Contextuality, Complementarity, Signaling, and Bell Tests
Abstract
:1. Introduction
2. Preliminary Discussion
2.1. Forgotten Contribution of Bohr to Contextuality Theory
2.2. What Does Contextuality Mean?
2.3. Jump from Contextuality to Bell Inequalities
2.4. Signaling and Other Anomalies in Data
ny Bell test should be combined with the test of experimental statistical data on signaling.
2.5. Växjö Model for Contextual Probability
2.6. Summary of the Preliminary Discussion
- The theoretical definition of contextuality as JMC suffers from appealing to conterfactuals.
- Identification of contextuality with the violation of the Bell inequalities is not justified, either physically or mathematically (in the last case, such an approach does not match the mathematical tradition).
- The Bell tests should be accompanied with tests of signaling.
- “Unuploaded to internet experiments have no results” [138].
- Probabilistically, contextuality–complementarity is described by contextual probability (as by the Växjö model).
3. Thinking over Bohr’s Ideas
3.1. Bohr Contextuality
If all observables were compatible, then they might be jointly measured in a single experimental context, and multicontextual consideration would be meaningless.
Why is dependence on experimental context (system–apparatus interaction) irreducible?
3.2. Bohr’s Principle of Contextuality–Complementarity
“This crucial point … implies the impossibility of any sharp separation between the behaviour of atomic objects and the interaction with the measuring instruments which serve to define the conditions under which the phenomena appear. In fact, the individuality of the typical quantum effects finds its proper expression in the circumstance that any attempt of subdividing the phenomena will demand a change in the experimental arrangement introducing new possibilities of interaction between objects and measuring instruments which in principle cannot be controlled. Consequently, evidence obtained under different experimental conditions cannot be comprehended within a single picture, but must be regarded as complementary in the sense that only the totality of the phenomena exhausts the possible information about the objects”.
- CONT1: An outcome of any observable is composed of the contributions of a system and a measurement device. (Thus, the values of an observable a are not the objective properties of the systems. They are created in the process of the complex interaction between the systems prepared for measurements and the apparatus used for measurement of )
- CONT2: The whole experimental context has to be taken into account.
- INCOMP1: There is no reason to expect that all experimental contexts can be combined with each other and all observables can be measured jointly; thus, some observables can be incompatible.
- INCOMP2: The Heisenberg uncertainty principle implies that the position and momentum observables are incompatible.
- Contextuality Principle.
- Complementarity Principle.
How can one prove that the concrete observables a and b cannot be jointly measured (i.e., that they are incompatible)?
4. Probabilistic Viewpoint on Contextuality–Complementarity
What are consequences of JPD’s existence?
4.1. Existence vs. Non-Existence of the Joint Probability Distribution
In CP, the probability distributions of all observables (represented by random variables) can be consistently unified on the basis of
5. Clauser, Horne, Shimony and Holt (CHSH) Inequality
5.1. Derivation of CHSH Inequality within Kolmogorov Theory
5.2. Role of No-Signaling in Fine’s Theorem
5.3. Violation of CHSH Inequality for Växjö Model
6. CHSH Inequality for Quantum Observables: Representation via Commutators
Conjunction of incompatibilities of the A-observables and the B-observables constrained by Equation (22) is sufficient for violation of the quantum CHSH inequality (for some quantum state).
6.1. Compound Systems: Incompatibility as a Necessary and Sufficient Condition of Violation of a Quantum CHSH Inequality
6.2. Tsirelson Bound
7. Signaling in Physical and Psychological Experiments
8. Contextuality by Default
8.1. Contextual Indexing
8.2. Coupling Method
8.3. The Problem of Identity, Its Resolution and Introduction of a Measure of Contextuality
“…contextuality means that random variables recorded under mutually incompatible conditions cannot be join together into a single system of jointly distributed random variables, provided one assumes that their identity across different conditions changes as little as possibly allowed by direct cross-influences (equivalently, by observed deviations from marginal selectivity)”.
8.4. Bell–Dzhafarov–Kujala Inequality
9. Contextuality by Default vs. Växjö Model
10. No-Signaling in Quantum Theory
Nonlocality of observables cannot generate signaling.
Should this experimental situation be considered as a contradiction between the quantum-like model for decision making and experiments?
11. Nonconetxtual Inequalities
12. Concluding Remarks
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Local Realism
- (a)
- realism,
- (b)
- locality.
