What Does It Take to Solve the 3D Ising Model? Minimal Necessary Conditions for a Valid Solution
Abstract
:1. Introduction
2. The 3D Ising Model
3. Necessary Conditions for a Valid Solution
3.1. Condition 1
- ,
- ,
- , for representing the frontier of , namely, .
3.2. Condition 2
3.3. Condition 3
3.4. Condition 4
3.4.1. Condition 5
3.4.2. Condition 6
4. Some Previously Claimed Solutions in the Literature
When the interaction energy in the third dimension vanishes, Onsager’s exact solution of the 2D Ising model is recovered immediately. This guarantees the correctness of the exact solution of the 3D Ising model [emphasis added].
5. Final Remarks and Conclusions
It might still be possible to find exact answers for some special cases of the Ising model, Istrail notes. In particular, the ferromagnetic case of the 3D Ising model may turn out to be simple enough to solve.
This is indeed a golden age for studying such problems. With powerful computers and new algorithms, unimaginable numerical precision in our estimates of properties of many of these models is now possible. On the mathematical side, we are developing tools for solving increasingly complex functional equations, while the theory of conformal invariance, and the developments around stochastic Löwner evolution have given us powerful tools to predict, and in some cases to prove, new results. The scientific community in this field is divided into those who think we will never solve the problem, of say the perimeter or area generating function of self-avoiding polygons in two dimensions, and those who think that we will. I am firmly in the latter camp …
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gershenfeld, N. The Nature of Mathematical Modeling; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Borwein, J.M.; Crandall, R.E. Closed forms: What they are and why we care. Not. Am. Math. Soc. 2013, 60, 50–65. [Google Scholar] [CrossRef] [Green Version]
- Ising, E. Beitrag zur Theorie des Ferromagnetismus. Z. Physik 1925, 31, 253. [Google Scholar] [CrossRef]
- Tranquillo, J. An Introduction to Complex Systems: Making Sense of a Changing World; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Onsager, L. Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition. Phys. Rev. 1944, 65, 117. [Google Scholar] [CrossRef]
- Kotecky, R. (Ed.) Methods of Contemporary Mathematical Statistical Physics; Springer: Berlin, Germany, 2009. [Google Scholar]
- Thompson, C.J. Mathematical Statistical Mechanics; Princeton University Press: Princeton, NJ, USA, 2015. [Google Scholar]
- Sutherland, B. Beautiful Models: 70 Years of Exactly Solved Quantum Many-Body Problems; World Scientific: Singapore, 2005. [Google Scholar]
- Mattis, D.C. The Many-Body Problem: An Encyclopedia of Exactly Solved Models in One Dimension; World Scientific: Singapore, 1993. [Google Scholar]
- Lieb, E.H.; Mattis, D.C. Mathematical Physics in One Dimension; Academic Press Inc.: New York, NY, USA, 1966. [Google Scholar]
- Singh, S.P. The Ising Model: Brief Introduction and Its Application. In Solid State Physics—Metastable, Spintronics Materials and Mechanics of Deformable Bodies—Recent Progress; Sivasankaran, S., Nayak, P.K., Günay, E., Eds.; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef] [Green Version]
- Van der Waals, J.D. On the Continuity of the Gaseous and Liquid States; Rowlinson, J.S., Ed.; Dover: New York, NY, USA, 2004. [Google Scholar]
- Maddox, J.R. Talk Presented at StatPhys 2, Paris, France. 1952. [Google Scholar]
- Maddox, J.R. Changement de Phases Societé de Chimie Physique; Presses Universitaires de France: Paris, France, 1952. [Google Scholar]
- Perk, J.H.H. Comment on ‘Conjectures on exact solution of three-dimensional (3D) simple orthorhombic Ising lattices’. Philos. Mag. 2009, 89, 761–764. [Google Scholar] [CrossRef] [Green Version]
- Das, D.D. Exact Partition Function of Ising Model in Magnetism in One, Two and Three Dimensions in Nonzero Field. Indian J. Phys. 1970, 44, 244. [Google Scholar]
- Lou, S.L.; Wu, S.H. Three-dimensional Ising model and transfer matrices. Chin. J. Phys. 2000, 38, 841–854. [Google Scholar]
- Zhang, Z.-D. Conjectures on the exact solution of three-dimensional (3D) simple orthorhombic Ising lattices. Philos. Mag. 2007, 87, 5309–5419. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D. Exact solution for three-Dimensional Ising model. Symmetry 2021, 13, 1837. [Google Scholar] [CrossRef]
- Majewski, J.; Li, H.; Ott, J. The Ising model in physics and statistical genetics. Am. J. Hum. Gen. 2001, 69, 853–862. [Google Scholar] [CrossRef] [Green Version]
- Binek, C. Ising-Type Antiferromagnets; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Suzuki, S.; Inoue, J.-I.; Chakrabarti, B.K. Quantum Ising Phases and Transitions in Transverse Ising Models, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- McCoy, B.M.; Wu, T.T. The Two-Dimensional Ising Model, 2nd ed.; Dover: New York, NY, USA, 2014. [Google Scholar]
- Adler, M. Monte Carlo Simulations of the Ising Model; Anchor Academic Publishing: Hamburg, Germany, 2016. [Google Scholar]
- Fadil, Z. Semi-Infinite Ising Model by the Renormalization Group: Applicable in Nanotechnology and Spintronics; Lap Lambert Academic Publishing: Beau Bassin, Mauritius, 2020. [Google Scholar]
- Farah, A. The applications of the Ising model in statistical thermodynamics and quantum mechanics. Eur. Acad. Res. 2020, 8, 2229–2237. [Google Scholar]
- Lipowski, A. (Ed.) Special Issue “Ising Model: Recent Developments and Exotic Applications”. Entropy 2022. Available online: https://www.mdpi.com/journal/entropy/special_issues/Ising_Model (accessed on 9 October 2022).
