H∞ State-Feedback Control of Multi-Agent Systems with Data Packet Dropout in the Communication Channels: A Markovian Approach
Abstract
:1. Introduction
2. Type Control for Stochastic Systems with Markovian Jumps; The Case of a Single Agent
3. Markovian Controller Design for Multi-Agent Systems
4. The Data Packet Dropout Case
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Dorri, A.; Kanhere, S.; Jurdak, R. Multi-Agent Systems. A survey. IEEE Access 2018, 6, 28573–28593. [Google Scholar] [CrossRef]
- Sandell, N.R.; Varaiya, P.; Athans, M.; Safonov, M. Survey of Descentralised Control Methods for Large Scale Systems. IEEE Trans. Autom. Control 1978, 23, 108–128. [Google Scholar] [CrossRef]
- Siljak, D.D. Complex Dynamics Systems: Dimensionality, Structure and Uncertainty. Large Scale Syst. 1983, 4, 279–291. [Google Scholar]
- Tsitsiklis, J.N.; Bertsekas, D.P.; Athans, M. Distributed asynchronous deterministic and stochastic gradient optimization algorithms. IEEE Trans. Autom. Control 1986, 31, 803–812. [Google Scholar] [CrossRef]
- Ren, W.; Cao, Y. Distributed Coordination of Multi-Agent Networks; Springer: London, UK, 2011. [Google Scholar]
- Shamma, J. Cooperative Control of Distributed Multi-Agent Systems; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Wang, Y.; Garcia, E.; Casbeer, D.; Zhang, F. Cooperative Control of Multi-Agent Systems: Theory and Applications; Wiley: Hoboken, NJ, USA, 2017. [Google Scholar]
- Wang, J.; Wang, C.; Xin, M.; Ding, Z.; Shan, J. Cooperative Control of Multi-Agent Systems: An Optimal and Robust Perspective; Academic Press: London, UK, 2020. [Google Scholar]
- Ren, W.; Beard, R.W.; Atkins, E.M. Information Consensus in Multivehicle Cooperative Control. IEEE Control. Syst. Mag. 2007, 27, 71–81. [Google Scholar]
- Seo, J.; Shima, H.; Black, J. Consensus of high-order linear systems using dynamic output feedback compensator: Low gain approach. Automatica 2007, 43, 1049–1057. [Google Scholar] [CrossRef]
- Wu, Z.; Wu, Y.; Wu, Z.G. Synchronization of multi-agent systems via static output feedback control. J. Frankl. Inst. 2017, 354, 1049–1057. [Google Scholar] [CrossRef]
- Rehak, B.; Lynnyk, V. Consensus of nonlinear multi-agent system with output measurements. IFAC PapersOnLine 2021, 54, 400–405. [Google Scholar] [CrossRef]
- Yu, Z.; Li, X.; Xu, L.; Nasr, E.A.; Mahmoud, H. Stability analysis method and application of multi-agent systems from the perspective of hybrid systems. Meas. Control 2021, 54, 1347–1355. [Google Scholar] [CrossRef]
- Tahbaz-Salehi, A.; Jadbabaie, A. A necessary and sufficient condition for consensus over random networks. IEEE Trans. Autom. Control 2008, 53, 791–795. [Google Scholar] [CrossRef]
- Vengertsev, D.; Kim, H.; Seo, J.H.; Shim, H. Consensus of output-coupled high-order linear multi-agent systems under deterministic and Markovian switching networks. Int. J. Syst. Sci. 2013, 46, 1790–1799. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, Y.P. Consentability and Protocol Design of Multi-Agent Systems with Stable and Unstable Subsystems. An Average Dwell Time Approach. In Proceedings of the American Control Conference, Chicago, IL, USA, 28–30 June 2000; pp. 1055–1061. [Google Scholar]
- Miao, G.; Xu, S.; Zou, Y. Necessary and Sufficient Conditions for Mean Square Consensus over Markov Switching Topologies. Int. J. Syst. Sci. 2013, 44, 178–186. [Google Scholar] [CrossRef]
- Gupta, V.; Hassibi, B.; Murray, R.M. A sub-optimal algorithm to synthesize control laws for a network of dynamic agents. Int. J. Control. 2005, 78, 1302–1313. [Google Scholar] [CrossRef]
- Motee, N.; Jadbabaie, A. Optimal control of spatially distributed systems. IEEE Trans. Autom. Control 2008, 53, 1616–1629. [Google Scholar] [CrossRef]
- Langbort, C.; Chandra, R.S.; D-Andrea, R. Distributed control of heterogeneous systems. IEEE Trans. Autom. Control 2008, 49, 1502–1519. [Google Scholar] [CrossRef]
- Abdollahi, F.; Khorasani, K. A decentralised Markovian Jump H∞ Control Strategy for Mobile Multi-Agent Networked Systems. IEEE Trans. Control. Syst. Technol. 2011, 19, 269–283. [Google Scholar] [CrossRef]