- Local realism = realism and locality
- Not(Local realism) = Not(realism and locality) = nonrealism or nonlocality,
Appendix B. Kolmogorov Axiomatization of Probability
References
- Bell, J. On the Einstein–Podolsky-Rosen paradox. Physics 1964, 1, 195–200. [Google Scholar] [CrossRef]
- Bell, J.S. On the problem of hidden variables in quantum theory. Rev. Mod. Phys. 1966, 38, 450. [Google Scholar] [CrossRef]
- Bell, J. Speakable and Unspeakable in Quantum Mechanics; Cambridge University Press: Cambridge, UK, 1987. [Google Scholar]
- Bohr, N. The Philosophical Writings of Niels Bohr; Ox Bow Press: Woodbridge, UK, 1987. [Google Scholar]
- Khrennikov, A. After Bell. Fortschritte der Physik 2017, 65, 1600014. [Google Scholar] [CrossRef]
- Khrennikov, A. Get rid of nonlocality from quantum physics. Entropy 2019, 21, 806. [Google Scholar] [CrossRef]
- Khrennikov, A. Two faced Janus of quantum nonlocality. Entropy 2020, 22, 303. [Google Scholar] [CrossRef]
- Khrennikov, A. Quantum postulate vs. quantum nonlocality: On the role of the Planck constant in Bell’s argument. Found. Phys. 2021, 51, 1–12. [Google Scholar] [CrossRef]
- Khrennikov, A. Is the Devil in h? Entropy 2021, 23, 632. [Google Scholar] [CrossRef]
- Davies, E.B.; Lewis, J.T. An operational approach to quantum probability. Commun. Math. Phys. 1970, 17, 239–260. [Google Scholar] [CrossRef]
- Davies, E.B. Quantum Theory of Open Systems; Academic Press: London, UK, 1976. [Google Scholar]
- Ozawa, M. Quantum measuring processes for continuous observables. J. Math. Phys. 1984, 25, 79–87. [Google Scholar] [CrossRef]
- Ozawa, M. Realization of measurement and the standard quantum limit. In Squeezed and Nonclassical Light; Tombesi, P., Pike, R., Eds.; NATO ASI 190; Plenum: New York, NY, USA, 1989; pp. 263–286. [Google Scholar]
- Ozawa, M. An operational approach to quantum state reduction. Ann. Phys. 1997, 259, 121–137. [Google Scholar] [CrossRef] [Green Version]
- Khrennikov, A. Formalization of Bohr’s contextuality within the theory of open quantum systems. J. Russ. Laser Res. 2021, 42, 371–377. [Google Scholar] [CrossRef]
- Khrennikov, A. Can there be given any meaning to contextuality without incompatibility? Int. J. Theor. Phys. 2021, 60, 106–114. [Google Scholar] [CrossRef]
- Jaeger, G. Quantum contextuality in the Copenhagen approach. Philos. Trans. R. Soc. A 2019, 377, 20190025. [Google Scholar] [CrossRef]
- Jaeger, G. Quantum contextuality and indeterminacy. Entropy 2020, 22, 867. [Google Scholar] [CrossRef] [PubMed]
- Plotnitsky, A. Reading Bohr: Physics and Philosophy (Fundamental Theories of Physics Book 152); Springer: Berlin, Germany; New York, NY, USA, 2006. [Google Scholar]
- Plotnitsky, A. Niels Bohr and Complementarity: An Introduction; Springer: Berlin, Germany; New York, NY, USA, 2012. [Google Scholar]
- Jaeger, G. Quantum Information: An Overview; Springer: Berlin, Germany; New York, NY, USA, 2007. [Google Scholar]
- Jaeger, G. Entanglement, Information, and the Interpretation of Quantum Mechanics (The Frontiers Collection); Springer: Berlin, Germany; New York, NY, USA, 2009. [Google Scholar]
- Beltrametti, E.G.; Cassinelli, C. The logic of quantum mechanics. SIAM 1983, 25, 429–431. [Google Scholar] [CrossRef]
- Svozil, K. Varieties of contextuality based on probability and structural nonembeddability. Theor. Comp. Sci. 2022, 924, 117–128. [Google Scholar] [CrossRef]
- Khrennikov, A.Y. Interpretations of Probability; VSP Int. Sc. Publishers: Utrecht, The Netherlands; Tokyo, Japan, 1999. [Google Scholar]
- Khrennikov, A.Y. Linear representations of probabilistic transformations induced by context transitions. J. Phys. A 2001, 34, 9965–9981. [Google Scholar] [CrossRef]
- Khrennikov, A.Y. Origin of quantum probabilities. In Foundations of Probability and Physics; Khrennikov, A., Ed.; Växjö-2000: Växjö, Sweden; WSP: Singapore, 2001; pp. 180–200. [Google Scholar]
- Khrennikov, A. Contextualist viewpoint to Greenberger-Horne-Zeilinger paradox. Phys. Lett. 2001, 278, 307–314. [Google Scholar] [CrossRef]
- Khrennikov, A. Contextual viewpoint to quantum stochastics. J. Math. Phys. 2003, 44, 2471–2478. [Google Scholar] [CrossRef]