- Las Cuevas, G.D.; Cubitt, T.S. Simple universal models capture all classical spin physics. Science 2016, 351, 1180–1183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polyakov, A.M. Gauge Fields and Strings; Harwood Academic Publishers: London, UK, 1987. [Google Scholar]
- Showk, S.-E.; Paulos, M.F.; Poland, D.; Rychkov, S.; Duffin, D.-S.; Vichi, A. Solving the 3D Ising model with the conformal bootstrap. Phys. Rev. D 2012, 86, 025022. [Google Scholar] [CrossRef]
- Rychkov, S. 3D Ising model: A view from the conformal bootstrap island. Comptes Rendus. Phys. 2020, 21, 185–198. [Google Scholar] [CrossRef]
- Wu, M.-C.; Hu, C.-K. Exact partition functions of the Ising model on M × N planar lattices with periodic—Aperiodic boundary conditions. J. Phys. A 2002, 35, 5189–5206. [Google Scholar] [CrossRef]
- Izmailian, N.S.; Hu, C.-K. Finite-size effects for the Ising model on helical tori. Phys. Rev. E 2007, 76, 041118. [Google Scholar] [CrossRef] [Green Version]
- Cipra, B. Statistical physicists phase out a dream. Science 2000, 288, 1561–1562. [Google Scholar] [CrossRef] [Green Version]
- Brush, S.G. History of the Lenz-Ising model. Rev. Mod. Phys. 1967, 39, 883–893. [Google Scholar] [CrossRef]
- Longuet-Higgins, H.C.; Fisher, M.E. Lars Onsager. 27 November 1903–5 October 1976. Biogr. Mem. Fellows R. Soc. 1978, 24, 443–471. [Google Scholar]
- Ruelle, D. Statistical Mechanics: Rigorous Results; World Scientific: Singapore, 1999. [Google Scholar]
- Friedli, S.; Velenik, Y. Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Feynman, R.P. Statistical Mechanics: A Set of Lectures; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Gattringer, C.R.; Jaimungal, S.; Semenoff, G.W. Loops, surfaces and Grassmann representation in two- and three-dimensional Ising models. Int. J. Mod. Phys. A 1999, 14, 4549–4574. [Google Scholar] [CrossRef] [Green Version]
- Ott, S. Weak mixing and analyticity of the pressure in the Ising model. Commun. Math. Phys. 2020, 377, 675–696. [Google Scholar] [CrossRef] [Green Version]
- Ott, S. Weak mixing and analyticity in Random Cluster and low temperature Ising models. arXiv 2020, arXiv:2003.05879. [Google Scholar]
- Marsden, J.E.; Hoffman, M.J. Basic Complex Analysis, 3rd ed.; W. H. Freeman: New York, NY, USA, 1998. [Google Scholar]
- Krantz, S.G.; Parks, H.R. A Primer of Real Analytic Functions, 2nd ed.; Birkhäuser: Boston, MA, USA, 2002. [Google Scholar]
- Talapov, A.L.; Blöte, H.W.J. The magnetization of the 3D Ising model. J. Phys. A 1996, 29, 5727–5733. [Google Scholar] [CrossRef] [Green Version]
- Blöte, H.W.J.; Heringa, J.R.; Hoogland, A.; Meyer, E.W.; Smit, T.S. Monte Carlo renormalization of the 3D Ising model: Analyticity and convergence. Phys. Rev. Lett. 1996, 76, 2613–2616. [Google Scholar] [CrossRef] [Green Version]
- Ferrenberg, A.M.; Xu, J.; Landau, D.P. Pushing the limits of Monte Carlo simulations for the three-dimensional Ising model. Phys. Rev. E 2018, 97, 043301. [Google Scholar] [CrossRef] [PubMed]
- Perk, J.H.H. Comment on “Exact Solution for Three-Dimensional Ising model” by Degang Zhang. arXiv 2021, arXiv:2202.03136. [Google Scholar]
- Hansel, D.; Maillard, J.M.; Oitmaa, J.; Velgakis, M.J. Analytical properties of the anisotropic cubic Ising model. J. Stat. Phys. 1987, 48, 69–80. [Google Scholar] [CrossRef]