- Wanigasekara, C.; Zhang, L.; Swain, A. H∞ State-Feedback Consensus of Linear Multi-Agent Systems. Proceeding of the 17th International Conference on Control & Automation, Naples, Italy, 27–30 June 2022; pp. 710–715. [Google Scholar]
- Bauso, D.; Giarre, L.; Pesenti, R. Consensus for networks with unknown but bounded disturbances. SIAM J. Control Optim. 2009, 48, 1756–1770. [Google Scholar] [CrossRef]
- Dal Col, L.; Tarbouriech, S.; Zaccarian, L. H∞ design for synchronisation of identical linear multi-agent systems. Int. J. Control. 2017, 91, 2214–2229. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, G. Distributed H∞ consensus of multi-agent systems: A performance region-based approach. Int. J. Control. 2012, 85, 332–341. [Google Scholar] [CrossRef]
- Borrelli, F.; Keviczky, T. Distributed LQR design for identical dynamically decoupled systems. IEEE Trans. Autom. Control 2008, 53, 1901–1912. [Google Scholar] [CrossRef]
- Tomic, I.; Haliakis, G.D. Robustness Properties of Distributed Configurations in Multi-Agent Systems; IFAC-PapersOnLine; Elsevier: Amsterdam, The Netherlands, 2016; Volume 49, pp. 86–91. [Google Scholar]
- Stoica, A.-M. H∞ Type Control for Multi Agent Systems Subject to Stochastic State Dependent Noise. SICON submitted for publication.
- Djouadi, S.M.; Charalambous, C.D.; Repperger, D.W. A convex programming approach to the multiobjective H2/H∞ problem. In Proceedings of the 2002 American Control Conference, Anchorage, AL, USA, 8–10 May 2002; pp. 4315–4320. [Google Scholar]
- Jadbabaie, A.; Lin, J.; Morse, A.S. Coordination of groups of mobile autonomous agents using nearest neighbour rules. IEEE Trans. Autom. Control 2003, 48, 988–1001. [Google Scholar] [CrossRef] [Green Version]
- Olfati-Saber, R.; Murray, R. Agreement Problems in Networks with Directed Graphs and Switching Topology. In Proceedings of the 42nd IEEE International Conference on Decision and Control, Maui, HI, USA, 9–12 December 2003; pp. 4126–4132. [Google Scholar]
- Costa, O.L.V.; Fragoso, M.D.; Todorov, M.G. Continuous-Time Markov Jump Linear Systems; Springer: New York, NY, USA, 2013. [Google Scholar]
- Dragan, V.; Morozan, T.; Stoica, A.-M. Mathematical Methods in Robust Control of Linear Stochastic Systems; Springer: New York, NY, USA, 2006. [Google Scholar]
- Doyle, J.C.; Glover, K.; Khargonekar, P.P.; Francis, B. State-space solutions to standard H2 and H∞ problems. IEEE Trans. Automat. Control 1989, 34, 831–847. [Google Scholar] [CrossRef]
- Khargonekar, P.P.; Rotea, M.A. Mixed H2/H∞ control: A convex optimization approach. IEEE Trans. Automat. Control 1991, 36, 824–837. [Google Scholar] [CrossRef]
- Dragan, V.; Freiling, G.; Morozan, T.; Stoica, A.-M. Iterative Algorithms for Stabilizing Solutions of Game Theoretic Riccati Equations of Stochastic Control. In Proceedings of the Mathematical Theory of Networks and Systems (MTNS2008), Virginia Tech, Blacksburg, VA, USA, 28 July–1 August 2008. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoica, A.-M.; Stoicu, S.C. H∞ State-Feedback Control of Multi-Agent Systems with Data Packet Dropout in the Communication Channels: A Markovian Approach. Entropy 2022, 24, 1734. https://doi.org/10.3390/e24121734
Stoica A-M, Stoicu SC. H∞ State-Feedback Control of Multi-Agent Systems with Data Packet Dropout in the Communication Channels: A Markovian Approach. Entropy. 2022; 24(12):1734. https://doi.org/10.3390/e24121734
Chicago/Turabian StyleStoica, Adrian-Mihail, and Serena Cristiana Stoicu. 2022. "H∞ State-Feedback Control of Multi-Agent Systems with Data Packet Dropout in the Communication Channels: A Markovian Approach" Entropy 24, no. 12: 1734. https://doi.org/10.3390/e24121734
APA StyleStoica, A. -M., & Stoicu, S. C. (2022). H∞ State-Feedback Control of Multi-Agent Systems with Data Packet Dropout in the Communication Channels: A Markovian Approach. Entropy, 24(12), 1734. https://doi.org/10.3390/e24121734