Improved Complementary Pulmonary Nodule Segmentation Model Based on Multi-Feature Fusion
Abstract
:1. Introduction
- (1)
- We propose a novel end-to-end lung nodule segmentation guidance network by fully integrating the global context and spatial information from different scale features, which leverages the complementary information extracted at both small- and large-scales.
- (2)
- Under the guidance of assigning more weight to the pixels located at edges and explicitly modeling edges in depth supervision, the location and coarse area are complemented with edge information, which effectively boosts the accuracy and robustness of the lung nodule segmentation model.
- (3)
- Experimental results illustrate that the proposed model outperforms other CNNs methods with high accuracy and robustness in lung nodule segmentation performance.
2. Related Work
3. Materials and Methods
3.1. High-Level Feature Decoder Module (HDM)
3.2. Low-Level Feature Decoder Module (LDM)
3.3. Complementary Module (CM)
3.4. Loss Function
4. Experiments
4.1. Datasets
4.2. Evaluation Metrics
4.3. Implementation Details
5. Results
5.1. Quantitative Analysis
5.2. Ablation Studies
5.3. Qualitative Analysis
5.4. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Li, N.; Wang, S.; Zhang, F.; Wei, W.; Li, N.; Bi, N.; Wang, Z.; He, J. Lung Cancer in People’s Republic of China. J. Thorac. Oncol. 2020, 15, 1567–1576. [Google Scholar] [CrossRef] [PubMed]
- Callister, M.E.; Baldwin, D.R.; Akram, A.R.; Barnard, S.; Cane, P.; Draffan, J.; Franks, K.; Gleeson, F.; Graham, R.; Malhotra, P.; et al. British Thoracic Society guidelines for the investigation and management of pulmonary nodules: Accredited by NICE. Thorax 2015, 70, ii1–ii54. [Google Scholar] [CrossRef] [Green Version]
- El-Regaily, S.A.; Salem, M.A.M.; Aziz, M.H.A.; Roushdy, M.I. Multi-view Convolutional Neural Network for lung nodule false positive reduction. Expert Syst. Appl. 2020, 162, 113017. [Google Scholar] [CrossRef]
- Liu, H.; Geng, F.; Guo, Q.; Zhang, C. A fast weak-supervised pulmonary nodule segmentation method based on modified self-adaptive FCM algorithm. Soft Comput. 2018, 22, 3983–3995. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [Google Scholar] [CrossRef] [Green Version]
- Feng, S.; Zhao, H.; Shi, F.; Cheng, X.; Wang, M.; Ma, Y.; Xiang, D.; Zhu, W.; Chen, X. CPFNet: Context Pyramid Fusion Network for Medical Image Segmentation. IEEE Trans. Med. Imaging 2020, 39, 3008–3018. [Google Scholar] [CrossRef]
- Zhang, Z.; Fu, H.; Dai, H.; Shen, J.; Pang, Y.; Shao, L. ET-Net: A Generic Edge-aTtention Guidance Network for Medical Image Segmentation. Int. Conf. Med. Image Comput. Comput. Interv. 2019, 11764, 442–450. [Google Scholar] [CrossRef]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Gu, R.; Wang, G.; Song, T.; Huang, R.; Aertsen, M.; Deprest, J.; Ourselin, S.; Vercauteren, T.; Zhang, S. CA-Net: Comprehensive Attention Convolutional Neural Networks for Explainable Medical Image Segmentation. IEEE Trans. Med. Imaging 2020, 40, 699–711. [Google Scholar] [CrossRef]
- Ni, Y.; Xie, Z.; Zheng, D.; Yang, Y.; Wang, W. Two-stage multitask U-Net construction for pulmonary nodule segmentation and malignancy risk prediction. Quant. Imaging Med. Surg. 2022, 12, 292–309. [Google Scholar] [CrossRef]
