relationships in geosciences. Hydrol. Earth Syst. Sci. 2021, 25, 321–331. [Google Scholar] [CrossRef]
- Kharazmi, O.; Tamandi, M.; Balakrishnan, N. Information Generating Function of Ranked Set Samples. Entropy 2021, 23, 1381. [Google Scholar] [CrossRef]
- Kolchinsky, A. A Novel Approach to the Partial Information Decomposition. Entropy 2022, 24, 403. [Google Scholar] [CrossRef]
- Cai, X.; Sakemoto, R. El Niño and Commodity Prices: New Findings From Partial Wavelet Coherence Analysis. Front. Environ. Sci. 2022, 10, 893879. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Guiasu, S. Information Theory with Applications; McGraw-Hill Inc.: London, UK, 1977; pp. 14–17. [Google Scholar]
- Mares, I.; Mares, C.; Dobrica, V.; Demetrescu, C. Comparative study of statistical methods to identify a predictor for discharge at Orsova in the Lower Danube Basin. Hydrol. Sci. J. 2020, 65, 371–386. [Google Scholar] [CrossRef]
- Mares, I.; Dobrica, V.; Mares, C.; Demetrescu, C. Assessing the solar variability signature in climate variables by information theory and wavelet coherence. Sci. Rep. 2021, 11, 1–15. [Google Scholar] [CrossRef]
- Mares, C.; Mares, I.; Dobrica, V.; Demetrescu, C. Quantification of the direct solar impact on some components of the hydroclimatic system. Entropy 2021, 23, 691. [Google Scholar] [CrossRef]
- Watanabe, S. Information theoretical analysis of multivariate correlation. IBM J. Res. Dev. 1960, 4, 66–82. [Google Scholar] [CrossRef]
- Timme, N.; Alford, W.; Flecker, B.; Beggs, J.M. Synergy, redundancy, and multivariate information measures: An experimentalist’s perspective. J. Comput. Neurosci. 2014, 36, 119–140. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, H. Physical nature of higher-order mutual information: Intrinsic correlations and frustration. Phys. Rev. E 2000, 62, 3096. [Google Scholar] [CrossRef]
- Ince, R.A. Measuring multivariate redundant information with pointwise common change in surprisal. Entropy 2017, 19, 318. [Google Scholar] [CrossRef]
- Wang, J.; Shi, B.; Zhao, E.; Chen, X.; Yang, S. Synergistic effects of multiple driving factors on the runoff variations in the Yellow River Basin, China. J. Arid. Land. 2021, 13, 835–857. [Google Scholar] [CrossRef]
- Sonechkin, D.M.; Vakulenko, N.V. Polyphony of Short-Term Climatic Variations. Atmosphere 2021, 12, 1145. [Google Scholar] [CrossRef]
- Rathinasamy, M.; Agarwal, A.; Parmar, V.; Khosa, R.; Bairwa, A. Partial wavelet coherence analysis for understanding the stan-dalone relationship between Indian Precipitation and Telecon-nection patterns. arXiv 2017, (preprint). arXiv:1702.06568. [Google Scholar]
- Mares, C. Contributions to Long-Range Weather Forecasting. Ph.D. Dissertation, Bulletin of Geodynamic Institute of Romanian Academy, Bucharest, Romania, 1998; p. 28. (In Romanian). [Google Scholar]
- Gallegati, M. Multiscale evaluation of CMIP5 models using wavelet-based descriptive and diagnostic techniques. Clim. Chang. 2022, 170, 41. [Google Scholar] [CrossRef]
- Mallat, S.A. Wavelet Tour of Signal Processing; Academic-Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Coifman, R.; Donoho, D.L. Translation-invariant denoising. Wavelets Stat. Lect. Notes Stat. 1995, 103, 120–150. [Google Scholar]
- Donoho, D.L.; Johnstone, I.M.; Kerkyacharian, G.; Picard, D. Wavelet shrinkage: Asymptotia? J. R. Stat. Soc. B 1995, 57, 301–369. [Google Scholar]
- Kumar, P.; Foufoula-Georgiou, E. Wavelet analysis for geophysical applications. Rev. Geoph. 1997, 35, 385–412. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Torrence, C.; Webster, P. Interdecadal changes in the ESNO-Monsoon System. J. Clim. 1999, 12, 2679–2690. [Google Scholar] [CrossRef]
