Maximum Profit Output Configuration of Multi-Reservoir Resource Exchange Intermediary
Abstract
:1. Introduction
2. Modelling
3. Optimizing Configuration
3.1. Optimal Contact Function Paths
- (1)
- When , one has
- (2)
- When , one has
- (3)
- When , one has
3.2. Optimal Prices and for the Commercial Engine
4. Numerical Examples and Discussions
5. Conclusions
- Optimal configuration consists of two instantaneous constant commodity flux processes and two constant price processes, where the used economic subsystems and the profit-producing commercial engine contact prices are time-independent, and the configuration is independent of number of economic subsystems and CTL qualitatively. Different CTLs have no influence on the optimal configuration of commercial engine qualitatively, but only quantitatively. Effects of different CTLs on the multi-reservoir commercial engine performance will be our next research work.
- For attaining MPO, some economic subsystems should never come into contact with the commercial engine during commodity transfer processes. These unused subsystems are referred to as unused subsystems. The highest price consumer and the lowest price supplier will always be used. This shows that in order to obtain a favorable market survival environment under competitive conditions, commodity suppliers should take positive and effective measures to reduce the manufacturing cost of commodities and then reduce the selling price of commodities, so as to become the lowest price economic subsystem. In addition, commodity consumers should take active and effective measures to improve the utility and value of commodities so as to improve the purchase price of commodities and become the highest price economic subsystem.
- A multi-reservoir commercial engine is more general than a common two-reservoir commercial engine, and the results can provide theoretical guidelines for the optimal operation of actual economic processes.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
g | ideal commodity flow rate |
practical commodity flow rate | |
I | total profit |
L | modified Lagrangian function |
power index related to commodity transfer law | |
N | the economic subsystem number |
commodity flow rate | |
P | price |
t | time |
Greek symbols | |
commodity flow coefficient | |
economic efficiency | |
Lagrange multiplier | |
contact function | |
cycle period | |
average profit | |
Subscripts | |
0i | the i-th economic subsystem |
1 | purchased price |
2 | sold price |
high price | |
i | number |
low price | |
max | maximum |
0i | the i-th economic subsystem |
1 | purchased price |
Superscripts | |
+ | input |
− | output |
Abbreviations | |
CDM | capital dissipation minimization |
CFR | commodity flow rate |
CTL | commodity transfer law |
FTT | finite time thermodynamics |
ind | index |
MPO | maximum profit output |
References
- Andresen, B.; Berry, R.S.; Ondrechen, M.J.; Salamon, P. Thermodynamics for processes in finite time. Acc. Chem. Res. 1984, 17, 266–271. [Google Scholar] [CrossRef]
- Hoffmann, K.H.; Burzler, J.M.; Schubert, S. Endoreversible thermodynamics. J. Non-Equilib. Thermodyn. 1997, 22, 311–355. [Google Scholar]
- Chen, L.G.; Wu, C.; Sun, F.R. Finite time thermodynamic optimization or entropy generation minimization of energy systems. J. Non-Equilib. Thermodyn. 1999, 24, 327–359. [Google Scholar] [CrossRef]
- Durmayaz, A.; Sogut, O.S.; Sahin, B.; Yavuz, H. Optimization of thermal systems based on finite-time thermodynamics and thermoeconomics. Prog. Energy Combus. Sci. 2004, 30, 175–217. [Google Scholar] [CrossRef]
- Andresen, B. Current trends in finite-time thermodynamics. Ange. Chem. Int. Ed. 2011, 50, 2690–2704. [Google Scholar] [CrossRef] [PubMed]
- Feidt, M. The history and perspectives of efficiency at maximum power of the Carnot engine. Entropy 2017, 19, 369. [Google Scholar] [CrossRef] [Green Version]
- Feidt, M. Finite Physical Dimensions Optimal Thermodynamics 1. Fundamental; ISTE Press and Elsevier: London, UK, 2017. [Google Scholar]