- Qian, W.; Zhao, X.; Sun, W.; Qi, S.; Sun, J.; Zhang, B.; Yang, Z. Fine-grained lung nodule segmentation with pyramid deconvolutional neural network. Med. Imaging 2019, 10950, 109503S. [Google Scholar] [CrossRef]
- Pezzano, G.; Ripoll, V.R.; Radeva, P. CoLe-CNN: Context-learning convolutional neural network with adaptive loss function for lung nodule segmentation. Comput. Methods Programs Biomed. 2021, 198, 105792. [Google Scholar] [CrossRef]
- Fan, D.-P.; Zhou, T.; Ji, G.-P.; Zhou, Y.; Chen, G.; Fu, H.; Shen, J.; Shao, L. Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images. IEEE Trans. Med. Imaging 2020, 39, 2626–2637. [Google Scholar] [CrossRef]
- Kostis, W.; Reeves, A.; Yankelevitz, D.; Henschke, C. Three-dimensional segmentation and growth-rate estimation of small pulmonary nodules in helical ct images. IEEE Trans. Med. Imaging 2003, 22, 1259–1274. [Google Scholar] [CrossRef]
- Dehmeshki, J.; Amin, H.; Valdivieso, M.; Ye, X. Segmentation of Pulmonary Nodules in Thoracic CT Scans: A Region Growing Approach. IEEE Trans. Med. Imaging 2008, 27, 467–480. [Google Scholar] [CrossRef] [Green Version]
- Chan, T.F.; Vese, L.A. Active contours without edges. IEEE Trans. Image Process. 2001, 10, 266–277. [Google Scholar] [CrossRef] [Green Version]
- Boykov, Y.; Kolmogorov, V. An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 1124–1137. [Google Scholar] [CrossRef]
- Gonçalves, L.; Novo, J.; Campilho, A. Hessian based approaches for 3D lung nodule segmentation. Expert Syst. Appl. 2016, 61, 1–15. [Google Scholar] [CrossRef]
- Mukhopadhyay, S. A Segmentation Framework of Pulmonary Nodules in Lung CT Images. J. Digit. Imaging 2016, 29, 86–103. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.; Hong, H.; Goo, J.M. Ground-glass nodule segmentation in chest CT images using asymmetric multi-phase deformable model and pulmonary vessel removal. Comput. Biol. Med. 2018, 92, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Hu, Y.-C.; Liu, C.-J.; Halpenny, D.; Hellmann, M.D.; Deasy, J.O.; Mageras, G.; Veeraraghavan, H. Multiple Resolution Residually Connected Feature Streams for Automatic Lung Tumor Segmentation from CT Images. IEEE Trans. Med. Imaging 2018, 38, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhou, M.; Liu, Z.; Liu, Z.; Gu, D.; Zang, Y.; Dong, D.; Gevaert, O.; Tian, J. Central focused convolutional neural networks: Developing a data-driven model for lung nodule segmentation. Med. Image Anal. 2017, 40, 172–183. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Liu, H.; Song, E.; Hung, C.-C.; Ma, G.; Xu, X.; Jin, R.; Lu, J. Dual-branch residual network for lung nodule segmentation. Appl. Soft Comput. 2020, 86, 105934. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, M.; Gevaert, O.; Tang, Z.; Dong, D.; Liu, Z.; Jie, T. A multi-view deep convolutional neural networks for lung nodule segmentation. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Republic of Korea, 11–15 July 2017; pp. 1752–1755. [Google Scholar] [CrossRef]
