Quantum Spatial Search with Electric Potential: Long-Time Dynamics and Robustness to Noise
Abstract
:1. Introduction
2. Basics
2.1. Definition of the 2D Electric Dirac DQW
2.2. Continuum Limit
2.3. Coulomb Potential
2.4. Definition of the Spatial-Search Problem
3. Noiseless Case: Long Times
4. Ressource Analysis
5. Oracle Noise
5.1. Spatial Oracle Noise
5.2. Spatiotemporal Oracle Noise
6. Probability Distribution in Space
6.1. Noiseless Case
6.2. Spatial Oracle Noise
7. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DQW | Discrete-Time Quantum Walk |
QW | Quantum Walk |
CQW | Continuous-Time Quantum Walk |
NISQ | Noisy Intermediate Scale Quantum |
References
- Arrighi, P. An overview of quantum cellular automata. Nat. Comput. 2019, 18, 885–899. [Google Scholar] [CrossRef] [Green Version]
- Farrelly, T. A review of Quantum Cellular Automata. Quantum 2020, 4, 368. [Google Scholar] [CrossRef]
- Arnault, P.; Di Molfetta, G.; Brachet, M.; Debbasch, F. Quantum walks and non-Abelian discrete gauge theory. Phys. Rev. A 2016, 94, 012335. [Google Scholar] [CrossRef] [Green Version]
- Di Molfetta, G.; Brachet, M.; Debbasch, F. Quantum walks as massless Dirac fermions in curved space-time. Phys. Rev. A 2013, 88, 042301. [Google Scholar] [CrossRef] [Green Version]
- Zylberman, J.; Di Molfetta, G.; Brachet, M.; Loureiro, N.F.; Debbasch, F. Quantum simulations of hydrodynamics via the Madelung transformation. Phys. Rev. A 2022, 106, 032408. [Google Scholar] [CrossRef]
- Berry, S.D.; Wang, J.B. Two-particle quantum walks: Entanglement and graph isomorphism testing. Phys. Rev. A 2011, 83, 042317. [Google Scholar] [CrossRef]
- Ahlbrecht, A.; Alberti, A.; Meschede, D.; Scholz, V.B.; Werner, A.H.; Werner, R.F. Molecular binding in interacting quantum walks. New J. Phys. 2012, 14, 073050. [Google Scholar] [CrossRef] [Green Version]
- Shikano, Y.; Wada, T.; Horikawa, J. Discrete-time quantum walk with feed-forward quantum coin. Sci. Rep.-UK 2014, 4, 4427. [Google Scholar] [CrossRef] [Green Version]
- Bisio, A.; D’Ariano, G.M.; Perinotti, P.; Tosini, A. Weyl, Dirac and Maxwell Quantum Cellular Automata. Found. Phys. 2015, 45, 1203–1221. [Google Scholar] [CrossRef] [Green Version]
- Di Molfetta, G.; Pérez, A. Quantum walks as simulators of neutrino oscillations in a vacuum and matter. New J. Phys. 2016, 18, 103038. [Google Scholar] [CrossRef]
- Bisio, A.; D’Ariano, G.M.; Perinotti, P. Quantum cellular automaton theory of light. Ann. Phys.-NY 2016, 368, 177–190. [Google Scholar] [CrossRef] [Green Version]
- Rakovszky, T.; Asbóth, J.K.; Alberti, A. Detecting topological invariants in chiral symmetric insulators via losses. Phys. Rev. B 2017, 95, 201407. [Google Scholar] [CrossRef] [Green Version]
- Márquez-Martín, I.; Arnault, P.; Di Molfetta, G.; Pérez, A. Electromagnetic lattice gauge invariance in two-dimensional discrete-time quantum walks. Phys. Rev. A 2018, 98, 032333. [Google Scholar] [CrossRef] [Green Version]
- Arrighi, P.; Di Molfetta, G.; Marquez-Martin, I.; Perez, A. From curved spacetime to spacetime-dependent local unitaries over the honeycomb and triangular quantum walks. Sci. Rep.-UK 2019, 9, 10904. [Google Scholar] [CrossRef] [Green Version]
- Jay, G.; Debbasch, F.; Wang, J.B. Dirac quantum walks on triangular and honeycomb lattices. Phys. Rev. A. 2019, 99, 032113. [Google Scholar] [CrossRef] [Green Version]
- Anglés-Castillo, A.; Pérez, A. A quantum walk simulation of extra dimensions with warped geometry. Sci. Rep.-UK 2022, 12, 1926. [Google Scholar] [CrossRef]