- Khrennikov, A. Representation of the Kolmogorov model having all distinguishing features of quantum probabilistic model. Phys. Lett. A 2003, 316, 279–296. [Google Scholar] [CrossRef]
- Khrennikov, A. The principle of supplementarity: A contextual probabilistic viewpoint to complementarity, the interference of probabilities, and the incompatibility of variables in quantum mechanics. Found. Phys. 2005, 35, 1655–1693. [Google Scholar] [CrossRef]
- Khrennikov, A.Y. A formula of total probability with the interference term and the Hilbert space representation of the contextual Kolmogorovian model. Theor. Prob. Appl. 2007, 51, 427–441. [Google Scholar] [CrossRef]
- Khrennikov, A. Violation of Bell’s inequality and non-Kolmogorovness. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2009; Volume 1101, pp. 86–99. [Google Scholar]
- Khrennikov, A. Contextual Approach to Quantum Formalism; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2009. [Google Scholar]
- Khrennikov, A. Växjö interpretation of wave function: 2012. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2012; Volume 1508, pp. 244–252. [Google Scholar]
- Khrennikov, A. Algorithm for Quantum-like Representation: Transformation of Probabilistic Data into Vectors on Bloch’s Sphere. Open Syst. Inf. Dyn. 2008, 15, 223–230. [Google Scholar] [CrossRef]
- Nyman, P.; Basieva, I. Quantum-like representation algorithm for trichotomous observables. Int. J. Theor. Phys. 2011, 50, 3864–3881. [Google Scholar] [CrossRef]
- Nyman, P.; Basieva, I. Representation of probabilistic data by complex probability amplitudes; the case of triple—valued observables. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2011; Volume 1327, pp. 439–449. [Google Scholar]
- Clauser, J.F.; Horne, M.A.; Shimony, A.; Holt, R.A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 1969, 23, 880–884. [Google Scholar] [CrossRef]
- Fine, A. Joint distributions, quantum correlations, and commuting observables. J. Math. Phys. 1982, 23, 1306. [Google Scholar] [CrossRef]
- Araujo, M.; Quintino, M.T.; Budroni, C.; Cunha, M.T.; Cabello, A. All noncontextuality inequalities for then-cycle scenario. Phys. Rev. A 2013, 88, 022118. [Google Scholar] [CrossRef]
- Einstein, A.; Podolsky, B.; Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 1935, 47, 777–780. [Google Scholar] [CrossRef]
- Gudder, S.P. Dispersion-free states and the exclusion of hidden variables. Proc. Am. Math. Soc. 1968, 19, 319–324. [Google Scholar] [CrossRef]
- Gudder, S.P. Hidden variables in quantum mechanics reconsidered. Rev. Mod. Phys. 1968, 40, 229–231. [Google Scholar] [CrossRef]
- Gudder, S.P. On hidden-variable theories. J. Math. Phys. 1970, 11, 431. [Google Scholar] [CrossRef]
- Shimony, A. Hidden-variables models of quantum mechanics (Noncontextual and contextual). In Compendium of Quantum Physics; Springer: Berlin/Heidelberg, Germary, 2009; pp. 287–291. [Google Scholar]
- Shimony, A. Experimental test of local hidden variable theories. In Foundations of Quantum Mechanics; Academic: New York, NY, USA, 1971. [Google Scholar]
- De la Peńa, L.; Cetto, A.M.; Brody, T.A. On hidden variable theories and Bell’s inequality. Lett. Nuovo Cimento 1972, 5, 177. [Google Scholar] [CrossRef]
- Kupczynski, M. Bertrand’s paradox and Bell’s inequalities. Phys. Lett. A 1987, 121, 205–207. [Google Scholar] [CrossRef]
- Ballentine, L.E.; Jarrett, J.P. Bell’s theorem: Does quantum mechanics contradict relativity? Am. J. Phys. 1987, 55, 696–701. [Google Scholar] [CrossRef]
- Khrennikov, A. Non-Kolmogorov probability models and modified Bell’s inequality. J. Math. Phys. 2000, 41, 1768–1777. [Google Scholar] [CrossRef]
- De Muynck, W. Foundations of Quantum Mechanics, an Empiricist Approach; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Nieuwenhuizen, T.M. Is the contextuality loophole fatal for the derivation of Bell inequalities? Found. Phys. 2011, 41, 580–591. [Google Scholar] [CrossRef]
- De Raedt, H.; Hess, K.; Michielsen, K. Extended Boole-Bell inequalities applicable to quantum theory. J. Comp. Theor. Nanosc. 2011, 8, 10119. [Google Scholar] [CrossRef]
- Khrennikov, A. Bell argument: Locality or realism? Time to make the choice. AIP Conf. Proc. 2012, 1424, 160–175. Available online: https://arxiv.org/pdf/1108.0001v2.pdf (accessed on 24 September 2022).
