3D Simulations of Freezing Characteristics of Double-Droplet Impact on Cold Surfaces with Different Wettability
Abstract
:1. Introduction
2. Numerical Model
2.1. Multiphase Model
2.2. Solidification/Melting Model
2.3. Mesh Independency Validation
2.4. Numerical Model Validation
3. Results and Discussion
3.1. Morphology Evolution of the Droplets
3.2. Wetting Area Evolution Characteristics
3.3. Heat Transfer and Solidification Characteristics on Superhydrophobic Surface
3.4. Influence of the Impact Velocity and Supercooled Degree on the Result of Double-Droplet Impact
4. Conclusions
- (1)
- In the early spreading stage, the double-droplet impact behaves in the same way as the single-droplet. The influence of temperature conditions has little influence on the droplet dynamics at this stage.
- (2)
- The temperature conditions have a significant influence on the retraction stage of the double-droplet impact. The lower the temperatures are, the stronger the adhesion of the wall, and the larger the corresponding wetting area.
- (3)
- The wetting area evolution during the impact–freezing process shows different tendency for hydrophilic and hydrophobic surfaces: compared with single droplets, double droplets have a smaller wetting area factor on hydrophilic surfaces while a larger one on superhydrophobic surfaces.
- (4)
- Three typical impact results are observed for the double-droplet impact on a superhydrophobic cold surface: full rebound, adhesive avulsion, and full adhesion, which reflects the interaction of droplet merging and solidification during the impact-freezing of the double-droplet.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lamraoui, F.; Fortin, G.; Benoit, R.; Perron, J.; Masson, C. Atmospheric icing impact on wind turbine production. Cold Reg. Sci. Technol. 2014, 100, 36–49. [Google Scholar] [CrossRef]
- Sheikholeslami, M. Analyzing melting process of paraffin through the heat storage with honeycomb configuration utilizing nanoparticles. J. Eng. Storage 2022, 52, 104954. [Google Scholar] [CrossRef]
- Sheikholeslami, M. Numerical investigation of solar system equipped with innovative turbulator and hybrid nanofluid. Sol. Energy Mater. Sol. Cells 2022, 243, 111786. [Google Scholar] [CrossRef]
- Xu, Q.; Liu, C.; Liu, Q.; Zhu, Y.; Zhou, H.; Guo, L. Interfacial characteristics of steam jet condensation in subcooled water pipe flow–An experimental and numerical study. Chem. Eng. Sci. 2022, 251, 117457. [Google Scholar] [CrossRef]
- Xu, Q.; Zhu, Y.; Zhou, H.; She, Y.; Guo, L. Flow characteristic of steam jet condensed into a water pipe flow—A numerical study. Appl. Therm. Eng. 2022, 205, 118034. [Google Scholar] [CrossRef]
- Parent, O.; Ilinca, A. Anti-icing and de-icing techniques for wind turbines: Critical review. Cold Reg. Sci. Technol. 2011, 65, 88–96. [Google Scholar] [CrossRef]
- Raiyan, A.; Mohammadian, B.; Sojoudi, H. Droplet Dynamics and Freezing Delay on Nanoporous Microstructured Surfaces at Condensing Environment. Coatings 2021, 11, 617. [Google Scholar] [CrossRef]
- Vontas, K.; Boscariol, C.; Andredaki, M.; Georgoulas, A.; Crua, C.; Walther, J.H.; Marengo, M. Droplet Impact on Suspended Metallic Meshes: Effects of Wettability, Reynolds and Weber Numbers. Fluids 2020, 5, 81. [Google Scholar] [CrossRef]
- Abubakar, A.A.; Yilbas, B.S.; Yakubu, M. Impacting Droplet Can Mitigate Dust from PDMS Micro-Post Array Surfaces. Coatings 2021, 11, 1377. [Google Scholar] [CrossRef]
- Qian, C.; Li, Q.; Chen, X. Droplet Impact on the Cold Elastic Superhydrophobic Membrane with Low Ice Adhesion. Coatings 2020, 10, 964. [Google Scholar] [CrossRef]