- Feidt, M. Finite Physical Dimensions Optimal Thermodynamics 2. Complex Systems; ISTE Press and Elsevier: London, UK, 2018. [Google Scholar]
- Berry, R.S.; Salamon, P.; Andresen, B. How it all began. Entropy 2020, 22, 908. [Google Scholar] [CrossRef] [PubMed]
- Andresen, B.; Salamon, P. Future perspectives of finite-time thermodynamics. Entropy 2022, 24, 690. [Google Scholar] [CrossRef]
- Kodal, A.; Sahin, B.; Yilmaz, T. A comparative performance analysis of irreversible Carnot heat engines under maximum power density and maximum power conditions. Energy Convers. Manag. 2000, 41, 235–248. [Google Scholar] [CrossRef]
- Sahin, B.; Ust, Y.; Kodal, A.; Yilmaz, T. Analysis of an unconventional cycle as a new comparison standard for practical heat engines: The circular/elliptical cycle in T-S diagram. Int. J. Energy Res. 2004, 28, 1159–1175. [Google Scholar] [CrossRef]
- Gonca, G.; Sahin, B. Effect of turbo charging and steam injection methods on the performance of a Miller cycle diesel engine (MCDE). Appl. Thermal Eng. 2017, 118, 138–146. [Google Scholar] [CrossRef]
- Gonca, G.; Sahin, B. Performance evaluation of a mercury-steam combined- energy-generation system (MES). Int. J. Energy Res. 2019, 43, 2281–2295. [Google Scholar] [CrossRef]
- Gonca, G.; Sahin, B. Performance analysis of a novel eco-friendly internal combustion engine cycle. Int. J. Energy Res. 2019, 43, 5897–5911. [Google Scholar] [CrossRef]
- Dumitrascu, G.; Feidt, M.; Popescu, A.; Grigorean, S. Endoreversible trigeneration cycle design based on finite physical dimensions thermodynamics. Energies 2019, 12, 3165. [Google Scholar]
- Abedinnezhad, S.; Ahmadi, M.H.; Pourkiaei, S.M.; Pourfayaz, F.; Mosavi, A.; Feidt, M.; Shamshirband, S. Thermodynamic assessment and multi-objective optimization of performance of irreversible Dual-Miller cycle. Energies 2019, 12, 4000. [Google Scholar] [CrossRef] [Green Version]
- Feidt, M.; Costea, M.; Feidt, R.; Danel, Q.; Périlhon, C. New criteria to characterize the waste heat recovery. Energies 2020, 13, 789. [Google Scholar] [CrossRef] [Green Version]
- Levario-Medina, S.; Valencia-Ortega, G.; Barranco-Jimenez, M.A. Energetic optimization considering a generalization of the ecological criterion in traditional simple-cycle and combined cycle power plants. J. Non-Equilib. Thermodyn. 2020, 45, 269–290. [Google Scholar] [CrossRef]
- Smith, Z.; Pal, P.S.; Deffner, S. Endoreversible Otto engines at maximal power. J. Non-Equilib. Thermodyn. 2020, 45, 305–310. [Google Scholar] [CrossRef]
- Ding, Z.M.; Ge, Y.L.; Chen, L.G.; Feng, H.J.; Xia, S.J. Optimal performance regions of Feynman’s ratchet engine with different optimization criteria. J. Non-Equilib. Thermodyn. 2020, 45, 191–207. [Google Scholar] [CrossRef]
- Boikov, S.Y.; Andresen, B.; Akhremenkov, A.A.; Tsirlin, A.M. Evaluation of irreversibility and optimal organization of an integrated multi-stream heat exchange system. J. Non-Equilib. Thermodyn. 2020, 45, 155–171. [Google Scholar] [CrossRef]
- Liu, X.W.; Chen, L.G.; Ge, Y.L.; Feng, H.J.; Wu, F.; Lorenzini, G. Exergy-based ecological optimization of an irreversible quantum Carnot heat pump with spin-1/2 systems. J. Non-Equilib. Thermodyn. 2021, 46, 61–76. [Google Scholar] [CrossRef]
- Chen, L.G.; Meng, F.K.; Ge, Y.L.; Feng, H.J. Performance optimization for a multielement thermoelectric refrigerator with another linear heat transfer law. J. Non-Equilib. Thermodyn. 2021, 46, 149–162. [Google Scholar] [CrossRef]
- Qi, C.Z.; Ding, Z.M.; Chen, L.G.; Ge, Y.L.; Feng, H.J. Modelling of irreversible two-stage combined thermal Brownian refrigerators and their optimal performance. J. Non-Equilib. Thermodyn. 2021, 46, 175–189. [Google Scholar] [CrossRef]
- Qiu, S.S.; Ding, Z.M.; Chen, L.G.; Ge, Y.L. Performance optimization of thermionic refrigerators based on van der Waals heterostructures. Sci. China Tech. Sci. 2021, 64, 1007–1016. [Google Scholar] [CrossRef]
- Ding, Z.M.; Qiu, S.S.; Chen, L.G.; Wang, W.H. Modeling and performance optimization of double-resonance electronic cooling device with three electron reservoirs. J. Non-Equilib. Thermodyn. 2021, 46, 273–289. [Google Scholar] [CrossRef]