- Kupczynski, M. Entanglement and quantum nonlocality demystified. In Proceedings of the Quantum Theory: Reconsideration of Foundations 6, Växjö, Sweden, 11–14 June 2012; Volume 1508, pp. 253–264. [Google Scholar]
- Khrennikov, A. Bell-Boole inequality: Nonlocality or probabilistic incompatibility of random variables? Entropy 2008, 10, 19–32. [Google Scholar] [CrossRef]
- Kupczynski, M. Bell Inequalities, Experimental Protocols and Contextuality. Found. Phys. 2015, 45, 73. [Google Scholar] [CrossRef]
- Kupczynski, M. Closing the door on quantum nonlocality. Entropy 2018, 20, 877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kupczynski, M. Can we close the Bohr–Einstein quantum debate? Philos. Trans. R. Soc. A 2017, 375, 20160392. [Google Scholar] [CrossRef] [PubMed]
- Boughn, S. Making sense of Bell’s theorem and quantum nonlocality. Found. Phys. 2017, 47, 640–657. [Google Scholar] [CrossRef]
- Jung, K. Violation of Bell’s inequality: Must the Einstein locality really be abandoned? J. Phys. 2017, 880, 012065. [Google Scholar] [CrossRef]
- Griffiths, R.B. Quantum nonlocality: Myth and reality. arXiv 2019, arXiv:1901.07050. [Google Scholar]
- Cetto, A.M.; Valdes-Hernandez, A.; de la Pena, L. On the spin projection operator and the probabilistic meaning of the bipartite correlation function. Found. Phys. 2020, 50, 27–39. [Google Scholar] [CrossRef]
- Boughn, S. There is no spooky action at a distance in quantum mechanics. Entropy 2022, 24, 560. [Google Scholar] [CrossRef]
- Adenier, G.; Khrennikov, A. Anomalies in EPR-Bell Experiments. In AIP Conference Proceedings; American Institute of Physics: New York, NY, USA, 2006; Volume 810, pp. 283–293. [Google Scholar]
- Adenier, G.; Khrennikov, A. Is the fair sampling assumption supported by EPR experiments? J. Phys. B 2007, 40, 131–141. [Google Scholar] [CrossRef]
- Adenier, G. Quantum entanglement, fair sampling, and reality: Is the moon there when nobody looks? Am. J. Phys. 2008, 76, 147–152. [Google Scholar] [CrossRef]
- Adenier, G. A fair sampling test for EPR-Bell experiments. J. Russ. Laser Res. 2008, 29.5, 409–417. [Google Scholar] [CrossRef]
- Adenier, G. Violation of Bell inequalities as a violation of fair sampling in threshold detectors. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2009; Volume 1101, pp. 8–18. [Google Scholar]
- Adenier, G.; Khrennikov, A. Test of the no-signaling principle in the Hensen loophole-free CHSH experiment. Fortschritte der Physik 2016, 65, 1600096. [Google Scholar] [CrossRef]
- Aspect, A. Three Experimental Tests of Bell Inequalities by the Measurement of Polarization Correlations Between Photons; Orsay Press: Paris, France, 1983. [Google Scholar]
- Weihs, G. Ein Experiment zum Test der Bellschen Ungleichung unter Einsteinscher Lokalität. Ph.D. Thesis, University of Vienna, Vienna, Austria, 1999. [Google Scholar]
- Giustina, M.; Mech, A.; Ramelow, S.; Wittmann, B.; Kofler, J.; Beyer, J.; Lita, A.; Calkins, B.; Gerrits, T.; Nam, S.W.; et al. Bell violation using entangled photons without the fair-sampling assumption. Nature 2013, 497, 227–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hensen, B.; Bernien, H.; Dreau, A.E.; Reiserer, A.; Kalb, N.; Blok, M.S.; Ruitenberg, J.; Vermeulen, R.F.L.; Schouten, R.N.; Abellan, C.; et al. Experimental loophole-free violation of a Bell inequality using entangled electron spins separated by 1.3 km. Nature 2015, 526, 682–686. [Google Scholar] [CrossRef] [PubMed]
- Khrennikov, A.; Ramelow, S.; Ursin, R.; Wittmann, B.; Kofler, J.; Basieva, I. On the equivalence of the Clauser–Horne and Eberhard inequality based tests. Phys. Scr. 2014, 2014, 014019. [Google Scholar] [CrossRef]
- Weihs, G. A test of Bell’s inequality with spacelike separation. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2007; Volume 889, pp. 250–260. [Google Scholar]
- Dzhafarov, E.N.; Kujala, J.V. Selectivity in probabilistic causality: Where psychology runs into quantum physics. J. Math. Psych. 2012, 56, 54–63. [Google Scholar] [CrossRef]
- Dzhafarov, E.N.; Kujala, J.V. Embedding quantum into classical: Contextualiza- tion vs. conditionalization. PLoS ONE 2014, 9, e92818. [Google Scholar] [CrossRef]