- Hu, H.; Li, Q.; Zhao, Y.; Zhang, Y. Parallel Deep Learning Algorithms with Hybrid Attention Mechanism for Image Segmentation of Lung Tumors. IEEE Trans. Ind. Inform. 2020, 17, 2880–2889. [Google Scholar] [CrossRef]
- Murugesan, M.; Kaliannan, K.; Balraj, S.; Singaram, K.; Kaliannan, T.; Albert, J.R. A Hybrid deep learning model for effective segmentation and classification of lung nodules from CT images. J. Intell. Fuzzy Syst. 2022, 42, 2667–2679. [Google Scholar] [CrossRef]
- Dutande, P.; Baid, U.; Talbar, S. LNCDS: A 2D-3D cascaded CNN approach for lung nodule classification, detection and segmentation. Biomed. Signal Process. Control. 2021, 67, 102527. [Google Scholar] [CrossRef]
- Song, J.; Huang, S.-C.; Kelly, B.; Liao, G.; Shi, J.; Wu, N.; Li, W.; Liu, Z.; Cui, L.; Lungre, M.P.; et al. Automatic Lung Nodule Segmentation and Intra-Nodular Heterogeneity Image Generation. IEEE J. Biomed. Health Inform. 2021, 26, 2570–2581. [Google Scholar] [CrossRef]
- Huang, X.; Sun, W.; Tseng, T.-L.B.; Li, C.; Qian, W. Fast and fully-automated detection and segmentation of pulmonary nodules in thoracic CT scans using deep convolutional neural networks. Comput. Med. Imaging Graph. 2019, 74, 25–36. [Google Scholar] [CrossRef]
- Maqsood, M.; Yasmin, S.; Mehmood, I.; Bukhari, M.; Kim, M. An Efficient DA-Net Architecture for Lung Nodule Segmentation. Mathematics 2021, 9, 1457. [Google Scholar] [CrossRef]
- Shi, J.; Ye, Y.; Zhu, D.; Su, L.; Huang, Y.; Huang, J. Comparative analysis of pulmonary nodules segmentation using multiscale residual U-Net and fuzzy C-means clustering. Comput. Methods Programs Biomed. 2021, 209, 106332. [Google Scholar] [CrossRef]
- Sun, Y.; Tang, J.; Lei, W.; He, D. 3D Segmentation of Pulmonary Nodules Based on Multi-View and Semi-Supervised. IEEE Access 2020, 8, 26457–26467. [Google Scholar] [CrossRef]
- Wang, B.; Chen, K.; Tian, X.; Yang, Y.; Zhang, X. An effective deep network for automatic segmentation of complex lung tumors in CT images. Med. Phys. 2021, 48, 5004–5016. [Google Scholar] [CrossRef]
- Yang, J.; Wu, B.; Li, L.; Cao, P.; Zaiane, O. MSDS-UNet: A multi-scale deeply supervised 3D U-Net for automatic segmentation of lung tumor in CT. Comput. Med. Imaging Graph. 2021, 92, 101957. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, X.; Zhang, X.; Huang, S.; Li, J.; HuangFu, L. Multi-granularity scale-aware networks for hard pixels segmentation of pulmonary nodules. Biomed. Signal Process. Control 2021, 69, 102890. [Google Scholar] [CrossRef]
- Zhu, L.; Zhu, H.; Yang, S.; Wang, P.; Yu, Y. HR-MPF: High-resolution representation network with multi-scale progressive fusion for pulmonary nodule segmentation and classification. EURASIP J. Image Video Process. 2021, 2021, 34. [Google Scholar] [CrossRef]
- Liu, S.; Huang, D.; Wang, Y. Receptive field block net for accurate and fast object detection. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; Springer: Berlin, Germany, 2018; pp. 385–400. [Google Scholar]
- Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Su, L.; Huang, Q. Cascaded Partial Decoder for Fast and Accurate Salient Object Detection. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 3907–3916. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Su, L.; Huang, Q. Stacked Cross Refinement Network for Edge-Aware Salient Object Detection. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October 2019–2 November 2019; pp. 7264–7273. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, J.-J.; Fan, D.-P.; Cao, Y.; Yang, J.; Cheng, M.-M. EGNet: Edge Guidance Network for Salient Object Detection. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October 2019–2 November 2019; pp. 8779–8788. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Zhai, G.; Li, M.; Liu, Y. Three-branch and Mutil-scale learning for Fine-grained Image Recognition (TBMSL-Net). arXiv 2020, arXiv200309150. [Google Scholar]
- Wei, X.-S.; Luo, J.-H.; Wu, J.; Zhou, Z.-H. Selective Convolutional Descriptor Aggregation for Fine-Grained Image Retrieval. IEEE Trans. Image Process. 2017, 26, 2868–2881. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Wang, S.; Huang, Q. F3Net: Fusion, Feedback and Focus for Salient Object Detection. Proc. Conf. AAAI Artif. Intell. 2020, 34, 12321–12328. [Google Scholar] [CrossRef]
- Setio, A.A.A.; Traverso, A.; de Bel, T.; Berens, M.S.; Bogaard, C.V.D.; Cerello, P.; Chen, H.; Dou, Q.; Fantacci, M.E.; Geurts, B.; et al. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge. Med. Image Anal. 2017, 42, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armato, S.G.; McLennan, G.; Bidaut, L.; McNitt-Gray, M.F.; Meyer, C.R.; Reeves, A.P.; Zhao, B.; Aberle, D.R.; Henschke, C.I.; Hoffman, E.A.; et al. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans. Med. Phys. 2011, 38, 915–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valverde, S.; Oliver, A.; Roura, E.; González-Villà, S.; Pareto, D.; Vilanova, J.C.; Ramió-Torrentà, L.; Rovira, A.; Lladó, X. Automated tissue segmentation of MR brain images in the presence of white matter lesions. Med. Image Anal. 2017, 35, 446–457. [Google Scholar] [CrossRef] [PubMed]
- Menze, B.H.; Jakab, A.; Bauer, S.; Kalpathy-Cramer, J.; Farahani, K.; Kirby, J.; Burren, Y.; Porz, N.; Slotboom, J.; Wiest, R.; et al. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Trans. Med. Imaging 2014, 34, 1993–2024. [Google Scholar] [CrossRef]
- Perazzi, F.; Krähenbühl, P.; Pritch, Y.; Hornung, A. Saliency filters: Contrast based filtering for salient region detection. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 733–740. [Google Scholar] [CrossRef]
- Lan, T.; Li, Y.; Murugi, J.K.; Ding, Y.; Qin, Z. Run: Residual U-Net for computer-aided detection of pulmonary nodules without candidate selection. arXiv 2018, arXiv180511856. [Google Scholar]
- Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Lecture Notes in Computer Science; Stoyanov, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2018; Volume 11045. [Google Scholar] [CrossRef] [Green Version]
- Gu, Z.; Cheng, J.; Fu, H.; Zhou, K.; Hao, H.; Zhao, Y.; Zhang, T.; Gao, S.; Liu, J. CE-Net: Context Encoder Network for 2D Medical Image Segmentation. IEEE Trans. Med. Imaging 2019, 38, 2281–2292. [Google Scholar] [CrossRef]
- Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N.Y.; Kainz, B.; et al. Attention u-net: Learning where to look for the pancreas. arXiv 2018, arXiv180403999. [Google Scholar]
