A Simplified Linearized Lattice Boltzmann Method for Acoustic Propagation Simulation
Abstract
:1. Introduction
2. Methodology
2.1. LLBE and C-E Expansion Analysis
2.2. SLLBM
2.3. IBM
2.4. Boundary Conditions
2.4.1. Periodic Boundary Condition
2.4.2. Nonequilibrium Extrapolation Boundary
2.5. Computational Sequence
- (1)
- Determine the mesh size parameters and the time step and then calculate the relaxation time .
- (2)
- Calculate the predictor step of the linear governing equations by Equation (33) and obtain the intermediate value of the perturbation macroscopic variables of the new time step.
- (3)
- According to Equation (35), calculate the perturbation nonequilibrium distribution function , selecting appropriate boundary conditions for .
- (4)
- Use Equation (34) to calculate the corrector step of the linear momentum equation, and obtain the perturbation velocity of the next time step.
- (5)
- Implement appropriate boundary conditions for the perturbation macroscopic variables and repeat the above process until the results convergent.
- (1)
- Solve Equation (45) to obtain the perturbation velocity revision term at the Lagrangian point.
- (2)
- According to the perturbation velocity obtained by Equation (34), combined with Equations (38) and (44), the perturbation velocity of the Euler grid point at the next moment can be obtained.
2.6. Memory Cost
3. Numerical Examples
3.1. Case 1: Propagation of a Gaussian Pulse
3.2. Case 2: Propagation of a Time-Periodic Acoustic Source
3.3. Case 3: Propagation of Plane Wave
3.4. Case 4: Propagation of a Gaussian Pulse with Wall Reflection
3.5. Case 5: A Gaussian Pulse Scattered by a Stationary Cylinder
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
speed of sound | lattice velocity | ||
density distribution function | weight coefficient of the lattice | ||
boundary force terms of the Euler point | denisity | ||
boundary force terms of the Lagrangian point | kinematic viscosity | ||
kernel function | dynamic viscosity | ||
Knudsen number | relaxation time | ||
number of the Euler points | |||
number of the Lagrangian point | Superscripts | ||
position of the Euler point | perturbation part | ||
index of the Lagrangian point | steady mean part | ||
velocity vector | equilibrium distribution function | ||
velocity of the fluid | non-equilibrium distribution function | ||
velocity of the immersed boundary | intermediate variables | ||
position of the Lagrangian point | variables at the next time step | ||
time step | |||
lattice spacing | Subscripts | ||
scale of the Euler grid | direction | ||
scale of the Lagrangian grid | Euler grid point | ||
wavelength | Lagrangian grid point |
References
- Labbé, R.; Pinton, J.-F. Propagation of sound through a turbulent vortex. Phys. Rev. Lett. 1998, 81, 1413. [Google Scholar] [CrossRef]
- Astley, R.J. Numerical methods for noise propagation in moving flows, with application to turbofan engines. Acoust. Sci. Technol. 2009, 30, 227–239. [Google Scholar] [CrossRef] [Green Version]
- Tam, C.K.W.; Parrish, S.A.; Envia, E.; Chien, E.W. Physical processes influencing acoustic radiation from jet engine inlets. J. Fluid Mech. 2013, 725, 152–194. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Chen, R.; You, Y.; Qiu, R. Investigation of acoustic propagation and source localization in a hot jet flow. J. Sound Vib. 2021, 492, 115801. [Google Scholar]
- Campos, L.; Kobayashi, M. On the reflection and transmission of sound in a thick shear layer. J. Fluid Mech. 2000, 424, 303–326. [Google Scholar] [CrossRef]
- Xu, G.; Shi, Y.; Zhao, Q. New research progress in helicopter rotor aerodynamic noise. Acta Aeronaut. Et Astronaut. Sin. 2017, 38, 520991. [Google Scholar]
- Moore, P.; Slot, H.; Boersma, B.J. Simulation and measurement of flow generated noise. J. Comput. Phys. 2007, 224, 449–463. [Google Scholar] [CrossRef]