- Dzhafarov, E.N.; Kujala, J.V.; Larsson, J.-A. Contextuality in three types of quantum-mechanical systems. Found. Phys. 2015, 7, 762–782. [Google Scholar] [CrossRef]
- Dzhafarov, E.N.; Kujala, J.V. Probabilistic contextuality in EPR/Bohm-type systems with signaling allowed. In Contextuality from Quantum Physics to Psychology; Dzhafarov, E., Jordan, S., Zhang, R., Cervantes, V., Eds.; World Scientific Publishing: Hackensack, NJ, USA, 2015; pp. 287–308. [Google Scholar]
- Kujala, J.V.; Dzhafarov, E.N. Proof of a conjecture on contextuality in cyclic systems with binary variables. Found. Phys. 2016, 46, 282. [Google Scholar] [CrossRef]
- Dzhafarov, E.N.; Kujala, J.V. Context-content systems of random variables: The contextuality-by default theory. J. Math. Psych. 2016, 74, 11–33. [Google Scholar] [CrossRef]
- Dzhafarov, E.N.; Kon, M. On universality of classical probability with contextually labeled random variables. J. Math. Psychol. 2018, 85, 17–24. [Google Scholar] [CrossRef]
- Dzhafarov, E.N.; Kujala, J.V.; Cervantes, V.H. Contextuality and noncontextuality measures and generalized Bell inequalities for cyclic systems. Phys. Rev. A 2020, 101, 042119, Erratum Note 1 in Phys. Rev. A 2020, 101, 069902; Erratum Note 2 in Phys. Rev. A 2021, 103, 059901. [Google Scholar] [CrossRef]
- Lindvall, T. Lectures on the Coupling Method; Wiley: New York, NY, USA, 1992; ISBN 0–471-54025-0. [Google Scholar]
- Thorisson, H. Coupling, Stationarity, and Regeneration; Springer: New York, NY, USA, 2000. [Google Scholar]
- Avis, D.; Fischer, P.; Hilbert, A.; Khrennikov, A. Single, Complete, Probability Spaces Consistent With EPR-Bohm-Bell Experimental Data. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2009; Volume 1101, pp. 294–301. [Google Scholar]
- Khrennikov, A. Quantum probabilities and violation of CHSH-inequality from classical random signals and threshold type detection scheme. Progr. Theor. Phys. 2012, 128, 31–58. [Google Scholar] [CrossRef] [Green Version]
- Khrennikov, A. CHSH inequality: Quantum probabilities as classical conditional probabilities. Found. Phys. 2015, 45, 711–725. [Google Scholar] [CrossRef]
- Khrennikov, A.; Alodjants, A. Classical (local and contextual) probability model for Bohm–Bell type experiments: No-Signaling as independence of random variables. Entropy 2019, 21, 157. [Google Scholar] [CrossRef] [PubMed]
- Koopman, B. Quantum theory and the foundations of probability. In Applied Probability; MacColl, L.A., Ed.; McGraw-Hill: New York, NY, USA, 1955; pp. 97–102. [Google Scholar]
- Ballentine, L. Probability in Quantum Mechanics. Annals of New York Academy of Science, Techniques and Ideas in Quantum Measurement Theory. N. Y. Acad. Sci. 1986, 480, 382–392. [Google Scholar] [CrossRef]
- Ballentine, L.E. Probability theory in quantum mechanics. Am. J. Phys. 1986, 54, 883–889. [Google Scholar] [CrossRef]
- Ballentine, L.E. The statistical interpretation of quantum mechanics. Rev. Mod. Phys. 1970, 42, 358–381. [Google Scholar] [CrossRef]
- Ballentine, L.E. Quantum Mechanics: A Modern Development; WSP: Singapore, 2014. [Google Scholar]
- Man’ko, M.A.; Man’ko, V.I. New entropic inequalities and hidden correlations in quantum suprematism pictue of qudit states. Entropy 2018, 20, 692. [Google Scholar] [CrossRef]
- Mancini, S.; Man’ko, V.I.; Tombesi, P. Symplectic tomography as classical approach to quantum systems. Phys. Lett. A 1996, 213, 1–6. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Man’ko, V.I. Positive distribution description for spin states. Phys. Lett. A 1997, 229, 335–339. [Google Scholar] [CrossRef]
- Man’ko, V.I.; Man’ko, O.V. Spin state tomography. J. Exp. Theor. Phys. 1997, 85, 430–434. [Google Scholar] [CrossRef]
- Khrennikov, A. Classical versus quantum probability: Comments on the paper “On universality of classical probability with contextually labeled random variables” by E. Dzhafarov and M. Kon. J. Math. Psych. 2019, 89, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Khrennikov, A. Information Dynamics in Cognitive, Psychological, Social, and Anomalous Phenomena; Ser.: Fundamental Theories of Physics; Kluwer: Dordreht, The Netherlands, 2004. [Google Scholar]