Method | LUNA16 | FUSCC | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
U- Net | U-Net++ | RUN | Attention U-Net | Huang et al. | CE- Net | OUR-Net | U- Net | U-Net++ | Attention U-Net | CE- Net | OUR-Net | |
DSC↑ | 0.676 ± 0.004 | 0.747 ± 0.003 | 0.719 N/A | 0.772 ± 0.006 | 0.793 N/A | 0.825 ± 0.002 | 0.835 ± 0.002 | 0.686 ± 0.003 | 0.767 ± 0.009 | 0.816 ± 0.006 | 0.864 ± 0.003 | 0.868 ± 0.001 |
JA↑ | 0.511 ± 0.004 | 0.596 ± 0.004 | 0.561 N/A | 0.628 ± 0.008 | 0.657 N/A | 0.702 ± 0.002 | 0.717 ± 0.003 | 0.522 ± 0.003 | 0.621 ± 0.012 | 0.675 ± 0.008 | 0.761 ± 0.004 | 0.767 ± 0.002 |
HD95↓ | 13.906 ± 1.200 | 9.593 ± 2.857 | N/A | 6.041 ± 0.008 | N/A | 4.161 ± 0.127 | 3.722 ± 0.226 | 20.036 ± 0.705 | 18.402 ± 0.965 | 10.293 ± 1.595 | 5.427 ± 0.114 | 5.354 ± 0.389 |
SE↑ | 0.705 | 0.746 | N/A | 0.907 | N/A | 0.819 | 0.865 | 0.883 | 0.801 | 0.910 | 0.881 | 0.884 |
SP↑ | 0.972 | 0.973 | N/A | 0.982 | N/A | 0.983 | 0.991 | 0.969 | 0.981 | 0.980 | 0.986 | 0.987 |
Sm↑ | 0.844 | 0.890 | N/A | 0.869 | N/A | 0.912 | 0.915 | 0.807 | 0.892 | 0.885 | 0.916 | 0.919 |
Em↑ | 0.824 | 0.888 | N/A | 0.907 | N/A | 0.951 | 0.955 | 0.814 | 0.885 | 0.916 | 0.961 | 0.962 |
MAE↓ | 0.121 | 0.087 | N/A | 0.088 | N/A | 0.019 | 0.015 | 0.137 | 0.091 | 0.086 | 0.026 | 0.026 |
Index | Model | DSC↑ | JA↑ | HD95↓ | SE↑ | SP↑ | Sm↑ | Em↑ | MAE↓ |
---|---|---|---|---|---|---|---|---|---|
(a) | backbone | 0.459 ± 0.011 | 0.298 ± 0.009 | 34.703 ± 3.417 | 0.558 | 0.889 | 0.739 | 0.719 | 0.178 |
(b) | (a) +MF | 0.659 ± 0.010 | 0.491 ± 0.011 | 26.286 ± 2.303 | 0.720 | 0.907 | 0.825 | 0.876 | 0.101 |
(c) | (b) +MD | 0.791 ± 0.003 | 0.654 ± 0.004 | 8.389 ± 1.228 | 0.854 | 0.958 | 0.875 | 0.908 | 0.076 |
(d) | (c) +CM (w/o W) | 0.859 ± 0.001 | 0.753 ± 0.001 | 6.119 ± 0.388 | 0.864 | 0.978 | 0.910 | 0.952 | 0.034 |
(e) | (c) +CM * (ours) | 0.868 ± 0.001 | 0.767 ± 0.002 | 5.354 ± 0.389 | 0.884 | 0.987 | 0.919 | 0.962 | 0.026 |
Model | DSC | JA | HD95 | SE | SP | Sm | Em | MAE |
---|---|---|---|---|---|---|---|---|
0.860 ± 0.002 | 0.754 ± 0.002 | 5.763 ± 0.341 | 0.864 | 0.990 | 0.917 | 0.956 | 0.027 | |
0.868 ± 0.001 | 0.767 ± 0.002 | 5.354 ± 0.389 | 0.884 | 0.987 | 0.919 | 0.962 | 0.026 | |
0.866 ± 0.002 | 0.764 ± 0.002 | 5.219 ± 0.383 | 0.883 | 0.988 | 0.919 | 0.960 | 0.026 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, T.; Li, F.; Jiang, M.; Xia, X.; Zhang, R.; Lin, K. Improved Complementary Pulmonary Nodule Segmentation Model Based on Multi-Feature Fusion. Entropy 2022, 24, 1755. https://doi.org/10.3390/e24121755
Tang T, Li F, Jiang M, Xia X, Zhang R, Lin K. Improved Complementary Pulmonary Nodule Segmentation Model Based on Multi-Feature Fusion. Entropy. 2022; 24(12):1755. https://doi.org/10.3390/e24121755
Chicago/Turabian StyleTang, Tiequn, Feng Li, Minshan Jiang, Xunpeng Xia, Rongfu Zhang, and Kailin Lin. 2022. "Improved Complementary Pulmonary Nodule Segmentation Model Based on Multi-Feature Fusion" Entropy 24, no. 12: 1755. https://doi.org/10.3390/e24121755
APA StyleTang, T., Li, F., Jiang, M., Xia, X., Zhang, R., & Lin, K. (2022). Improved Complementary Pulmonary Nodule Segmentation Model Based on Multi-Feature Fusion. Entropy, 24(12), 1755. https://doi.org/10.3390/e24121755