- Guttmann, A.J.; Enting, I.G. Series studies of the Potts model. I: The simple cubic Ising model. J. Phys. A 1993, 26, 807–822. [Google Scholar] [CrossRef] [Green Version]
- De Neef, T.; Enting, I.G. Series expansions from the finite lattice method. J. Phys. A 1977, 10, 801–806. [Google Scholar] [CrossRef]
- Jensen, I. Size and area of square lattice polygons. J. Phys. A 2000, 33, 3533–3544. [Google Scholar] [CrossRef] [Green Version]
- Clisby, N. Enumerative combinatorics of lattice polymers. Not. Am. Math. Soc. 2021, 68, 504–515. [Google Scholar] [CrossRef]
- Niculescu, C.P.; Persson, L.-E. Convex Functions and Their Applications, 2nd ed.; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Guttmann, A.J.; Enting, I.G. Solvability of some statistical mechanical systems. Phys. Rev. Lett. 1996, 76, 344. [Google Scholar] [CrossRef] [PubMed]
- Van Der Hoven, J. Fast evaluation of holonomic functions near and in regular singularities. J. Symb. Comput. 2001, 31, 717–743. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.Y.; McCoy, B.M.; Fisher, M.E.; Chayes, L. Comment on a recent conjectured solution of the three-dimensional Ising model. Phil. Mag. 2008, 88, 3093–3095. [Google Scholar] [CrossRef]
- Rosengren, A. On the combinatorial solution of the Ising model. J. Phys. A. 1986, 19, 1709–1714. [Google Scholar] [CrossRef]
- Istrail, S. Statistical mechanics, three-dimensionality and NP-completeness: I. Universality of intractability for the partition function of the Ising model across non-planar lattices. In STOC ’00: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing; Yao, F., Luks, E., Eds.; ACM Press: New York, NY, USA, 2000; pp. 87–96. [Google Scholar]
- Regge, T.; Zecchina, R. Combinatorial and topological approach to the 3D Ising model. J. Phys. A 2000, 33, 741–761. [Google Scholar] [CrossRef]
- Cimasoni, D. A generalized Kac-Ward formula. J. Stat. Mech. 2010, 2010, P07023. [Google Scholar] [CrossRef]
- Guttman, A.J. (Ed.) Polygons, Polyominoes and Polycubes; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar]
n (High) | n (Low) | ||
---|---|---|---|
0 | 1 | 0 | 1 |
4 | 3 | 3 | 1 |
6 | 22 | 5 | 3 |
8 | 192 | 6 | −3 |
10 | 2046 | 7 | 15 |
12 | 24,853 | 8 | −30 |
14 | 329,334 | 9 | 101 |
16 | 4,649,601 | 10 | −261 |
18 | 68,884,356 | 11 | 807 |
20 | 1,059,830,112 | 12 | −2308 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viswanathan, G.M.; Portillo, M.A.G.; Raposo, E.P.; da Luz, M.G.E. What Does It Take to Solve the 3D Ising Model? Minimal Necessary Conditions for a Valid Solution. Entropy 2022, 24, 1665. https://doi.org/10.3390/e24111665
Viswanathan GM, Portillo MAG, Raposo EP, da Luz MGE. What Does It Take to Solve the 3D Ising Model? Minimal Necessary Conditions for a Valid Solution. Entropy. 2022; 24(11):1665. https://doi.org/10.3390/e24111665
Chicago/Turabian StyleViswanathan, Gandhimohan M., Marco Aurelio G. Portillo, Ernesto P. Raposo, and Marcos G. E. da Luz. 2022. "What Does It Take to Solve the 3D Ising Model? Minimal Necessary Conditions for a Valid Solution" Entropy 24, no. 11: 1665. https://doi.org/10.3390/e24111665
APA StyleViswanathan, G. M., Portillo, M. A. G., Raposo, E. P., & da Luz, M. G. E. (2022). What Does It Take to Solve the 3D Ising Model? Minimal Necessary Conditions for a Valid Solution. Entropy, 24(11), 1665. https://doi.org/10.3390/e24111665