- Khrennikov, A. Ubiquitous Quantum Structure: From Psychology to Finances; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2010. [Google Scholar]
- Busemeyer, J.; Bruza, P. Quantum Models of Cognition and Decision; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Haven, E.; Khrennikov, A. Quantum Social Science; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Asano, M.; Khrennikov, A.; Ohya, M.; Tanaka, Y.; Yamato, I. Quantum Adaptivity in Biology: From Genetics to Cognition; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2015. [Google Scholar]
- Haven, E.; Khrennikov, A.; Robinson, T.R. Quantum Methods in Social Science: A First Course; WSP: Singapore, 2017. [Google Scholar]
- Bagarello, F. Quantum Concepts in the Social, Ecological and Biological Sciences; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Conte, E.; Khrennikov, A.; Todarello, O.; Federici, A.; Mendolicchio, L.; Zbilut, J.P. A preliminary experimental verification on the possibility of Bell inequality violation in mental states. NeuroQuantology 2008, 6, 214–221. [Google Scholar] [CrossRef]
- Aerts, D.; Gabora, L.; Sozzo, S. Concepts and their dynamics: A quantum-theoretic modeling of human thought. Top. Cogn. Sci. 2013, 5, 737–772. [Google Scholar] [CrossRef]
- Asano, M.; Hashimoto, T.; Khrennikov, A.; Ohya, M.; Tanaka, Y. Violation of contextual generalization of the Leggett–Garg inequality for recognition of ambiguous figures. Phys. Scr. 2014, 2014, 014006. [Google Scholar] [CrossRef]
- Bruza, P.D.; Kitto, K.; Ramm, B.J.; Sitbon, L. A probabilistic framework for analysing the compositionality of conceptual combinations. J. Math. Psychol. 2015, 67, 26–38. [Google Scholar] [CrossRef]
- Dzhafarov, E.N.; Zhang, R.; Kujala, J.V. Is there contextuality in behavioral and social systems? Philos. Trans. R. Soc. A 2015, 374, 20150099. [Google Scholar] [CrossRef]
- Dzhafarov, E.N.; Kujala, J.V.; Cervantes, V.H.; Zhang, R.; Jones, M. On contextuality in behavioral data. Philos. Trans. R. Soc. A 2016, 374, 20150234. [Google Scholar] [CrossRef]
- Cervantes, V.H.; Dzhafarov, E.N. Snow queen is evil and beautiful: Experimental evidence for probabilistic contextuality in human choices. Decision 2018, 5, 193. [Google Scholar] [CrossRef]
- Basieva, I.; Cervantes, V.H.; Dzhafarov, E.N.; Khrennikov, A. True contextuality beats direct influences in human decision making. J. Exp. Psych. 2019, 148, 1925. [Google Scholar] [CrossRef]
- Shalm, L.K.; Meyer-Scott, E.; Christensen, B.G.; Bierhorst, P.; Wayne, M.A.; Stevens, M.J.; Gerrits, T.; Glancy, S.; Hamel, D.R.; Allman, M.S.; et al. A strong loophole-free test of local realism. Phys. Rev. Lett. 2015, 115, 250402. [Google Scholar] [CrossRef] [PubMed]
- Weihs, G.; Jennewein, T.; Simon, C.; Weinfurther, H.; Zeilinger, A. Violation of Bell’s inequality under strict Einstein locality conditions. Phys. Rev. Lett. 1998, 81, 5039–5043. [Google Scholar] [CrossRef] [Green Version]
- Giustina, M.; Versteegh, M.A.M.; Wengerowsky, S.; Handsteiner, J.; Hochrainer, A.; Phelan, K.; Steinlechner, F.; Kofler, J.; Larsson, J.-A.; Abellan, C.; et al. A significant-loophole-free test of Bell’s theorem with entangled photons. Phys. Rev. Lett. 2015, 115, 250401. [Google Scholar] [CrossRef] [PubMed]
- Khrennikov, A.; Basieva, I. Towards experiments to test violation of the original Bell inequality. Entropy 2018, 20, 280. [Google Scholar] [CrossRef]
- Khrennikov, A.Y.; Loubenets, E.R. Evaluating the maximal violation of the original Bell inequality by two-qudit states exhibiting perfect correlations/anticorrelations. Entropy 2018, 20, 829. [Google Scholar] [CrossRef]
- Loubenets, E.R.; Khrennikov, A.Y. Quantum analog of the original Bell inequality for two-qudit states with perfect correlations/anticorrelations. J. Phys. A 2019, 52, 435304. [Google Scholar] [CrossRef]
- De Broglie, L. The Current Interpretation of Wave Mechanics: A Critical Study; Elsevier: Amsterdam, The Netherlands, 1964. [Google Scholar]
- D’Agostino, S. Continuity and completeness in physical theory: Schrödinger’s return to the wave interpretation of quantum mechanics in the 1950s. In E. Schrödinger: Philosophy and the Birth of Quantum Mechanics; Bitbol, M., Darrigol, O., Eds.; Editions Frontieres: Gif-sur-Yvette, France, 1992; pp. 339–360. [Google Scholar]