- Kempe, J. Quantum random walks: An introductory overview. Contemp. Phys. 2003, 44, 307–327. [Google Scholar] [CrossRef] [Green Version]
- Ambainis, A.; Kempe, J.; Rivosh, A. Coins Make Quantum Walks Faster; SODA ’05; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2005; pp. 1099–1108. [Google Scholar]
- Childs, A.M.; Goldstone, J. Spatial search by quantum walk. Phys. Rev. A 2004, 70, 022314. [Google Scholar] [CrossRef] [Green Version]
- Grover, L.K. A fast quantum mechanical algorithm for database search. In Proceedings of the ACM symposium on Theory of Computing—STOC ’96, Philadelphia, PA, USA, 22–24 May 1996. [Google Scholar]
- Lavor, C.; Manssur, L.R.U.; Portugal, R. Grover’s Algorithm: Quantum Database Search. arXiv 2003, arXiv:quant-ph/0301079. [Google Scholar]
- Abal, G.; Donangelo, R.; Marquezino, F.L.; Portugal, R. Spatial search on a honeycomb network. Math. Struct. Comp. Sci. 2010, 20, 999–1009. [Google Scholar] [CrossRef] [Green Version]
- Inui, N.; Konishi, Y.; Konno, N. Localization of two-dimensional quantum walks. Phys. Rev. A 2004, 69, 052323. [Google Scholar] [CrossRef]
- Konno, N.; Obata, N.; Segawa, E. Localization of the Grover Walks on Spidernets and Free Meixner Laws. Commun. Math. Phys. 2013, 322, 667–695. [Google Scholar] [CrossRef] [Green Version]
- Bezerra, G.A.; Lugão, P.H.G.; Portugal, R. Quantum-walk-based search algorithms with multiple marked vertices. Phys. Rev. A 2021, 103, 062202. [Google Scholar] [CrossRef]
- Tulsi, A. Faster quantum-walk algorithm for the two-dimensional spatial search. Phys. Rev. A 2008, 78, 012310. [Google Scholar] [CrossRef] [Green Version]
- Brassard, G.; Høyer, P.; Mosca, M.; Tapp, A. Quantum amplitude amplification and estimation. arXiv 2002, arXiv:quant-ph/0005055. [Google Scholar]
- Roget, M.; Guillet, S.; Arrighi, P.; Di Molfetta, G. Grover Search as a Naturally Occurring Phenomenon. Phys. Rev. Lett. 2020, 124, 180501. [Google Scholar] [CrossRef]
- Zylberman, J.; Debbasch, F. Dirac Spatial Search with Electric Fields. Entropy 2021, 23, 1441. [Google Scholar] [CrossRef]
- Welch, J.; Greenbaum, D.; Mostame, S.; Aspuru-Guzik, A. Efficient quantum circuits for diagonal unitaries without ancillas. New J. Phys. 2014, 16, 033040. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, M.A.; Chuang, I.; Grover, L.K. Quantum Computation and Quantum Information. Am. J. Phys. 2002, 70, 558–559. [Google Scholar] [CrossRef] [Green Version]
- Scherer, A.; Valiron, B.; Mau, S.C.; Alexander, S.; van den Berg, E.; Chapuran, T.E. Concrete resource analysis of the quantum linear-system algorithm used to compute the electromagnetic scattering cross section of a 2D target. Quantum Inf. Process. 2017, 16, 60. [Google Scholar] [CrossRef] [Green Version]
- Portugal, R. Quantum Walks and Search Algorithms; Springer International Publishing: New York, NY, USA, 2018. [Google Scholar]
- Preskill, J. Quantum Computing in the NISQ era and beyond. Quantum 2018, 2, 79. [Google Scholar] [CrossRef]
- Zhang, K.; Rao, P.; Yu, K.; Lim, H.; Korepin, V. Implementation of efficient quantum search algorithms on NISQ computers. Quantum Inf. Process. 2021, 20, 233. [Google Scholar] [CrossRef]
- Douglas, B.L.; Wang, J.B. Efficient quantum circuit implementation of quantum walks. Phys. Rev. A 2009, 79, 052335. [Google Scholar] [CrossRef] [Green Version]