- Neinhuis, C.; Barthlott, W. Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces. Ann. Bot. 1997, 79, 667–677. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhang, X.; Min, J. Spreading of droplets impacting different wettable surfaces at a Weber number close to zero. Chem. Eng. Sci. 2019, 207, 495–503. [Google Scholar] [CrossRef]
- Sun, J.; Liu, Q.; Liang, Y.; Lin, Z.; Liu, C. Three-dimensional VOF simulation of droplet impacting on a superhydrophobic surface. Bio-Des. Manuf. 2019, 2, 10–23. [Google Scholar] [CrossRef]
- Bodaghkhani, A.; Duan, X. Water droplet freezing on cold surfaces with distinct wetabilities. Heat Mass Transf. 2021, 57, 1–10. [Google Scholar] [CrossRef]
- Moghtadernejad, S.; Jadidi, M.; Tembely, M.; Esmail, N.; Dolatabadi, A. Concurrent Droplet Coalescence and Solidification on Surfaces with Various Wettabilities. J. Fluids Eng. 2015, 137, 071302. [Google Scholar] [CrossRef]
- Li, H.; Roisman, I.V.; Tropea, C. Influence of solidification on the impact of supercooled water drops onto cold surfaces. Exp. Fluids 2015, 56, 1. [Google Scholar] [CrossRef]
- Yang, G.; Guo, K.; Li, N. Freezing mechanism of supercooled water droplet impinging on metal surfaces. Int. J. Refrig. 2011, 34, 2007–2017. [Google Scholar] [CrossRef]
- Jin, Z.Y.; Zhang, H.H.; Yang, Z.G. The impact and freezing processes of a water droplet on different cold cylindrical surfaces. Int. J. Heat Mass Transf. 2017, 113, 318–323. [Google Scholar] [CrossRef]
- Yao, Y.; Li, C.; Tao, Z.; Yang, R.; Zhang, H. Experimental and numerical study on the impact and freezing process of a water droplet on a cold surface. Appl. Therm. Eng. 2018, 137, 83–92. [Google Scholar] [CrossRef]
- Xu, Q.; Li, Z.; Wang, J.; Wang, R. Characteristics of Single Droplet Impact on Cold Plate Surfaces. Dry. Technol. 2012, 30, 1756–1762. [Google Scholar] [CrossRef]
- Blake, J.; Thompson, D.; Raps, D.; Strobl, T. Simulating the Freezing of Supercooled Water Droplets Impacting a Cooled Substrate. AIAA J. 2015, 53, 1725–1739. [Google Scholar] [CrossRef]
- Tembely, M.; Attarzadeh, R.; Dolatabadi, A. On the numerical modeling of supercooled micro-droplet impact and freezing on superhydrophobic surfaces. Int. J. Heat Mass Transf. 2018, 127, 193–202. [Google Scholar] [CrossRef]
- Chang, S.; Din, L.; Song, M.; Leng, M. Numerical investigation on impingement dynamics and freezing performance of micrometer-sized water droplet on dry flat surface in supercooled environment. Int. J. Multiph. Flow 2019, 118, 150–164. [Google Scholar]
- Zhang, X.; Liu, X.; Wu, X.; Min, J. Impacting-freezing dynamics of a supercooled water droplet on a cold surface: Rebound and adhesion. Int. J. Heat Mass Transf. 2020, 158, 119997. [Google Scholar] [CrossRef]
- Boreyko, J.B.; Chen, C. Self-propelled dropwise condensate on superhydrophobic surfaces. Phys. Rev. Lett. 2009, 103, 184501. [Google Scholar] [CrossRef] [Green Version]
- Lin, D.; Zhang, L.; Yi, M. Contact Time of Double-Droplet Impacting Superhydrophobic Surfaces with Different Macrotextures. Processes 2020, 8, 896. [Google Scholar] [CrossRef]
- Xie, F.F.; Lu, G.; Wang, X.D.; Wang, B. Coalescence-Induced Jumping of Two Unequal-Sized Nanodroplets. Langmuir 2018, 34, 2734–2740. [Google Scholar] [CrossRef]
- Ashoke Raman, K. Dynamics of simultaneously impinging drops on a dry surface: Role of inhomogeneous wettability and impact shape. J. Colloid Interface Sci. 2018, 516, 232–247. [Google Scholar] [CrossRef]