- Hertz, H. The Principles of Mechanics: Presented in a New Form; Macmillan: London, UK, 1899. [Google Scholar]
- Boltzmann, L. Uber die Frage nach der objektiven Existenz der Vorgnge in der unbelebten Natur; Barth, J.A., Ed.; Populre Schriften: Leipzig, Germany, 1905. [Google Scholar]
- Boltzmann, L. On the development of the methods of theoretical physics in recent times. In Theoretical Physics and Philosophical Problems; McGuinness, B., Ed.; Vienna Circle Collection; Springer: Dordrecht, The Netherlands, 1974; Volume 5. [Google Scholar]
- Khrennikov, A. Quantum epistemology from subquantum ontology: Quantum mechanics from theory of classical random fields. Ann. Phys. 2017, 377, 147–163. [Google Scholar] [CrossRef]
- Khrennikov, A. Hertz’s viewpoint on quantum theory. Act. Nerv. Super. 2019, 61, 24. [Google Scholar] [CrossRef]
- Khrennikov, A. Beyond Quantum; Pan Stanford Publ.: Singapore, 2014. [Google Scholar]
- Cabello, A.; Filipp, S.; Rauch, H.; Hasegawa, Y. Proposed experiment for testing quantum contextuality with neutrons. Phys. Rev. Lett. 2008, 100, 130404. [Google Scholar] [CrossRef] [PubMed]
- Bartosik, H.; Klepp, J.; Schmitzer, C.; Sponar, S.; Cabello, A.; Rauch, H.; Hasegawa, Y. Experimental test of quantum contextuality in neutron interferometry. Phys. Rev. Lett. 2009, 103, 040403. [Google Scholar] [CrossRef]
- Khrennikov, A. Against identification of contextuality with violation of the Bell inequalities: Lessons from theory of randomness. J. Russ. Laser Res. 2022, 43, 48–59. [Google Scholar] [CrossRef]
- Khrennikov, A. Probability and Randomness. Quantum versus Classical; WSP: Singapore, 2016. [Google Scholar]
- Calude, C.S.; Dinneen, M.J.; Dumitrescu, M.; Svozil, K. Experimental evidence of quantum randomness incomputability. Phys. Rev. A 2010, 82, 022102. [Google Scholar] [CrossRef] [Green Version]
- Solis, A.; Martínez, A.M.A.; Alarcón, R.R.; Ramírez, H.C.; U’Ren, A.B.; Hirsch, J.G. How random are random numbers generated using photons? Phys. Scr. 2015, 90, 074034. [Google Scholar] [CrossRef]
- Calude, C. Algorithmic Randomness, Quantum Physics, and Incompleteness; Lecture Notes in Computer Science 3354; Springer: Berlin/Heidelberg, Grtmany, 2005; pp. 1–17. [Google Scholar]
- Khrennikov, A. Unuploaded experiments have no result. arXiv 2015, arXiv:1505.04293. [Google Scholar]
- Holik, F.; Massri, C.; Plastino, A.; Saenz, M. Generalized Probabilities in Statistical Theories. Quantum Rep. 2021, 3, 389–416. [Google Scholar] [CrossRef]
- Plotnitsky, A. “The Unavoidable Interaction Between the Object and the Measuring Instruments”: Reality, Probability, and Nonlocality in Quantum Physics. Found Phys 2020, 50, 1824–1858. [Google Scholar] [CrossRef]
- Foster, G.T.; Orozco, L.A.; Castro-Beltran, H.M.; Carmichael, H.J. Quantum state reduction and conditional time evolution of wave-particle correlations in cavity QED. Phys. Rev. Lett. 2000, 85, 3149. [Google Scholar] [CrossRef]
- Khrennikov, A.; Kozyrev, S.V. Noncommutative probability in classical disordered systems. Physica A 2003, 326, 456–463. [Google Scholar] [CrossRef]
- Khrennikov, A.; Kozyrev, S. Contextual quantization and the principle of complementarity of probabilities. Open Syst. Inf. Dyn. 2005, 12, 303–318. [Google Scholar] [CrossRef]
- Allahverdyan, A.E.; Khrennikov, A.; Nieuwenhuizen, T.M. Brownian entanglement. Phys. Rev. A 2005, 72, 032102. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. Foundations of the Theory of Probability; Chelsea Publishing Company: New York, NY, USA, 1956. [Google Scholar]
- Boole, G. On the theory of probabilities. Philos. Trans. R. Soc. Lond. 1862, 152, 225–242. [Google Scholar]
- Boole, G. An Investigation of the Laws of Thought; Dover: New York, NY, USA, 1958. [Google Scholar]
- Landau, L.J. Experimental tests of general quantum theories. Lett. Math. Phys. 1987, 14, 33–40. [Google Scholar] [CrossRef]
- Landau, L.J. On the violation of Bell’s inequality in quantum theory. Phys. Lett. A 1987, 120, 54–56. [Google Scholar] [CrossRef]
- Khrennikov, A. Bell’s inequality for conditional probabilities as a test for quantum-like behaviour of mind. arXiv 2004, arXiv:quant-ph/0402169. [Google Scholar]
