The κ-Deformed Calogero–Leyvraz Lagrangians and Applications to Integrable Dynamical Systems
Abstract
:1. Introduction
2. Review of Calogero–Leyvraz’s Lagrangian and Hamiltonian Formulation of the Dynamics of Cyclotron with Friction System
2.1. Calogero–Leyvraz Hamiltonian and Planar Systems
2.2. Illustration: Generalized Liénard Equation and the Calogero–Leyvraz Lagrangian
2.3. Deformations of Calogero–Leyvraz Lagrangians and -Deformed Oscillator Equations
2.4. Kaniadakis -Deformed Lagrangian, Liénard Equation and Chiellini Integrability Condition
3. Entropic Lagrangian and Integrable Class of Systems
3.1. Calogero–Leyvraz Lagrangian and Lotka–Volterra Equation
3.2. Replicator Equation
Calogero–Leyvraz Lagrangian and Replicator Equation
3.3. Logarithmic Lagrangian Formulation of Relativistic Toda Lattice Equation
3.3.1. Connection to Calabi–Yau Manifold
3.3.2. Calogero–Leyvraz Type Lagrangian with Coupling Constant and Mirror Map
4. The -Deformed 2D Lotka–Volterra, Replicator and Relativistic Toda Lattice Equations
4.1. The Deformation of 2D Lotka–Volterra Equation
4.1.1. Expressing -Deformed Equation
4.1.2. Tsallis Logarithm and Deformed Lotka–Volterra System
4.2. The -Deformed Replicator Equation
4.3. The -Deformed Relativistic Toda Lattice System
Tsallis Deformed Relativistic Toda Lattice Equation
5. Outlook
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Calogero, F.; Leyvrez, F. Time-independent Hamiltonians describing systems with friction: The “cyclotron with friction”. J. Nonlinear Math. Phys. 2019, 26, 147–154. [Google Scholar] [CrossRef]
- Leyvraz, F.; Calogero, F. A Hamiltonian yielding damped motion in an homogeneous magnetic field: Quantum treatment. J. Nonlinear Math. Phys. 2019, 26, 228–239. [Google Scholar] [CrossRef]
- Guha, P. Balanced gain-loss dynamics of particle in cyclotron with friction, κ-deformed logarithmic Lagrangians and fractional damped systems. Eur. Phys. J. Plus 2022, 137, 64. [Google Scholar] [CrossRef]
- Guha, P. The κ-deformed entropic Lagrangians, Hamiltonian dynamics and their applications. Eur. Phys. J. Plus 2022, 137, 932. [Google Scholar] [CrossRef]
- Tsallis, C. Possible Generalization of Boltzmann–Gibbs Statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Schwämmle, V.; Tsallis, C. Two-parameter generalization of the logarithm andexponential functions and Boltzmann–Gibbs-Shannon entropy. J. Math. Phys. 2007, 48, 113301. [Google Scholar] [CrossRef] [Green Version]
- Kaniadakis, G. Non-linear kinetics underlying generalized statistics. Phys. A Stat. Mech. Appl. 2001, 296, 405–425. [Google Scholar] [CrossRef] [Green Version]
- Kaniadakis, G. Statistical mechanics in the context of special relativity. Phys. Rev. E 2002, 66, 056125. [Google Scholar] [CrossRef] [Green Version]
- Kaniadakis, G. Theoretical foundations and Mathematical formalism of the power-law tailed statistical distributions. Entropy 2013, 15, 3983–4010. [Google Scholar] [CrossRef] [Green Version]
- Kaniadakis, G. Relativistic kinetics and power-law tailed distributions. Eur. Phys. Lett. 2010, 92, 35002. [Google Scholar] [CrossRef]
- Kaniadakis, G.; Baldi, M.M.; Deisboeck, T.S.; Grisolia, G.; Hristopulos, D.T.; Scarfone, A.M.; Sparavigna, A.; Wada, T.; Lucia, U. The κ-statistics approach to epidemiology. Sci. Rep. 2020, 10, 19949. [Google Scholar] [CrossRef] [PubMed]
- Kaniadakis, G. New power-law tailed distributions emerging in κ-statistics. Eur. Phys. Lett. 2021, 133, 10002. [Google Scholar] [CrossRef]
- Newman, M.E.J. Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 2005, 46, 323–351. [Google Scholar] [CrossRef] [Green Version]
- Saichev, A.; Malevergne, Y.; Sornette, D. Theory of Zipf’s Law and Beyond; Lecture Notes in Economics and Mathematical Systems; Springer: Berlin/Heidelberg, Germany, 2009; Volume 632. [Google Scholar]
- Singh, S.K.; Maddala, G.S. A function for size distribution of Incomes. Ecnometrica 1976, 44, 963–970. [Google Scholar] [CrossRef]
- Scarfone, A.M. Entropic Forms and Related Algebras. Entropy 2013, 15, 624–649. [Google Scholar] [CrossRef] [Green Version]
- Kaniadakis, G.; Scarfone, A.M.; Sparavigna, A.; Wada, T. Composition law of κ-entropy for statistically independent systems. Phys. Rev. E 2017, 95, 052112. [Google Scholar] [CrossRef] [Green Version]
- Ilic, V.; Korbel, J.; Gupta, S.; Scarfone, A. An overview of generalized entropic forms. EPL 2021, 133, 50005. [Google Scholar] [CrossRef]