- Sonechkin, D.M.; Astafyeva, N.M.; Datsenko, N.M.; Ivachtchenko, N.N.; Jakubiak, B. Multiscale oscillations of the global climate system as revealed by wavelet transform of observational data time series. Theor. Appl. Climatol. 1999, 64, 131–142. [Google Scholar] [CrossRef]
- Jevrejeva, S.; Moore, J.C.; Grinsted, A. Influence of the Arctic Oscillation and ElNiño-Southern Oscillation (ENSO) on ice conditions in the Baltic Sea: The wavelet approach. J. Geophys. Res. 2003, 108, 4677. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Sleziak, P.; Hlavčová, K.; Szolgay, J. Advantages of a time series analysis using wavelet transform as compared with a fourier analysis. Slovak J. Civ. Eng. 2015, 23, 30. [Google Scholar] [CrossRef]
- Mihanovic, H.; Orlie, M.; Pasaria, Z. Diurnal thermocline oscillations driven by tidal flow around an island in the Middle Adriatic. J. Mar. Syst. 2009, 78, S157–S168. [Google Scholar] [CrossRef]
- Ng, E.K.; Chan, J.C. Geophysical applications of partial wavelet coherence and multiple wavelet coherence. J. Atmos. Ocean. Technol. 2012, 29, 1845–1853. [Google Scholar] [CrossRef]
- Wu, K.; Zhu, J.; Xu, M.; Yang, L. Can crude oil drive the co-movement in the international stock market? Evidence from partial wavelet coherence analysis. N. Am. J. Econ. Financ. 2020, 53, 101194. [Google Scholar]
- Sreedevi, V.; Adarsh, S.; Nourani, V. Multiscale coherence analysis of reference evapotranspiration of north-western Iran using wavelet transform. J. Water Clim. Chang. 2022, 13, 505–521. [Google Scholar] [CrossRef]
- Mares, C.; Mares, I.; Mihailescu, M. Identification of extreme events using drought indices and their impact on the Danube lower basin discharge. Hydrol. Process. 2016, 30, 3839–3854. [Google Scholar] [CrossRef]
- Palmer, W.C. Meteorological drought. Rep. U.S. Dept. Commer. Wash. 1965, 45, 58. Available online: http://www.ncdc.noaa.gov/oa/climate/research/drought/palmer.pdf (accessed on 22 September 2022).
- Vicente-Serrano, S.M.; Beguería, S.; Lorenzo-Lacruz, J.; Camarero, J.J.; López-Moreno, J.I.; Azorin-Molina, C.; Revuelto, J.; Morán-Tejeda, E.; Sanchez-Lorenzo, A. Performance of Drought Indices for Ecological, Agricultural, and Hydrological Applications. Earth Interact. 2012, 16, 1–27. [Google Scholar] [CrossRef]
- Heddinghaus, T.R.; Sabol, P. A review of the Palmer drought severity index and where do we go from here? In Proceedings of the 7th Conference on Applied Climatol, Salt Lake City, UT, USA, 10–13 September 1991; pp. 242–246. [Google Scholar]
- Harris, I.; Philip, J.; Timothy, O.; David, L. Updated high-resolution grids of monthly climatic observations-the CRU TS3.10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef]
- Klein Tank, A.M.G.; Wijngaard, J.B.; Können, G.P.; Böhm, R.; Demaree, G.; Gocheva, A.; Mileta, M.; Pashiardis, S.; Hejkrlik, L.; Kern-Hansen, C.; et al. Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int. J. Climatol. 2002, 22, 1441–1453. [Google Scholar] [CrossRef]
- Wijngaard, J.B.; Klein Tank, A.M.G.; Können, G.P. Homogeneity of 20th Century European Daily Temperature and Precipitation Series. Int. J. Climatol. 2003, 23, 679–692. [Google Scholar] [CrossRef]
- Wells, N. PDSI Users Manual; Version 2.0; National Agricultural Decision Support System; University of Nebraska–Lincoln: Lincoln, NE, USA, 2003; Available online: http://greenleaf.unl.edu/downloads/ (accessed on 20 February 2015).