- Loke, T.; Wang, J.B. Efficient quantum circuits for continuous-time quantum walks on composite graphs. J. Phys. A-Math. Theor. 2017, 50, 055303. [Google Scholar] [CrossRef] [Green Version]
- Arnault, P.; Debbasch, F. Quantum walks and discrete gauge theories. Phys. Rev. A 2016, 93, 052301. [Google Scholar] [CrossRef] [Green Version]
- Shikano, Y. From Discrete Time Quantum Walk to Continuous Time Quantum Walk in Limit Distribution. J. Comput. Nanos. 2013, 10, 1558–1570. [Google Scholar] [CrossRef] [Green Version]
- Arrighi, P.; Nesme, V.; Forets, M. The Dirac equation as a quantum walk: Higher dimensions, observational convergence. J. Phys. A-Math. Gen. 2014, 47, 465302. [Google Scholar] [CrossRef] [Green Version]
- Shakeel, A. Efficient and scalable quantum walk algorithms via the quantum Fourier transform. Quantum Inf. Process. 2020, 19, 323. [Google Scholar] [CrossRef]
- Devitt, S.J.; Munro, W.J.; Nemoto, K. Quantum error correction for beginners. Rep. Prog. Phys. 2013, 76, 076001. [Google Scholar] [CrossRef] [Green Version]
- Harper, R.; Flammia, S.T. Fault-Tolerant Logical Gates in the IBM Quantum Experience. Phys. Rev. Lett. 2019, 122, 080504. [Google Scholar] [CrossRef] [Green Version]
- Roffe, J. Quantum error correction: An introductory guide. Contemp. Phys. 2019, 60, 226–245. [Google Scholar] [CrossRef] [Green Version]
- Chandrashekar, C.M.; Srikanth, R.; Banerjee, S. Symmetries and noise in quantum walk. Phys. Rev. A 2007, 76, 022316. [Google Scholar] [CrossRef]
- Banerjee, S.; Srikanth, R.; Chandrashekar, C.M.; Rungta, P. Symmetry-noise interplay in a quantum walk on an n-cyle. Phys. Rev. A 2008, 78, 052316. [Google Scholar] [CrossRef] [Green Version]
- Alberti, A.; Alt, W.; Werner, R.; Meschede, D. Decoherence models for discrete-time quantum walks and their application to neutral atom experiments. New J. Phys. 2014, 16, 123052. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, A.C.; Portugal, R.; Donangelo, R. Decoherence in two-dimensional quantum walks. Phys. Rev. A 2006, 74, 012312. [Google Scholar] [CrossRef] [Green Version]
- Di Molfetta, G.; Debbasch, F. Discrete-time quantum walks in random artificial gauge fields. Quantum Stud. Math. Found. 2016, 3, 293–311. [Google Scholar] [CrossRef] [Green Version]
- Morley, J.G.; Chancellor, N.; Bose, S.; Kendon, V. Quantum search with hybrid adiabatic quantum-walk algorithms and realistic noise. Phys. Rev. A 2019, 99, 022339. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.F.; Wang, W.; Yi, X.X. Discrete-time quantum walk with time-correlated noise. Phys. Rev. A 2021, 103, 032205. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fredon, T.; Zylberman, J.; Arnault, P.; Debbasch, F. Quantum Spatial Search with Electric Potential: Long-Time Dynamics and Robustness to Noise. Entropy 2022, 24, 1778. https://doi.org/10.3390/e24121778
Fredon T, Zylberman J, Arnault P, Debbasch F. Quantum Spatial Search with Electric Potential: Long-Time Dynamics and Robustness to Noise. Entropy. 2022; 24(12):1778. https://doi.org/10.3390/e24121778
Chicago/Turabian StyleFredon, Thibault, Julien Zylberman, Pablo Arnault, and Fabrice Debbasch. 2022. "Quantum Spatial Search with Electric Potential: Long-Time Dynamics and Robustness to Noise" Entropy 24, no. 12: 1778. https://doi.org/10.3390/e24121778
APA StyleFredon, T., Zylberman, J., Arnault, P., & Debbasch, F. (2022). Quantum Spatial Search with Electric Potential: Long-Time Dynamics and Robustness to Noise. Entropy, 24(12), 1778. https://doi.org/10.3390/e24121778