- Hanel, R.; Thurner, S. A comprehensive classification of complex statistical systems and an axiomatic derivation of their entropy and distribution functions. Eur. Phys. Lett. 2011, 93, 20006. [Google Scholar] [CrossRef]
- Scarfone, A.M.; Matsuzoe, H.; Wada, T. Information Geometry of κ-Exponential Families: Dually-Flat, Hessian and Legendre Structures. Entropy 2018, 20, 436. [Google Scholar] [CrossRef] [Green Version]
- Wada, T.; Scarfone, A.M. Information Geometry on the κ-Thermostatistics. Entropy 2015, 17, 1204–1217. [Google Scholar] [CrossRef]
- Lotka, A.J. Elements of Physical Biology; Williams & Wilkins Co.: Baltimore, MD, USA, 1925. [Google Scholar]
- Murray, J.D. Mathematical Biology I: An Introduction, 3rd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Volterra, V. Variazioni e fluttuazioni del numero d’individui in species animali conviventi. Mem. R. Accad. Naz. Lincei. (Ser. VI) 1926, 2, 31–113. [Google Scholar]
- Hofbauer, J. Evolutionary dynamics for bimatrix games: A Hamiltonian system? J. Math. Biol. 1996, 34, 675–688. [Google Scholar] [CrossRef]
- Hofbauer, J.; Sigmund, K. The Theory of Evolution and Dynamical Systems; Cambridge University Press: Cambridge, UK, 1988. [Google Scholar]
- Hofstadter, D.R. Energy levels and wave functions of Bloch electrons in rational and irrational magneticfields. Phys. Rev. B 1976, 142239–142249. [Google Scholar]
- Hatsuda, Y.; Mariño, M. Exact quantization conditions for the relativistic Toda lattice. J. High Energy Phys. 2016, 5, 133. [Google Scholar] [CrossRef]
- Hatsuda, Y.; Katsura, H.; Tachikawa, Y. Hofstadter’s butterfly in quantum geometry. New J. Phys. 2016, 18, 103023. [Google Scholar] [CrossRef]
- Seiberg, N.; Witten, E. Monopole condensation, and confinement in N = 2 supersymmetric Yang-Mills theory. Nucl. Phys. B 1994, 42619–42652. [Google Scholar]
- Nekrasov, N. Five-dimensional gauge theories and relativistic integrable systems. Nucl. Phys. B 1998, 531, 323–344. [Google Scholar] [CrossRef] [Green Version]
- Mariño, M. Open string amplitudes and large order behavior in topological string theory. J. High Energy Phys. 2008, 3, 060. [Google Scholar] [CrossRef] [Green Version]
- Ruijsenaars, S.N.M. Relativistic Toda systems. Commun. Math. Phys. 1990, 133, 217. [Google Scholar] [CrossRef] [Green Version]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Berry, M.V.; Shukla, P. Classical dynamics with curl forces, and motion driven by time-dependent flux. J. Phys. A 2012, 45, 305201. [Google Scholar] [CrossRef]
- Berry, M.V.; Shukla, P. Hamiltonian curl forces. Proc. R. Soc. A 2015, 471, 20150. [Google Scholar] [CrossRef] [Green Version]
- Chiellini, A. Sull’integrazione dell’equazione differenziale y′ + Py2 + Qy3 = 0. Boll. Dell’unione Mat. Ital. 1931, 10, 301–307. [Google Scholar]
- Choudhury, A.G.; Guha, P. Chiellini integrability condition, planar isochronous systems and Hamiltonian structures of Liénard equation. Discret. Contin. Dyn. Syst. B 2017, 22, 2465–2478. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F.S.N.; Mak, M.K. A class of exact solutions of the Liénard type ordinary non-linear differential equation. J. Eng. Math. 2014, 89, 193–205. [Google Scholar] [CrossRef] [Green Version]
- Mancas, S.C.; Rosu, H.C. Integrable dissipative nonlinear second-order differential equations via factorizations and Abel equations. Phys. Lett. A 2013, 377, 1434. [Google Scholar] [CrossRef] [Green Version]
- Taylor, P.D.; Jonker, L.B. Evolutionarily stable strategies and game dynamics. Math. Biosci. 1978, 40, 145–156. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guha, P. The κ-Deformed Calogero–Leyvraz Lagrangians and Applications to Integrable Dynamical Systems. Entropy 2022, 24, 1673. https://doi.org/10.3390/e24111673
Guha P. The κ-Deformed Calogero–Leyvraz Lagrangians and Applications to Integrable Dynamical Systems. Entropy. 2022; 24(11):1673. https://doi.org/10.3390/e24111673
Chicago/Turabian StyleGuha, Partha. 2022. "The κ-Deformed Calogero–Leyvraz Lagrangians and Applications to Integrable Dynamical Systems" Entropy 24, no. 11: 1673. https://doi.org/10.3390/e24111673
APA StyleGuha, P. (2022). The κ-Deformed Calogero–Leyvraz Lagrangians and Applications to Integrable Dynamical Systems. Entropy, 24(11), 1673. https://doi.org/10.3390/e24111673