- Wells, N.; Goddard, S.; Hayes, M.J. A Self-Calibrating Palmer Drought Severity Index. J. Clim. 2004, 17, 2335–2351. [Google Scholar] [CrossRef]
- Mohammed, S.; Alsafadi, K.; Enaruvbe, G.O. Assessing the impacts of agricultural drought (SPI/SPEI) on maize and wheat yields across Hungary. Sci. Rep. 2022, 12, 8838. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, T. Measuring information transfer. Phys. Rev. Lett. 2000, 85, 461–464. [Google Scholar] [CrossRef]
- Markus, M.; Knapp, H.V.; Tasker, G.D. Entropy and generalized least square methods assessment of the regional value of streamgages. J. Hydrometeorol. 2003, 283, 107–121. [Google Scholar] [CrossRef]
- Khan, S.; Ganguly, A.R.; Bandyopadhyay, S.; Saigal, S.; Erickson, D.J.; Protopopescu, V.; Ostrouchov, G. Nonlinear statistics reveals stronger ties between ENSO and the tropical hydrological cycle. Geophys. Res. Lett. 2006, 33, L24402. [Google Scholar] [CrossRef]
- Pechlivanidis, I.G.; Jackson, B.M.; McMillan, H.K.; Gupta, H.V. Using an informational entropy-based metric as a diagnostic of flow duration to drive model parameter identification. Glob. Nest. J. 2012, 14, 325–334. [Google Scholar]
- Ridolfi, E.; Montesarchio, V.; Russo, F.; Napolitano, F. An entropy approach for evaluating the maximum information content achievable by an urban rainfall network. Nat. Hazards Earth Syst. Sci. 2011, 11, 2075–2083. [Google Scholar] [CrossRef]
- Wrzesiński, D. Uncertainty of flow regime characteristics of rivers in Europe. Quaest. Geogr. 2013, 32, 43–53. [Google Scholar] [CrossRef]
- Gong, W.; Gupta, H.V.; Yang, D.; Sricharan, K.; Hero, A.O. Estimating epistemic and aleatory uncertainties during hydrologic modeling: An information theoretic approach. Water Resour. Res. 2013, 49, 2253–2273. [Google Scholar] [CrossRef]
- Gong, W.; Yang, D.; Gupta, H.V.; Nearing, G. Estimating information entropy for hydrological data: One-dimensional case. Water Res. 2014, 50, 5003–5018. [Google Scholar] [CrossRef]
- Paluš, M. Linked by Dynamics: Wavelet-Based Mutual Information Rate as a Connectivity Measure and Scale-Specific Networks; Springer: Cham, Switzerland, 2018; pp. 427–463. [Google Scholar]
- Vu, T.M.; Mishra, A.K.; Konapala, G. Information Entropy Suggests Stronger Nonlinear Associations between Hydro-Meteorological Variables and ENSO. Entropy 2018, 20, 38. [Google Scholar] [CrossRef] [PubMed]
- Ghil, M.; Allen, R.M.; Dettinger, M.D. Advanced spectral methods for climatic time series. Rev. Geophys. 2002, 40, 3-1-3-41. [Google Scholar] [CrossRef]
- Legendre, P. Comparison of Permutation Methodsfor the Partial Correlation and Partial Mantel Tests. J. Statist. Comput. Simul. 2000, 67, 37–73. [Google Scholar] [CrossRef]
- Gu, X.; Sun, H.; Zhang, Y.; Zhang, S.; Lu, C. Partial Wavelet Coherence to Evaluate Scale-dependent Relationships Between Precipitation/Surface Water and Groundwater Levels in a Groundwater System. Water Resour. Manag. 2022, 36, 2509–2522. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, S.; Ding, Y.; Fu, Q.; Wang, Y.; Cai, H.; Shi, H. Assessing the responses of vegetation to meteorological drought and its influencing factors with partial wavelet coherence analysis. J. Environ. Manag. 2022, 311, 114879. [Google Scholar] [CrossRef] [PubMed]
- Firouzi, S.; Wang, X. The interrelationship between order flow, exchange rate, and the role of American economic news. N. Am. J. Econ. Financ. 2021, 58, 101492. [Google Scholar] [CrossRef]
- Maraun, D.; Kurths, J.; Holschneider, M. Nonstationary Gaussian processes in wavelet domain: Synthesis, estimation, and significance testing. Phys. Rev. E 2007, 75, 016707. [Google Scholar] [CrossRef] [PubMed]
- Mares, I.; Mares, C.; Dobrica, V.; Demetrescu, C. Testing nonlinearity and nonstationarity of the connection between Palmer drought indices and Danube discharge in the lower basin. Available online: https://meetingorganizer.copernicus.org/EGU22/EGU22-4319.html (accessed on 22 September 2022).