- Badescu, V. Self-driven reverse thermal engines under monotonous and oscillatory optimal operation. J. Non-Equilib. Thermodyn. 2021, 46, 291–319. [Google Scholar] [CrossRef]
- Chen, L.G.; Qi, C.Z.; Ge, Y.L.; Feng, H.J. Thermal Brownian heat engine with external and internal irreversiblities. Energy 2022, 255, 124582. [Google Scholar] [CrossRef]
- Valencia-Ortega, G.; Levario-Medina, S.; Barranco-Jiménez, M.A. The role of internal irreversibilities in the performance and stability of power plant models working at maximum ϵ-ecological function. J. Non-Equilib. Thermodyn. 2021, 46, 413–429. [Google Scholar] [CrossRef]
- Qiu, S.S.; Ding, Z.M.; Chen, L.G.; Ge, Y.L. Performance optimization of three-terminal energy selective electron generators. Sci. China Technol. Sci. 2021, 64, 1641–1652. [Google Scholar] [CrossRef]
- Ge, Y.L.; Shi, S.S.; Chen, L.G.; Zhang, D.F.; Feng, H.J. Power density analysis and multi-objective optimization for an irreversible Dual cycle. J. Non-Equilib. Thermodyn. 2022, 47, 289–309. [Google Scholar] [CrossRef]
- Gonca, G.; Sahin, B.; Genc, I. Investigation of maximum performance characteristics of seven-process cycle engine. Int. J. Exergy 2022, 37, 302–312. [Google Scholar] [CrossRef]
- Gonca, G.; Sahin, B. Perofmance investigation and evaluation of an engine operating on a modified Dual cycle. Int. J. Energy Res. 2022, 46, 2454–2466. [Google Scholar] [CrossRef]
- Chen, L.G.; Li, P.L.; Xia, S.J.; Kong, R.; Ge, Y.L. Multi-objective optimization of membrane reactor for steam methane reforming heated by molten salt. Sci. China Technol. Sci. 2022, 65, 1396–1414. [Google Scholar] [CrossRef]
- Hoffman, K.H.; Burzler, J.; Fischer, A.; Schaller, M.; Schubert, S. Optimal process paths for endoreversible systems. J. Non-Equilib. Thermodyn. 2003, 28, 233–268. [Google Scholar] [CrossRef]
- Salamon, P.; Nulton, J.D.; Siragusa, G.; Andresen, T.R.; Limon, A. Principles of control thermodynamics. Energy 2001, 26, 307–319. [Google Scholar] [CrossRef] [Green Version]
- Badescu, V. Optimal Control in Thermal Engineering; Springer: New York, NY, USA, 2017. [Google Scholar]
- Badescu, V. Maximum work rate extractable from energy fluxes. J. Non-Equilib. Thermodyn. 2022, 47, 77–93. [Google Scholar] [CrossRef]
- Paul, R.; Hoffmann, K.H. Optimizing the piston paths of Stirling cycle cryocoolers. J. Non-Equilib. Thermodyn. 2022, 47, 195–203. [Google Scholar] [CrossRef]
- Li, P.L.; Chen, L.G.; Xia, S.J.; Kong, R.; Ge, Y.L. Total entropy generation rate minimization configuration of a membrane reactor of methanol synthesis via carbon dioxide hydrogenation. Sci. China Technol. Sci. 2022, 65, 657–678. [Google Scholar] [CrossRef]
- Li, J.; Chen, L.G. Optimal configuration of finite source heat engine cycle for maximum output work with complex heat transfer law. J. Non-Equilib. Thermodyn. 2022, 47. [Google Scholar] [CrossRef]
- Chen, L.G.; Xia, S.J. Heat engine cycle configurations for maximum work output with generalized models of reservoir thermal capacity and heat resistance. J. Non-Equilib. Thermodyn. 2022, 47. [Google Scholar] [CrossRef]
- Amelkin, S.A.; Andresen, B.; Burzler, J.M.; Hoffmann, K.H.; Tsirlin, A.M. Maximum power process for multi-source endoreversible heat engines. J. Phys. D Appl. Phys. 2004, 37, 1400–1404. [Google Scholar] [CrossRef] [Green Version]
- Amelkin, S.A.; Andresen, B.; Burzler, J.M.; Hoffmann, K.H.; Tsirlin, A.M. Thermo-mechanical systems with several heat reservoirs: Maximum power processes. J. Non-Equlib. Thermodyn. 2005, 30, 67–80. [Google Scholar] [CrossRef]
- Xia, S.J.; Chen, L.G.; Sun, F.R. Maximum power configuration for multi-reservoir chemical engines. J. Appl. Phys. 2009, 105, 114921. [Google Scholar] [CrossRef]
- Saslow, W.M. An economic analogy to thermodynamics. Am. J. Phys. 1999, 67, 1239–1247. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, A.; Yakovenko, V.M. Universal patterns of inequality. New J. Phys. 2010, 12, 075032. [Google Scholar] [CrossRef]