- Sandberg, R.; Sandham, N.; Joseph, P. Direct numerical simulations of trailing-edge noise generated by boundary-layer instabilities. J. Sound Vib. 2007, 304, 677–690. [Google Scholar] [CrossRef]
- Gréverie, L.; Bailly, C. Formulation of an acoustic wave operator based on linearized Euler equations. Comptes Rendus L’Acad. Sci. Ser. IIB Mec. Phys. Chim. Astron. 1998, 11, 741–746. [Google Scholar]
- Bailly, C.; Juve, D. Numerical solution of acoustic propagation problems using linearized Euler equations. AIAA J. 2000, 38, 22–29. [Google Scholar]
- Sun, Y.; Fattah, R.; Zhong, S.; Zhang, X. Stable time-domain CAA simulations with linearised governing equations. Comput. Fluids 2018, 167, 187–195. [Google Scholar] [CrossRef]
- Gikadi, J.; Föller, S.; Sattelmayer, T. Impact of turbulence on the prediction of linear aeroacoustic interactions: Acoustic response of a turbulent shear layer. J. Sound Vib. 2014, 333, 6548–6559. [Google Scholar]
- Berggren, M.; Bernland, A.; Noreland, D. Acoustic boundary layers as boundary conditions. J. Comput. Phys. 2018, 371, 633–650. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.-H.; d’Humières, D.; Lallemand, P. Lattice BGK models for Navier-Stokes equation. EPL (Europhys. Lett.) 1992, 17, 479. [Google Scholar] [CrossRef]
- Guo, Z.; Shi, B.; Wang, N. Lattice BGK model for incompressible Navier–Stokes equation. J. Comput. Phys. 2000, 165, 288–306. [Google Scholar] [CrossRef]
- Aidun, C.K.; Clausen, J.R. Lattice-Boltzmann method for complex flows. Annu. Rev. Fluid Mech. 2010, 42, 439–472. [Google Scholar] [CrossRef]
- Frapolli, N.; Chikatamarla, S.; Karlin, I. Theory, analysis, and applications of the entropic lattice Boltzmann model for compressible flows. Entropy 2020, 22, 370. [Google Scholar]
- Wang, L.; Zhang, X.; Zhu, W.; Xu, K.; Wu, W.; Chu, X.; Zhang, W. Accurate Computation of Airfoil Flow Based on the Lattice Boltzmann Method. Appl. Sci. 2019, 9, 2000. [Google Scholar] [CrossRef] [Green Version]
- Dhuri, D.B.; Hanasoge, S.M.; Perlekar, P.; Robertsson, J.O. Numerical analysis of the lattice Boltzmann method for simulation of linear acoustic waves. Phys. Rev. E 2017, 95, 043306. [Google Scholar]
- Casalino, D.; Hazir, A.; Mann, A. Turbofan broadband noise prediction using the lattice Boltzmann method. AIAA J. 2018, 56, 609–628. [Google Scholar] [CrossRef]
- Daroukh, M.; Le Garrec, T.; Polacsek, C. Low-speed turbofan aerodynamic and acoustic prediction with an isothermal lattice Boltzmann method. AIAA J. 2022, 60, 1152–1170. [Google Scholar]
- Schäfer, R.; Böhle, M. Validation of the Lattice Boltzmann Method for Simulation of Aerodynamics and Aeroacoustics in a Centrifugal Fan. Acoustics 2020, 2, 735–752. [Google Scholar] [CrossRef]
- Latt, J.; Malaspinas, O.; Kontaxakis, D.; Parmigiani, A.; Lagrava, D.; Brogi, F.; Belgacem, M.B.; Thorimbert, Y.; Leclaire, S.; Li, S. Palabos: Parallel lattice Boltzmann solver. Comput. Math. Appl. 2021, 81, 334–350. [Google Scholar] [CrossRef]
- Vergnault, E.; Malaspinas, O.; Sagaut, P. A lattice Boltzmann method for nonlinear disturbances around an arbitrary base flow. J. Comput. Phys. 2012, 231, 8070–8082. [Google Scholar]
- Pérez, J.M.; Aguilar, A.; Theofilis, V. Lattice Boltzmann methods for global linear instability analysis. Theor. Comput. Fluid Dyn. 2017, 31, 643–664. [Google Scholar]
- Wang, Y.; Yang, L.; Shu, C. From Lattice Boltzmann Method to Lattice Boltzmann Flux Solver. Entropy 2015, 17, 7713–7735. [Google Scholar]
- Yang, L.; Shu, C.; Wu, J. A hybrid lattice Boltzmann flux solver for simulation of viscous compressible flows. Adv. Appl. Math. Mech. 2016, 8, 887–910. [Google Scholar]
- Zhang, L.; Chen, Z.; Shu, C.; Zhang, M. A kinetic theory-based axisymmetric lattice Boltzmann flux solver for isothermal and thermal swirling flows. J. Comput. Phys. 2019, 392, 141–160. [Google Scholar] [CrossRef]