- Su, L.; Miao, C.; Duan, Q.; Lei, X.; Li, H. Multiple-wavelet coherence of world’s large rivers with meteorological factors and ocean signals. J. Geoph.Res Atmos. 2019, 124, 4932–4954. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, X.; He, T.; Wang, Y.; Wendroth, O.; Chen, X.; Liu, B.; Zhang, G. Factors controlling saturated hydraulic conductivity along a typical black soil slope. Soil Tillage Res. 2022, 220, 105391. [Google Scholar] [CrossRef]
- Dionísio, A.; Menezes, R.; Mendes, D.A. Entropy-Based Independence Test. Nonlin. Dyn. 2006, 44, 351–357. [Google Scholar] [CrossRef]
- Mares, I.; Mares, C.; Mihăilescu, M. NAO impact on the summer moisture variability across Europe. Phys. Chem. Earth 2002, 27, 1013–1017. [Google Scholar] [CrossRef]
- Salinger, M.J. Climate variability and change: Past, present and future—An overview. Clim. Chang. 2005, 70, 9–29. [Google Scholar] [CrossRef]
- Malmgren, K.A.; Neves, M.C.; Gurdak, J.J.; Costa, L.; Monteiro, J.P. Groundwater response to climate variability in Mediterranean type climate zones with comparisons of California (USA) and Portugal. Hydrogeol. J. 2022, 30, 767–782. [Google Scholar] [CrossRef]
- Mareş, C.; Mareş, I.; Mihăilescu, M. Testing of NAO and ENSO signals in the precipitation field in Europe. In Climatic Change: Implications for the Hydrological Cycle and for Water Management; Beniston, M., Ed.; Advances in Global Change Research; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 2002; Volume 10, pp. 113–121. [Google Scholar]
- Beranova, R.; Huth, R. Time variations of the effects of circulation variability modes on European temperature and precipitation in winter. Int. J. Climatol. 2008, 28, 139–158. [Google Scholar] [CrossRef]
- Bierkens, M.F.P.; van Beek, L.P.H. Seasonal Predictability of European Discharge: NAO and Hydrological Response Time. J. Hydrometeor. 2009, 10, 953–968. [Google Scholar] [CrossRef]
- López-Moreno, J.I.; Vicente-Serrano, S.M.; Morán-Tejeda, E.; Lorenzo-Lacruz, J.; Kenawy, A.; Beniston, M. Effects of the North Atlantic Oscillation (NAO) on combined temperature and precipitation winter modes in the Mediterranean mountains: Observed relationships and projections for the 21st century. Glob. Planet. Change 2011, 77, 62–76. [Google Scholar] [CrossRef]
- Rimbu, N.; Dima, M.; Lohman, G.; Stefan, S. Impacts of the North Atlantic Oscillation and the El Nino-Southern Oscillation on Danube river flow variability. Geoph. Res. Lett. 2004, 31, L23203. [Google Scholar] [CrossRef]
- Tomasino, M.; Valle, F.D. Natural climatic changes and solar cycles: An analysis of hydrological time series. Hydrol. Sci. J. 2000, 45, 477–489. [Google Scholar] [CrossRef]
- Pekárová, P.; Miklánek, P.; Pekár, J. Spatial and temporal runoff oscillation analysis of the main rivers of the world during the 19th–20th centuries. J. Hydrol. 2003, 274, 62–79. [Google Scholar] [CrossRef]
- Zanchettin, D.; Rubino, A.; Traverso, P.; Tomasino, M. Impact of variations in solar activity on hydrological decadal patterns in northern Italy. J. Geophys. Res. 2008, 113, D12102. [Google Scholar] [CrossRef]
- Dobrica, V.; Demetrescu, C. On the evolution of precipitation in Central and South-Eastern Europe and its relationship with Lower Danube discharge. AGU Fall Meet. Abstr. 2012, 1, 1030. [Google Scholar]
- Dobrica, V.; Demetrescu, C.; Mares, I.; Mares, C. Long-term evolution of the Lower Danube discharge and corresponding climate variations: Solar signature imprint. Theor. Appl. Climatol. 2018, 133, 985–996. [Google Scholar] [CrossRef]