- Rashkovskiy, S.A. Thermodynamics of markets. Phys. A 2021, 567, 125699. [Google Scholar] [CrossRef]
- Rashkovskiy, S.A. Economic thermodynamics. Phys. A 2021, 582, 126261. [Google Scholar] [CrossRef]
- Tsirlin, A.M. Optimal control of resource exchange in economic systems. Auto. Remo. Contr. 1995, 56, 401–408. [Google Scholar]
- De Vos, A. Endoreversible economics. Energy Convers. Manag. 1997, 38, 311–317. [Google Scholar] [CrossRef]
- De Vos, A. Endoreversible thermodynamics versus economics. Energy Convers. Manag. 1999, 40, 1009–1019. [Google Scholar] [CrossRef]
- Tsirlin, A.M. Irreversible microeconomics: Optimal processes and control. Auto. Remo. Contr. 2001, 62, 820–830. [Google Scholar] [CrossRef]
- Tsirlin, A.M.; Kazakov, V.; Kolinko, N.A. Irreversibility and limiting possibilities of macrocontrolled systems: I. Thermodyn. Open Sys. Inf. Dyn. 2001, 8, 315–328. [Google Scholar] [CrossRef]
- Tsirlin, A.M.; Kazakov, V.; Kolinko, N.A. Irreversibility and limiting possibilities of macrocontrolled systems: II. Microeconomics. Open Sys. Inf. Dyn. 2001, 8, 329–347. [Google Scholar] [CrossRef]
- Tsirlin, A.M.; Kazakov, V.A. Optimal processes in irreversible thermodynamics and microeconomics. Interdisc. Descrip. Compl. Sys. 2004, 2, 29–42. [Google Scholar] [CrossRef] [Green Version]
- Amelkin, S.A.; Martinas, K.; Tsirlin, A.M. Optimal control for irreversible processes in thermodynamics and microeconomics. Auto. Remo. Contr. 2002, 63, 519–539. [Google Scholar] [CrossRef]
- Amelkin, S.A. Limiting possibilities of resource exchange process in complex open microeconomic system. Interdisc. Descrip. Compl. Sys. 2004, 2, 43–52. [Google Scholar]
- Tsirlin, A.M. Irreversible microeconomic: Optimal processes and equilibrium in closed systems. Auto. Remo. Contr. 2008, 69, 1201–1215. [Google Scholar] [CrossRef]
- Chen, Y.R. Maximum profit configurations of commercial engines. Entropy 2011, 13, 1137–1151. [Google Scholar] [CrossRef] [Green Version]
- Xia, S.J.; Chen, L.G.; Sun, F.R. Optimization for capital dissipation minimization in a common of resource exchange processes. Math. Comp. Model. 2011, 54, 632–648. [Google Scholar] [CrossRef]
- Xia, S.J.; Chen, L.G. Capital dissipation minimization for a class of complex irreversible resource exchange processes. Euro. Phys. J. Plus 2017, 132, 201. [Google Scholar] [CrossRef]
- Tsirlin, A.; Gagarina, L. Finite-time thermodynamics in economics. Entropy 2020, 22, 891. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.G.; Bi, Y.H.; Wu, C. Influence of nonlinear flow resistance relation on the power and efficiency from fluid flow. J. Phys. D Appl. Phys. 1999, 32, 1346–1349. [Google Scholar] [CrossRef]
- Chen, L.G.; Feng, H.J.; Xie, Z.H. Generalized thermodynamic optimization for iron and steel production processes: Theoretical exploration and application cases. Entropy 2016, 18, 353. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.G.; Xia, S.J. Progresses in generalized thermodynamic dynamic-optimization of irreversible processes. Sci. Sini. Technol. 2019, 49, 981–1022. (In Chinese) [Google Scholar] [CrossRef]
- Chen, L.G.; Xia, S.J.; Feng, H.J. Progress in generalized thermodynamic dynamic-optimization of irreversible cycles. Sci. Sini. Technol. 2019, 49, 1223–1267. (In Chinese) [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Xia, S. Maximum Profit Output Configuration of Multi-Reservoir Resource Exchange Intermediary. Entropy 2022, 24, 1451. https://doi.org/10.3390/e24101451
Chen L, Xia S. Maximum Profit Output Configuration of Multi-Reservoir Resource Exchange Intermediary. Entropy. 2022; 24(10):1451. https://doi.org/10.3390/e24101451
Chicago/Turabian StyleChen, Lingen, and Shaojun Xia. 2022. "Maximum Profit Output Configuration of Multi-Reservoir Resource Exchange Intermediary" Entropy 24, no. 10: 1451. https://doi.org/10.3390/e24101451
APA StyleChen, L., & Xia, S. (2022). Maximum Profit Output Configuration of Multi-Reservoir Resource Exchange Intermediary. Entropy, 24(10), 1451. https://doi.org/10.3390/e24101451