- Liu, Y.; Shu, C.; Zhang, H.; Yang, L. A high order least square-based finite difference-finite volume method with lattice Boltzmann flux solver for simulation of incompressible flows on unstructured grids. J. Comput. Phys. 2020, 401, 109019. [Google Scholar] [CrossRef]
- Yang, L.; Shu, C.; Chen, Z.; Hou, G.; Wang, Y. An improved multiphase lattice Boltzmann flux solver for the simulation of incompressible flow with large density ratio and complex interface. Phys. Fluids 2021, 33, 033306. [Google Scholar] [CrossRef]
- Zhan, N.; Chen, R.; You, Y. Linear lattice Boltzmann flux solver for simulating acoustic propagation. Comput. Math. Appl. 2022, 114, 21–40. [Google Scholar] [CrossRef]
- Chen, Z.; Shu, C.; Wang, Y.; Yang, L.; Tan, D. A simplified lattice Boltzmann method without evolution of distribution function. Adv. Appl. Math. Mech. 2017, 9, 1–22. [Google Scholar] [CrossRef]
- Chen, Z.; Shu, C.; Tan, D.; Wu, C. On improvements of simplified and highly stable lattice Boltzmann method: Formulations, boundary treatment, and stability analysis. Int. J. Numer. Methods Fluids 2018, 87, 161–179. [Google Scholar] [CrossRef]
- Griffith, B.E.; Patankar, N.A. Immersed methods for fluid–structure interaction. Annu. Rev. Fluid Mech. 2020, 52, 421. [Google Scholar] [PubMed] [Green Version]
- Abalakin, I.V.; Zhdanova, N.y.S.; Kozubskaya, T.K. Immersed boundary method for numerical simulation of inviscid compressible flows. Comput. Math. Math. Phys. 2018, 58, 1411–1419. [Google Scholar] [CrossRef]
- Kim, J.; Kim, D.; Choi, H. An immersed-boundary finite-volume method for simulations of flow in complex geometries. J. Comput. Phys. 2001, 171, 132–150. [Google Scholar] [CrossRef]
- Chen, Z.; Shu, C.; Tan, D. Immersed boundary-simplified lattice Boltzmann method for incompressible viscous flows. Phys. Fluids 2018, 30, 053601. [Google Scholar] [CrossRef]
- Dupuis, A.; Chatelain, P.; Koumoutsakos, P. An immersed boundary–lattice-Boltzmann method for the simulation of the flow past an impulsively started cylinder. J. Comput. Phys. 2008, 227, 4486–4498. [Google Scholar] [CrossRef]
- Mittal, R.; Iaccarino, G. Immersed boundary methods. Annu. Rev. Fluid Mech. 2005, 37, 239–261. [Google Scholar] [CrossRef] [Green Version]
- Sukop, M.; Thorne, D.T., Jr. Lattice Boltzmann Modeling; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Chen, Z.; Shu, C. Simplified lattice Boltzmann method for non-Newtonian power-law fluid flows. Int. J. Numer. Methods Fluids 2020, 92, 38–54. [Google Scholar] [CrossRef]
- Tam, C.K.; Webb, J.C. Dispersion-relation-preserving finite difference schemes for computational acoustics. J. Comput. Phys. 1993, 107, 262–281. [Google Scholar] [CrossRef]
- Viggen, E.M. The lattice Boltzmann method with applications in acoustics. Master Thesis, NTNU, Trondheim, Norway, 2009. [Google Scholar]
- Tam, C.K.; Hardin, J.C. Second computational aeroacoustics (CAA) workshop on benchmark problems. In Proceedings of the Second Computational Aeroacoustics (CAA) Workshop on Benchmark Problems, Tallahassee, FL, USA, 1 January 1997. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Q.; Chen, R.; Cao, S.; Lou, J.; Zhan, N.; You, Y. A Simplified Linearized Lattice Boltzmann Method for Acoustic Propagation Simulation. Entropy 2022, 24, 1622. https://doi.org/10.3390/e24111622
Song Q, Chen R, Cao S, Lou J, Zhan N, You Y. A Simplified Linearized Lattice Boltzmann Method for Acoustic Propagation Simulation. Entropy. 2022; 24(11):1622. https://doi.org/10.3390/e24111622
Chicago/Turabian StyleSong, Qiaochu, Rongqian Chen, Shuqi Cao, Jinhua Lou, Ningyu Zhan, and Yancheng You. 2022. "A Simplified Linearized Lattice Boltzmann Method for Acoustic Propagation Simulation" Entropy 24, no. 11: 1622. https://doi.org/10.3390/e24111622
APA StyleSong, Q., Chen, R., Cao, S., Lou, J., Zhan, N., & You, Y. (2022). A Simplified Linearized Lattice Boltzmann Method for Acoustic Propagation Simulation. Entropy, 24(11), 1622. https://doi.org/10.3390/e24111622