- Cheng, X.; Zhu, Y.; Zhang, L.; Zhang, D.; Ku, T. Numerical analysis of deposition frequency for successive droplets coalescence dynamics. Phys. Fluids 2018, 30, 42102. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.R.; Jin, J.X.; Wei, B.J.; Lin, D.J. Dynamic behaviors of two droplets impacting an inclined superhydrophobic substrate. Colloid Surf. A 2021, 623, 126725. [Google Scholar] [CrossRef]
- Wang, X.; Lin, D.; Wang, Y. Rebound dynamics of two droplets simultaneously impacting a flat superhydrophobic surface. AIChE J. 2020, 66, e16647. [Google Scholar] [CrossRef]
- ANSYS Inc. ANSYS Fluent Theory Guide; Release 2020 R2; ANSYS, Inc.: Canonsburg, PA, USA, 2020. [Google Scholar]
- Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Issa, R.I.; Ahmadi-Befrui, B.; Beshay, K.R.; Gosman, A. Solution of the implicitly discretised reacting flow equations by operator-splitting. J. Comput. Phys. 1991, 93, 388–410. [Google Scholar] [CrossRef]
- Jung, S.; Tiwari, M.K.; Doan, N.V.; Poulikakos, D. Mechanism of supercooled droplet freezing on surfaces. Nat. Commun. 2012, 3, 615. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Li, C.; Zhang, H.; Yang, R. Modelling the impact, spreading and freezing of a water droplet on horizontal and inclined superhydrophobic cooled surfaces. Appl. Surf. Sci. 2017, 419, 52–62. [Google Scholar] [CrossRef]
- Hagiwara, Y.; Ishikawa, S.; Kimura, R.; Toyohara, K. Ice growth and interface oscillation of water droplets impinged on a cooling surface. J. Cryst. Growth 2017, 468, 46–53. [Google Scholar] [CrossRef]
- Zhang, R.; Hao, P.; Zhang, X.; He, F. Supercooled water droplet impact on superhydrophobic surfaces with various roughness and temperature. Int. J. Heat Mass Transf. 2018, 122, 395–402. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, X.; Min, J. Supercooled water droplet impacting-freezing behaviors on cold superhydrophobic spheres. Int. J. Multiph. Flow 2021, 141, 103675. [Google Scholar] [CrossRef]
Case Number | Droplet Velocity (m/s) | Θs (°) | Wettability of the Surface | T0/Ta/Ts (°C) |
---|---|---|---|---|
1 | 0.5 | 160 | Super Hydrophobic | 15/15/15 |
2 | 15/15/−30 | |||
3 | 0.1/−5/−30 | |||
4 | 0.5 | 100 | Hydrophobic | 15/15/15 |
5 | 15/15/−30 | |||
6 | 0.1/−5/−30 | |||
7 | 0.5 | 40 | Hydrophilic | 15/15/15 |
8 | 15/15/−30 | |||
9 | 0.1/−5/−30 |
Double Droplet | Single Droplet | |
---|---|---|
Recovery coefficient | 0.634 | 0.4094 |
Droplet Diameter (mm) | Droplet Velocity (m/s) | Air Temperature (°C) | Surface Temperature (°C) | Droplet Temperature (°C) |
---|---|---|---|---|
2.5 | 0.5, 0.75, 1, 1.25, 1.5 | −5 | −10/−20/−30 | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, A.; Yuan, Q.; Guo, K.; Wang, Z.; Liu, D. 3D Simulations of Freezing Characteristics of Double-Droplet Impact on Cold Surfaces with Different Wettability. Entropy 2022, 24, 1650. https://doi.org/10.3390/e24111650
Hu A, Yuan Q, Guo K, Wang Z, Liu D. 3D Simulations of Freezing Characteristics of Double-Droplet Impact on Cold Surfaces with Different Wettability. Entropy. 2022; 24(11):1650. https://doi.org/10.3390/e24111650
Chicago/Turabian StyleHu, Anjie, Qiaowei Yuan, Kaiyue Guo, Zhenyu Wang, and Dong Liu. 2022. "3D Simulations of Freezing Characteristics of Double-Droplet Impact on Cold Surfaces with Different Wettability" Entropy 24, no. 11: 1650. https://doi.org/10.3390/e24111650
APA StyleHu, A., Yuan, Q., Guo, K., Wang, Z., & Liu, D. (2022). 3D Simulations of Freezing Characteristics of Double-Droplet Impact on Cold Surfaces with Different Wettability. Entropy, 24(11), 1650. https://doi.org/10.3390/e24111650