- Neyestani, A.; Karami, K.; Gholami, S. Exploring the possible linkage between the precipitation and temperature over Iran and their association with the large-scale circulations: Cumulative spectral power and wavelet coherence approaches. Atmosph. Res. 2022, 274, 106187. [Google Scholar] [CrossRef]
- Zamrane, Z.; Mahé, G.; Laftouhi, N.-E. Wavelet Analysis of Rainfall and Runoff Multidecadal Time Series on Large River Basins in Western North Africa. Water 2021, 13, 3243. [Google Scholar] [CrossRef]
- Briciu, A.E.; Mihăilă, D. Wavelet analysis of some rivers in SE Europe and selected climate indices. Environ. Monit Assess. 2014, 186, 6263–6286. [Google Scholar] [CrossRef] [PubMed]
- Szolgayova, E.; Parajka, J.; Blöschl, G.; Bucher, C. Long term variability of the Danube River flow and its relation to precipitation and air temperature. J. Hydrol. 2014, 519, 871–880. [Google Scholar] [CrossRef]
- Lorenzo-Lacruz, J.; Morán-Tejeda, E.; Vicente-Serrano, S.M.; Hannaford, J.; García, C.; Peña-Angulo, D.; Murphy, C. Streamflow frequency changes across western Europe and interactions with North Atlantic atmospheric circulation patterns. Glob. Planet. Change 2022, 212, 19. [Google Scholar] [CrossRef]
- Elbeltagi, A.; Nagy, A.; Mohammed, S.; Pande, C.; Kumar, M.; Bhat, S.A.; Zsembeli, J.; Huzsvai, L.; Tamás, J.; Kovács, E.; et al. Combination of Limited Meteorological Data for Predicting Reference Crop Evapotranspiration Using Artificial Neural Network Method. Agronomy 2022, 12, 516. [Google Scholar] [CrossRef]
Station | CN | LONG | LAT | Height | AWC (mm) |
---|---|---|---|---|---|
Augsburg | GE | 10.56 | 48.26 | 463 | 100 |
Innsbruck | AT | 11.24 | 47.16 | 577 | 15 |
Regensburg | GE | 12.06 | 49.02 | 365 | 100 |
Sonnblick | AT | 12.57 | 47.03 | 3106 | 15 |
Salzburg | AT | 13.00 | 47.48 | 437 | 15 |
Kredarica | SI | 13.51 | 46.22 | 2514 | 50 |
Ljubljana | SI | 14.31 | 46.04 | 299 | 15 |
Graz | AT | 15.27 | 47.05 | 366 | 15 |
Zagreb | HR | 15.58 | 45.49 | 156 | 150 |
Wien | AT | 16.21 | 48.14 | 198 | 15 |
Sarajevo | BA | 18.23 | 43.51 | 577 | 50 |
Osijek | HR | 18.38 | 45.32 | 88 | 150 |
Novi-Sad | RS | 19.51 | 45.20 | 84 | 150 |
Beograd | RS | 20.28 | 44.48 | 132 | 150 |
Arad | RO | 21.21 | 46.08 | 117 | 150 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mares, I.; Mares, C.; Dobrica, V.; Demetrescu, C. Selection of Optimal Palmer Predictors for Increasing the Predictability of the Danube Discharge: New Findings Based on Information Theory and Partial Wavelet Coherence Analysis. Entropy 2022, 24, 1375. https://doi.org/10.3390/e24101375
Mares I, Mares C, Dobrica V, Demetrescu C. Selection of Optimal Palmer Predictors for Increasing the Predictability of the Danube Discharge: New Findings Based on Information Theory and Partial Wavelet Coherence Analysis. Entropy. 2022; 24(10):1375. https://doi.org/10.3390/e24101375
Chicago/Turabian StyleMares, Ileana, Constantin Mares, Venera Dobrica, and Crisan Demetrescu. 2022. "Selection of Optimal Palmer Predictors for Increasing the Predictability of the Danube Discharge: New Findings Based on Information Theory and Partial Wavelet Coherence Analysis" Entropy 24, no. 10: 1375. https://doi.org/10.3390/e24101375
APA StyleMares, I., Mares, C., Dobrica, V., & Demetrescu, C. (2022). Selection of Optimal Palmer Predictors for Increasing the Predictability of the Danube Discharge: New Findings Based on Information Theory and Partial Wavelet Coherence Analysis. Entropy, 24(10), 1375. https://doi.org/10.3390/e24101375