- Svozil, K. On counterfactuals and contextuality. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2005; Volume 750, pp. 351–360. [Google Scholar]
- Svozil, K. How much contextuality? Nat. Comput. 2012, 11, 261–265. [Google Scholar] [CrossRef] [Green Version]
- Svozil, K. Roots and (re) sources of value (in) definiteness versus contextuality. In Quantum, Probability, Logic; Springer: Cham, Switzerland, 2020; pp. 521–544. [Google Scholar]
- Svozil, K. “Haunted” quantum contextuality. arXiv 1999, arXiv:quant-ph/9907015. [Google Scholar]
- Svozil, K. Proposed direct test of a certain type of noncontextuality in quantum mechanics. Phys. Rev. A 2009, 80, 040102. [Google Scholar] [CrossRef]
- Griffiths, R.B. Quantum measurements are noncontextual. arXiv 2013, arXiv:1302.5052. [Google Scholar]
- Griffiths, R.B. What quantum measurements measure. Phys. Rev. 2017, 96, 032110. [Google Scholar] [CrossRef]
- Griffiths, R.B. Quantum measurements and contextuality. Philos. Trans. R. Soc. A 2019, 377, 20190033. [Google Scholar] [CrossRef]
- Grangier, P. Contextual objectivity and the quantum formalism. Int. J. Quantum Inf. 2005, 3, 17–22. [Google Scholar] [CrossRef]
- Grangier, P. Contextual inferences, nonlocality, and the incompleteness of quantum mechanics. Entropy 2021, 23, 1660. [Google Scholar] [CrossRef] [PubMed]
- Khrennikov, A.; Volovich, I. Local Realism, Contextualism and Loopholes in Bells Experiments. arXiv 2002, arXiv:quant-ph/0212127. [Google Scholar]
- Khrennikov, A.; Volovich, I. Einstein, Podolsky and Rosen versus Bohm and Bell. arXiv 2002, arXiv:quant-ph/0211078. [Google Scholar]
- Loubenets, E.R. “Local realism”, Bell’s theorem and quantum “locally realistic” inequalities. Found. Phys. 2005, 35, 2051–2072. [Google Scholar] [CrossRef]
- Loubenets, E.R. On the probabilistic description of a multipartite correlation scenario with arbitrary numbers of settings and outcomes per site. J. Phys. A 2008, 41, 445303. [Google Scholar] [CrossRef]
- Loubenets, E.R. Local quasi hidden variable modelling and violations of Bell-type inequalities by a multipartite quantum state. J. Math. Phys. 2012, 53, 022201. [Google Scholar] [CrossRef]
- Brunner, N.; Cavalcanti, D.; Pironio, S.; Scarani, V.; Wehner, S. Bell nonlocality. Rev. Mod. Phys. 2014, 86, 419, Erratum in Rev. Mod. Phys. 2014, 86, 839. [Google Scholar] [CrossRef]
- Loubenets, E.R. Bell’s nonlocality in a general nonsignaling case: Quantitatively and conceptually. Found. Phys. 2017, 47, 1100–1114. [Google Scholar] [CrossRef] [Green Version]
- Khrennikov, A.; Nilsson, B.; Nordebo, S.; Volovich, I. On the quantization of the electromagnetic field of a layered dielectric waveguide. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2012; Volume 1508, pp. 285–299. [Google Scholar]
- Khrennikov, A.; Nilsson, B.; Nordebo, S.; Volovich, I. Photon flux and distance from the source: Consequences for quantum communication. Found. Phys. 2014, 44, 389–405. [Google Scholar] [CrossRef]
- Bohr, N. The quantum postulate and the recent development of atomic theory. Suppl. Nat. 1928, 14, 580–590. [Google Scholar]
- Bohr, N. Wirkungsquantum und Naturbeschreibung. Naturwissenschaft 1929, 17, 60–66. [Google Scholar] [CrossRef]
- Bohr, N. The quantum of action and the description of nature. In Foundations of Quantum Physics I (1926–1932), v. 6; Kalckar, J., Ed.; Niels Bohr Collected Works; Elsevier B.V.: Amsterdam, The Netherlands, 1985; pp. 201–217. [Google Scholar]
- Margenau, H. Reality in quantum mechanics. Philos. Sci. 1949, 16, 287–302. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khrennikov, A. Contextuality, Complementarity, Signaling, and Bell Tests. Entropy 2022, 24, 1380. https://doi.org/10.3390/e24101380
Khrennikov A. Contextuality, Complementarity, Signaling, and Bell Tests. Entropy. 2022; 24(10):1380. https://doi.org/10.3390/e24101380
Chicago/Turabian StyleKhrennikov, Andrei. 2022. "Contextuality, Complementarity, Signaling, and Bell Tests" Entropy 24, no. 10: 1380. https://doi.org/10.3390/e24101380
APA StyleKhrennikov, A. (2022). Contextuality, Complementarity, Signaling, and Bell Tests. Entropy, 24(10), 1380. https://doi.org/10.3390/e24101380